А. А. Одинцов, В. Е. Хан, А. К. Калиновский

Институт проблем безопасности АЭС НАН Украины, ул. Кирова, 36а, Чернобыль, 07270, Украина

СОДЕРЖАНИЕ ¹²⁹І В РАДИОАКТИВНО ЗАГРЯЗНЕННОЙ ВОДЕ ОБЪЕКТА «УКРЫТИЕ»

Определено содержание 129 I в радиоактивно загрязненной воде (P3B), отобранной из помещений объекта "Укрытие». Активность изотопов йода определяли γ -спектрометрическими измерениями фракции йода, выделенной из P3B на носителе стабильного йода. Концентрирование и очистку изотопов йода от присутствующих в P3B γ -излучающих радионуклидов 137 Cs, 154,155 Eu и 241 Am производили по экстракционной методике. Объемная активность 129 I в исследованных пробах P3B составляет 5,3 \pm 2,1 Бк/дм³. Отношения активностей в P3B 90 Sr/ 129 I – $(2,6\pm1,3)\cdot 10^6$ и 137 Cs/ 129 I – $(5,7\pm1,8)\cdot 10^6$. В пробах воды, непосредственно протекающей через помещения с топливосодержащими материалами с высокой концентрацией урана, отобранных из скважины Ю-9-Б, короткоживущих изотопов йода 131 , 132 , 133 , 135 I не обнаружено.

Ключевые слова: ¹²⁹I, экстракция, жидкие радиоактивные отходы, объект «Укрытие».

Ввеление

При эксплуатации АЭС, переработке и утилизации отработавшего ядерного топлива (ОЯТ) в окружающую среду, несмотря на предпринимаемые усилия по минимизации выбросов, попадают техногенные радионуклиды. Одним из продуктов деления, которому уделяется большое внимание, является радиоактивный йод. Из-за большого разнообразия химических форм, а также высокой мобильности изотопов йода в окружающей среде он представляет большую экологическую опасность. Среди изотопов йода основное внимание уделяется наиболее долгоживущему 129 I ($T_{1/2} = 1,57 \cdot 10^7$ лет) и короткоживущему 131 I ($T_{1/2} = 8,04$ сут) [1].

Радиоактивные изотопы йода являются одними из основных радионуклидов, определяющих внутреннее облучение в первые недели после аварийных выбросов на АЭС. Изотопы йода поступают в организм различными путями (через легкие, пищеварительный тракт, кожу) и накапливаются в щитовидной железе.

В процессе эксплуатации твэлов в ядерных реакторах возможно нарушение герметичности их оболочек. Различают два типа таких нарушений: образование микротрещин, через которые могут проникать только газообразные продукты деления (ПД) (газовая неплотность), и наличие дефектов, при которых возможен непосредственный контакт диоксида урана с теплоносителем, что приводит к проникновению в него кроме газообразных еще и других осколков деления. К числу реперных для контроля герметичности оболочек твэлов отнесены следующие радионуклиды: 131 I, 132 I, 133 I, 134 I, 135 I. В работе [2] представлена методика, ориентированная на контроль активности 131 I, 132 I, 133 I, 134 I, 135 I в циркулирующем по байпасной линии теплоносителя первого контура реактора ВВЭР-1000 в диапазоне величин (3,7·10³ ÷ 3,7·10⁸) Бк/кг.

В работе [3] было высказано и обосновано предположение о том, что в юго-восточном квадранте помещения 305/2 объекта «Укрытие» находятся два скрытых скопления топливосодержащих материалов (ТСМ). При этом, как показали расчеты, в такой лаве содержание урана должно быть значительно выше, чем в других продуктах взаимодействия ядерного топлива с конструкционными материалами разрушенного блока. Общепринятый консервативный подход к проблемам ядерной безопасности применительно к анализу состояния возможного скрытого скопления лавы в помещении305/2 дает основание утверждать, что в настоящее время эта структура может являться потенциально опасной критмассовой зоной, которая для обеспечения ядерной и радиационной безопасности объекта «Укрытие» требует систематического контроля. Одними из маркеров протекания реакций деления могут являться короткоживущие изотопы ¹³¹I, ¹³²I, ¹³³I, ¹³⁴I, ¹³⁵I. В реальных условиях объекта «Укрытие» наиболее вероятно определение в воде омывающей ТСМ объемной активности ¹³¹I.

Исследованиям радионуклидного и макрокомпонентного состава радиоактивно загрязненной воды (P3B) объекта «Укрытие» посвящен ряд работ [4 - 6]. Определено содержание макрокомпонентов, урана, 90 Sr, 137 Cs, 154,155 Eu, 238,239,240 Pu, 241 Am и 242,244 Cm в скоплениях и протечках P3B в помещениях на нижних отметках объекта «Укрытие». Однако работ по определению содержания изотопов йода до настоящего времени не производилось.

Целью данной работы было определение объемной активности изотопов йода 129 I, 131 I, 132 I, 133 I и 135 I в P3B, поступающей из скважин, пробуренных в помещение 305/2, и основных водных скоплениях локализованных на нижних отметках объекта «Укрытие».

© А. А. Одинцов, В. Е. Хан, А. К. Калиновский, 2015

Материалы и методы

Пробы РЗВ для определения содержания изотопов йода отбирались из скважин, пробуренных в помещение 305/2 на отметке +9,0 м и вводных скоплений на нижних отметках объекта «Укрытие». Пробы воды отбирали в период с апреля 2009 г. по ноябрь 2013 г. В настоящее время наиболее информативной скважиной по радионуклидному составу РЗВ можно считать скважину Ю-9-Б, которая пробурена на отметке +8,8 м из помещения 208/10 с юга на север помещения 305/2. Эта скважина проходит в непосредственной близости от скоплений лавообразных ТСМ (ЛТСМ). На рис. 1 показано расположение скважины Ю-9-Б.

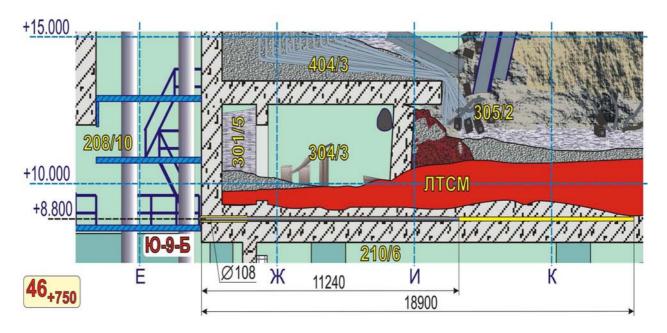


Рис. 1. План-схема расположения скважины Ю-9-Б.

В зависимости от сезона и интенсивности атмосферных осадков из скважины Ю-9-Б в помещение 208/10 поступает РЗВ в количестве от 0,01 до 1,0 дм³/сут. Воду собирали в контейнер, установленный непосредственно у скважины Ю-9-Б. Объем пробы воды, отбираемый для исследований, составлял 0,7-1,0 дм³. Предварительная подготовка проб воды заключалась в фильтровании пробы через бумажный фильтр «синяя лента» и внесение носителя стабильного йода в виде NH_4I . Параллельно в каждой пробе воды определяли pH, макрокомпонентный состав, концентрацию урана и объемные активности радионуклидов.

Выделение и концентрирование радиоизотопов йода из РЗВ объекта «Укрытие» производили по экстракционной методике, за основу которой была принята схема выделения, предложенная в работе [7]. Методика адаптирована с учетом сложного макрокомпонентного состава РЗВ. В работах [4 -6] определено, что РЗВ объекта «Укрытие» являются щелочными карбонатными растворами с рН 8,5 - 10. Методика основана на экстракции I₂ четыреххлористым углеродом после осуществления полного обмена между радиойодом и носителем (стабильный йод). Полный обмен достигается окислением I^- до I_2 в подкисленном растворе (рис. 2, a). Йод экстрагируется CCl_4 при комнатной температуре при интенсивном перемешивании в течение 5 – 10 мин. Соотношение водной и органической фаз 20 : 1. Измерение активности выделенного препарата выполняли на у-спектрометрическом комплексе, состоящем из полупроводникового детектора GL2020R из сверхчистого германия CANBERRA с разрешением 0,57 кэВ для энергии у-квантов 122 кэВ (у-линии ⁵⁷Со) и 16000-канального амплитудного анализатора импульсов CANBERRA. Измерительный диапазон охватывает интервал от 10 до 1400 кэВ. Детектор имеет бериллиевое окно толщиной 500 мкм. Минимально измеряемая активность для геометрии измерений на γ -линии 59 кэВ 241 Am равна 0,03 Бк/пробу, а для 137 Cs (661,6 кэВ) -0,4 Бк/пробу. Обработку аппаратурных спектров производили с использованием программы GENIE-2000 по алгоритмам, заложенным в программе.

Измерение активности изотопов йода производили непосредственно в виде органической фазы CCl_4 в полиэтиленовой виале объемом 20 мл (см. рис. 2, δ). Чувствительность метода для $^{129}I - 0.2$ Бк/препарат, химический выход в среднем составляет 80 - 90 % за две экстракции.

Рис. 2 Исходная проба РЗВ (a) и выделенные препараты изотопов йода (δ) .

С помощью γ -спектрометра нами были получены и проанализированы γ -спектры исходных проб P3B объекта «Укрытие» и выделенных из них фракций йода. Сложность спектров зависит от радионуклидного состава проб P3B, времени доставки проб до измерительного участка и эффективности очистительной методики. В качестве примера на рис. 3 приведен γ -спектр, типичный для P3B из скважины Ю-9-Б объекта «Укрытие». На рис. 4 показан γ -спектр выделенной и очищенной от других радионуклидов фракции йода.

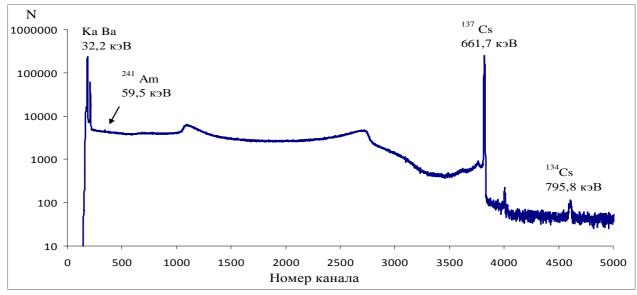


Рис. 3. Типичный у-спектр РЗВ из скважины Ю-9-Б.

Как видно на рис. 4, в выделенной фракции йода присутствуют небольшие количества $^{137}\mathrm{Cs}$ и $^{241}\mathrm{Am}$. В низкоэнергетической области спектра хорошо видны основные линии $^{129}\mathrm{I}$: 29,45 + 29,78; 33,6; 39,58 кэВ. Коэффициент очистки фракции йода от $^{137}\mathrm{Cs}-4\cdot10^6$ - 1 \cdot 10⁸, $^{154}\mathrm{Eu}$ - > 3 \cdot 10⁴, $^{241}\mathrm{Am}$ - > 4 \cdot 10⁴.

Относительно низкие коэффициенты очистки йода от америция и европия по сравнению с цезием при экстракции четыреххлористым углеродом можно объяснить образованием в воде объекта «Укрытие» металлоорганических комплексов америция и европия, которые в данных условиях переходят в органическую фазу. В целом адаптированная экстракционная методика позволяет выделять изотопы йода из P3B объекта «Укрытие» с удовлетворительной радиохимической чистотой для прямых γ -спектрометрических измерений 129,131 I. В объектах окружающей среды из-за низкого удельного содержания 129 I определяют в основном методом нейтронно-активационного анализа или масс-спектрометрии, что связано с определенными техническими трудностями.

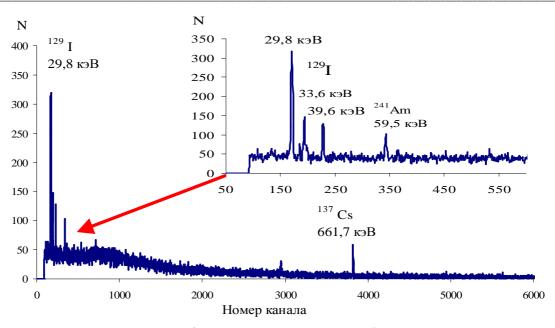


Рис. 4. Гамма-спектр фракции йода, выделенной из РЗВ объекта «Укрытие

Результаты и обсуждения

Содержание фосфатов, карбонатов и гидрокарбонатов в воде, поступающей из скважины Ю-9-Б, приведено в табл. 1. В период наблюдений с апреля 2009 г. по ноябрь 2013 г. рН воды увеличился с 8,5 до 9,1, при этом концентрация карбонатов ${\rm CO_3}^2$ возросла до 40 мг/дм³. В 2013 г. средние значения этих показателей для контролируемых водных скоплений составляли рН 9,1 \pm 0,34 и концентрация ${\rm CO_3}^2$ 68 \pm 36 мг/дм³ [8], т.е. вода, поступающая из скважины Ю-9-Б по макрокомпонентному составу, незначительно отличается от РЗВ локализованных в других водных скоплениях.

140/1444 1. Rongeni pagna makpokomnonentos s soge eksaminis 10-5-5, mi/am					
Дата отбора	рН	$\mathrm{HPO_4}^{2-}$	CO_3^{2-}	HCO ₃ -	
06.04.2009	8,6	0,72	-	240	
08.04.2010	8,5	=	-	520	
01.06.2010	8,7	0,09	-	510	
29.06.2010	8,8	0,6	-	460	
04.09.2013	9,1	=	40	380	
29 10 2013	9.1	_	37	410	

Таблица 1. Концентрация макрокомпонентов в воде скважины Ю-9-Б, мг/дм

Объемная активность радионуклидов и концентрация урана в пробах воды, отобранной из скважины Ю-9-Б, представлены в табл. 2. Как следует из таблицы, в РЗВ скважины Ю-9-Б присутствуют уран, ПД 90 Sr, 137 Cs, 154 Eu, 155 Eu и 129 I и трансурановые элементы (ТУЭ) $^{238+239+240}$ Pu, 241 Am, ²⁴⁴Ст и ²⁴²Ст. Следует отметить, что концентрация урана в воде скважины Ю-9-Б в апреле – июне $2010 \ \Gamma$. составляла $140 - 180 \ \Gamma/\text{m}^3$, в то время как максимальная концентрация урана в других водных скоплениях не превышала 44 г/м³. Наличие в воде, поступающей из скважины Ю-9-Б урана, ПД и ТУЭ свидетельствует о том, что данная вода непосредственно контактировала с ТСМ. Объемная активность 129 І в исследованных пробах воды из скважины Ю-9-Б находится в пределах от 5,6 до 8,4 5 Бк/дм 3 , среднее значение 6,7 \pm 2,5 Бк/дм 3 (средневзвешенное значение с учетом погрешностей индивидуальных измерений 5.9 ± 0.6 Бк/дм³). При штатной работе реактора ¹²⁹І образуется за счет деления с выходом 0.9 % и при распаде материнского ¹²⁹Те ($T_{1/2} = 69$ мин) и ^{129m}Те ($T_{1/2} = 33.6$ сут). По различным оценкам в период активной фазы аварии на 4-м блоке ЧАЭС до 60 % изотопов йода было выброшено в виде легколетучих соединений. Поверхностное загрязнение помещений объекта «Укрытие» обусловлено суперпозицией двух компонент «топливной» (диспергированое ядерное топливо в виде «горячих» частиц) и конденсационной (легколетучие соединения цезия, рутения и йода). В РЗВ объекта «Укрытие» наличие ¹²⁹I может быть обусловлено двумя источниками: выщелачивание из TCM; смыв с загрязненных поверхностей на верхних отметках объекта «Укрытие».

В пробе воды, отобранной 13.05.2010 г. наблюдались следовые количества короткоживущего 131 I ($T_{1/2} = 8,04$ сут) порядка 0,7 Бк/дм 3 . В работе [2] отмечается, что контроль активности 131 I, 132 I, 133 I,

 134 I, 135 I в циркулирующем по байпасной линии теплоносителя первого контура реактора ВВЭР-1000 производится в диапазоне величин (3,7· $10^3 \div 3$,7· 10^8) Бк/кг. Предельные значения указанного диапазона обусловлены снизу уровнем поверхностного загрязнения делящимися нуклидами, а сверху допустимыми значениями удельной активности радионуклидов йода в соответствии с регламентом эксплуатации реакторов типа ВВЭР-1000.

Таблица 2. Объемная активность радионуклидов в воде, поступ	іающей из скважины Ю-9-Б, Бк/дм ³
---	--

Радионуклид	06.04.2009	08.04.2010	13.05.2010	01.06.2010	04.09.2013	29.10.2013
⁹⁰ Sr	$6,6 \cdot 10^{6}$	$2,4 \cdot 10^{7}$	$2,5 \cdot 10^{7}$	$1,9 \cdot 10^{7}$	$8,3 \cdot 10^{6}$	$8,7 \cdot 10^{6}$
¹³⁷ Cs	$2,7 \cdot 10^{7}$	$3,6 \cdot 10^{7}$	$4,7 \cdot 10^{7}$	$3,4 \cdot 10^{7}$	$4,3 \cdot 10^{7}$	$2,5 \cdot 10^{7}$
¹⁵⁴ Eu	$2,3 \cdot 10^3$	$6,4 \cdot 10^3$	н.о.*	$5.5 \cdot 10^3$	$1,7 \cdot 10^3$	$1,1 \cdot 10^{3}$
¹⁵⁵ Eu	<МДА**	$2,1 \cdot 10^3$	н.о.	$1,2 \cdot 10^3$	< МДА	$3,1 \cdot 10^2$
²³⁸ Pu	$1,2 \cdot 10^3$	$2,2 \cdot 10^3$	$1,2 \cdot 10^3$	$8,2 \cdot 10^2$	$3,4 \cdot 10^2$	$2,2 \cdot 10^2$
²³⁹⁺²⁴⁰ Pu	$2,3 \cdot 10^3$	$4,6 \cdot 10^3$	$2,6 \cdot 10^3$	$1.8 \cdot 10^3$	$6.5 \cdot 10^2$	$4,4 \cdot 10^2$
²⁴¹ Am	$1,6 \cdot 10^4$	$5,6 \cdot 10^4$	$3.8 \cdot 10^4$	$2.6 \cdot 10^4$	$7.9 \cdot 10^3$	$6.1 \cdot 10^3$
²⁴⁴ Cm	$5.8 \cdot 10^2$	$1.9 \cdot 10^3$	$1,4 \cdot 10^3$	$7,7 \cdot 10^2$	$2.9 \cdot 10^2$	$2,1 \cdot 10^2$
²⁴² Cm	$3.7 \cdot 10^{1}$	$1,3 \cdot 10^2$	$7,4 \cdot 10^{1}$	$4,2 \cdot 10^{1}$	$1,5 \cdot 10^{1}$	$1,1 \cdot 10^{1}$
Уран мг/дм ³	27	173	180	144	12	9,6
^{129}I	н.о.	$7,2 \pm 2,6$	$5,6 \pm 0,9$	$8,4 \pm 2,8$	$6,3 \pm 1,6$	$5,8 \pm 1,2$
^{131}I	н.о.	< МДА	$0,65 \pm 0,38$	< МДА	< МДА	< МДА

^{*} Не определяли.

Топливосодержащие материалы объекта «Укрытие» содержат делящиеся изотопы 235 U и 239 Pu, которые делятся под действием нейтронов спонтанного деления 244 Cm и других четно-четных ядер урана и плутония и нейтронов, образующихся по реакции (α , n). Плотность потока нейтронов, регистрируемая СК «Сигнал», находится в пределах 10-30 нейтрон \cdot см $^{-2}$ · с $^{-1}$ [9]. Скорость этого деления значительно ниже опасных уровней подкритичности ТСМ. Возникновение самоподдерживающейся цепной реакции (СЦР) маловероятно из-за того, что в места локализации ТСМ с водой постоянно поступает раствор нитрата гадолиния, который является поглотителем нейтронов.

Как видно из табл. 2, в пробе воды, отобранной 13.05.2010 г., наибольшее содержание ⁹⁰Sr, ¹³⁷Cs и урана. Вероятно, в этот период происходило интенсивное поступление воды непосредственно через большие скопления ТСМ с высоким содержанием урана, что и обусловило наличие в воде незначительного количества ¹³¹I.

При выполнении работ по определению содержания изотопов йода в воде объекта «Укрытие» авторы учитывали то, что периоды полураспада изотопов йода в основном небольшие - от 6,6 ч (¹³⁵I) до 8,04 сут (¹³¹I). Поэтому организационно время от момента отбора проб воды на объекте «Укрытие» до радиохимического выделения в лаборатории минимизировалось и не превышало одного дня. Время радиохимического выделения фракции йода до начала γ-спектрометрических измерений составляло от 1,5 до 2 ч, что обеспечивалось разработанной экспресс-методикой. Активность короткоживущих изотопов йода в отобранной для анализа воде объекта «Укрытие» определяется рядом факторов: 1) интенсивностью наработки при делении урана и плутония, 2) скоростью диффузии из глубины ТСМ на поверхность контакта с водой, 3) степенью растворимости и выщелачивания изотопов йода «блочной» водой и 4) временем перетока воды от скоплений ТСМ до места отбора проб воды. Для оценки интенсивности деления урана в скоплениях ТСМ по наработке короткоживущих изотопов йода необходимо минимизировать влияние последних трех факторов, т.е. отобрать пробы воды непосредственно из массива ТСМ. В исследованных пробах РЗВ из скважин и помещений на нижних отметках объекта «Укрытие» короткоживущих изотопов ¹³²I, ¹³³I, ¹³⁴I, ¹³⁵I обнаружено не было.

Анализ отношений активности ⁹⁰Sr/¹²⁹I и ¹³⁷Cs и ¹²⁹I в период наблюдений 2010 – 2013 гг. изскважины Ю-9-Б относительное содержание ⁹⁰Sr, ¹³⁷Cs и ¹²⁹I в период наблюдений 2010 – 2013 гг. изскважины Ю-9-Б относительное содержание

Анализ отношений активности ${}^{90}\text{Sr}/{}^{129}\text{I}$ и ${}^{137}\text{Cs}/{}^{129}\text{I}$ показывает (табл. 3), что для проб РЗВ из скважины Ю-9-Б относительное содержание ${}^{90}\text{Sr}$, ${}^{137}\text{Cs}$ и ${}^{129}\text{I}$ в период наблюдений 2010 – 2013 гг. изменялось незначительно. Расчетные значения отношений активности для отработавшего топлива реактора РБМК равны ${}^{90}\text{Sr}/{}^{129}\text{I}$ - 1,2 \cdot 10⁶ и ${}^{137}\text{Cs}/{}^{129}\text{I}$ – 1,8 \cdot 10⁶ [10]. Экспериментально определенные значения отношений ${}^{90}\text{Sr}/{}^{129}\text{I}$ – (2,6 \pm 1,3) \cdot 10⁶ и ${}^{137}\text{Cs}/{}^{129}\text{I}$ – (5,7 \pm 1,8) \cdot 10⁶ по порядку величины совпадают с расчетными значениями, хотя для ${}^{90}\text{Sr}$ они в два раза выше, а для ${}^{137}\text{Cs}$ в три раза выше. Это свидетельствует об относительном дефиците ${}^{129}\text{I}$. Вероятно, это связано с выбросом радионуклидов йода в момент аварии. Выброс ${}^{131}\text{I}$ и ${}^{137}\text{Cs}$ на активной стадии аварии оценивается 20 и 13 % (погрешность \pm 50 %) от накопленной активности. Более поздние оценки ${}^{131}\text{I}$ 40 – 60 % и ${}^{137}\text{Cs}$ 30 – 50 %. Можно предположить, что выброс ${}^{129}\text{I}$ такой же, как и ${}^{131}\text{I}$.

^{**} Меньше минимально детектируемой активности.

Таблица 3. Отношение активностей радионуклидов в РЗВ объекта «Укрытие»

Радионуклид	08.04.2010	13.05.2010	01.06.2010	04.09.2013	29.10.2013	Среднее
⁹⁰ Sr/ ¹²⁹ I	$3,3 \cdot 10^{6}$	$4.5 \cdot 10^{6}$	$2,3 \cdot 10^{6}$	$1,3 \cdot 10^6$	$1.5 \cdot 10^6$	$(2,58 \pm 1,33) \cdot 10^6$
137 Cs/ 129 I	$5,0 \cdot 10^{6}$	$8,4 \cdot 10^{6}$	$4.1 \cdot 10^{6}$	$6.8 \cdot 10^6$	$4,3 \cdot 10^6$	$(5,72 \pm 1,83) \cdot 10^6$

Для оценки ядерной безопасности скоплений ТСМ необходимо знать изотопный состав урана, в частности массовую долю делящегося 235 U. Как отмечалось выше, для получения максимально возможной информации о радиационных характеристиках воды, поступающей из скважины Ю-9-Б, определяли концентрацию урана и объемные активности радионуклидов. Изотопный состав и объемную активность изотопов 234 U, 235 U, 236 U и 238 U в тех же самых пробах воды определяли α -спектрометрическими измерениями источников урана, приготовленных после радиохимического выделения и очистки фракции урана. В табл. 4 приведены массовые доли (%) изотопов урана, рассчитанные по результатам α -спектрометрических измерений. Массовая доля делящегося изотопа 235 U составляет порядка $1,01\pm0,11$ %, в исследованных пробах максимальное содержание 1,13%. Доля 236 U, являющегося дополнительным нейтронным поглотителем и уменьшающим реактивность уранового топлива, составляет $0,182\pm0,011$ %.

Таблица 4. Изотопный состав урана в воде, поступающей из скважины Ю-9-Б, % мас.

Дата отбора	²³⁴ U	²³⁵ U	²³⁶ U	^{238}U
06.04.2009	0,0151	1,13	0,167	98,65
05.04.2010	0,0165	0,92	0,178	98,88
08.04.2010	0,0153	1,09	0,189	98,71
04.09.2013	0,0162	0,87	0,186	98,94
29.10.2013	0,0160	1,02	0,192	98,78
Среднее	$0,0158 \pm 0,0006$	$1,01 \pm 0,11$	0.182 ± 0.011	$98,79 \pm 0,12$

Объемная активность 129 I в пробах P3B, отобранных из скважины 3-9-Ф и водного скопления, локализованного в южной части помещения 012/16 на отметке +2,2 м в 2013 г., и наибольшего водного скопления в помещении 001/3 на отметке -2,6 м в 2014 г., приведена в табл. 5.

Таблица 5. Объемная активность радионуклидов в водных скоплениях объекта «Укрытие», Бк/дм³

Точка отбора проб	Помещение	Помещение	Скважина
	001/3	012/16	3-9-Ф
⁹⁰ Sr	$2,7 \cdot 10^{6}$	$2.5 \cdot 10^6$	$3.7 \cdot 10^6$
¹³⁷ Cs	$8,1 \cdot 10^{6}$	$3,1 \cdot 10^{7}$	$2,1 \cdot 10^{7}$
$^{129}{ m I}$	$3,4 \pm 1,1$	$3,6 \pm 1,2$	$2,6 \pm 1,5$

Объемная активность 129 I в P3B из скважины 3-9-Ф и помещений 001/3 и 012/16 несколько меньше, чем в воде из скважины Ю-9-Б (средневзвешенное значение 5,9 \pm 0,6 Бк/дм³). Среднее значение объемной активности 129 I в исследованных пробах P3B объекта «Укрытие» равно 5,3 \pm 2,1 Бк/дм³. Короткоживущих изотопов йода в исследованных пробах воды из скважины 3-9-Ф и помещений 001/3 и 012/16 также обнаружено не было. Концентрация 129 I в воде объекта «Укрытие» составляет $(0,4-1,3)\cdot 10^{-6}$ г/дм³.

 $\it Tаблица~6$. Концентрация (мкг/г) и удельная активность (Бк/г) 129 І в различных материалах объекта «Укрытие» [11]

Номер пробы	Материал	Масса, мкг/г	Активность, Бк/г
TC-17	Отработавшее ядерное топливо UO ₂	34 ± 2	222 ± 13
	с выгоранием 8,7 МВт/(сут кг) U		
644	Отработавшее ядерное топливо UO ₂	16 ±1	105 ± 7
	с выгоранием 4,9 МВт/(сут кг) U		
630 (1)	Фрагмент части графитового блока	$0,5 \pm 0,2$	$3,3 \pm 1,3$
630 (3)	Фрагмент части графитового блока	$5,0 \pm 2,5$	33 ± 16
629 (3)	Фрагмент части графитового блока	$2,0 \pm 1,0$	13 ± 6
641	Фрагмент керамики бурого цвета	=	< МДА*
643	Бетон со стеклообразной массой	=	<МДА
319 (2)	ЛТСМ «слоновая нога»	-	< МДА

^{*} Меньше минимально детектируемой активности.

В работе [11] определено содержание 129 I в различных материалах (отработавшее ядерное топливо, графит, ЛТСМ и бетон с ЛТСМ), отобранных в помещениях разрушенного 4-го блока ЧАЭС. Содержание 129 I в исследованных образцах представлено в табл. 6. Из данных таблицы следует, что содержание 129 I в пробах ЛТСМ (№ 641, 643 и 319) меньше минимально детектируемой активности. Авторы работы [11] объясняют это как малым количеством 129 I в данных образцах, так и недостаточно высокой температурой нагревания ($1100\,^{0}$ C) при выделении йода из этих образцов.

Принимая во внимание выше изложенное, можно предположить, что основными источниками поступления 129 I в радиоактивно загрязненную воду объекта «Укрытие» являются: отработавшее ядерное топливо; фрагменты графитовой кладки; поверхностное загрязнение помещений за счет конденсации и сорбции легко летучих соединений йода на активной стадии аварии. Растворение и выщелачивание ЛТСМ не вносит значительного вклада в содержание в воде 129 I. Можно предположить, что в случае поступления воды из скрытых скоплений ТСМ с относительно высоким содержанием 129 I в этих скоплениях присутствуют фрагменты отработавшего ядерного топлива.

Выводы

Разработана и апробирована методика определения объемной активности радиоактивных изотопов йода в P3B объекта "Укрытие». Радиохимическое выделение 129,131 I производили экстракцией CCl_4 из подкисленного раствора. Активность 129,131 I с удовлетворительной погрешностью определяется γ -спектрометрическими измерениями.

Впервые определено содержание 129 I в радиоактивно загрязненной воде объекта "Укрытие». Объемная активность 129 I в исследованных пробах воды из скважины Ю-9-Б и помещений на нижних отметках объекта «Укрытие» составляет $5,3\pm2,1$ Бк/дм³.

В исследованных пробах РЗВ из скважин и помещений на нижних отметках объекта «Укрытие» короткоживущих изотопов 132 I, 133 I, 134 I, 135 I обнаружено не было.

СПИСОК ЛИТЕРАТУРЫ

- 1. Кулюхин С.А., Каменская А.Н., Коновалова Н.А. Химия радиоактивного йода в водных средах: фундаментальные и прикладные аспекты // Радиохимия. 2011. Т. 53, № 2. С. 107 123.
- 2. *Берлизов А.Н.*, *Малюк И.А.*, *Рудык О.Ф. и др.* Непрерывный контроль состояния барьеров безопасности водоводяных реакторов методом гамма-спектрометрии высокого разрешения // Ядерна фізика та енергетика. 2009.- Т. 10, № 4. С. 387 394.
- 3. Высотский Е.Д., Ключников А.А., Лагуненко А.С. и др. Ядерно-опасные скопления топливосодержащих материалов в разрушенном четвертом блоке Чернобыльской АЭС // Радиохимия. 2011. Т. 53, № 2. С. 178—183.
- 4. *Богатов С. А., Корнеев А. А., Криницын А. П. и др.* Исследования водопотоков внутри объекта «Укрытие» // Радиохимия. 2000. Т. 42, № 3. С. 276 280.
- 5. *Одинцов А.А., Хан В.Е., Краснов В.А. и др.* Трансурановые элементы в жидких радиоактивных отходах объекта «Укрытие» // Там же. 2009. Т. 51, № 4. С. 337 343.
- 6. Одинцов А. А., Хан В. Е., Краснов В. А., Щербин В. Н. Жидкие радиоактивные отходы на нижних отметках объекта «Укрытие» // Проблеми безпеки атомних електростанцій і Чорнобиля. -2011. Вип. 16. С. 110-123.
- 7. *Ровинский Ф.Я.*, *Иохнельсон С.Б.*, *Юшкан Е.И*. Методы анализа загрязнения окружающей среды. М.: Атомиздат, 1978. 263 с.
- 8. *Одинцов А. А., Хан В. Е., Краснов В. А. и др.* Радиоактивно загрязненная вода в помещениях объекта «Укрытие» // Проблеми безпеки атомних електростанцій і Чорнобиля. 2014. Вип. 23. С. 89 101.
- 9. *Давыдыков А.И.*, *Краснов В.А. Щербин В.Н.* Назначение пороговых установок в каналах контроля подкритичности топливосодержащих материалов // Проблеми безпеки атомних електростанцій і Чорнобиля. 2014. Вип. 23. С. 82 87.
- 10. Матвеев Л.В., Рудик А.П. Почти все о ядерном реакторе. М.: Энергоатомиздат, 1990. 240 с.
- 11. *Определение* содержания изотопа йод-129 в материалах 4-го блока ЧАЭС: (Отчет о НИР) / НПО «Радиевый институт им. В. Г. Хлопина». Инв. № 1704-И. Л., 1991. 13 с.

О. О. Одінцов, В. Є. Хан, О. К. Калиновський

Інститут проблем безпеки АЕС НАН України, вул. Кірова, 36а, Чорнобиль, 07270, Україна

ВМІСТ ¹²⁹І В РАДІОАКТИВНО ЗАБРУДНЕНІЙ ВОДІ ОБ'ЄКТА «УКРИТТЯ»

Визначено вміст ¹²⁹І в радіоактивно забрудненій воді (РЗВ), відібраній із приміщень об'єкта "Укриття». Активність ізотопів йоду визначали γ-спектрометричними вимірюваннями фракції йоду, виділеної з РЗВ на носієві стабільного йоду. Концентрацію та очищення ізотопів йоду від присутніх в РЗВ γ-випромінюючих радіонуклідів 137 Cs, 154,155 Eu і 241 Am проводили за екстракційною методикою. Об'ємна активність 129 I в досліджених пробах P3B 5,3 ± 2,1 Бк/дм³. Відношення активностей у P3B 90 Sr/ 129 I — (2,6 ± 1,3) 10^6 і 137 Cs/ 129 I — (5,7 ± 1,8) 10^6 . У пробах води, що безпосередньо протікає через приміщення з паливовмісними матеріалами з високою концентрацією урану, відібраних із свердловини Ю-9-Б, короткоживучих ізотопів йоду $^{131, 132, 133, 135}$ I не виявлено.

Ключові слова: 129 І, екстракція, рідкі радіоактивні відходи, об'єкт «Укриття».

O. O. Odintsov, V. E. Khan, O. K. Kalynovsky

Institute for Safety Problems of Nuclear Power Plants NAS of Ukraine, Kirova str., 36a, Chornobyl, 07270, Ukraine

CONTENTS OF 129 I IN RADIOACTIVE WATER OF OBJECT «UKRYTTYA»

A content of ^{129}I is certain in the radioactive water (RW) selected from the apartments of object "Ukryttya". Activity of isotopes of iodine was determined by γ -spectrometry measuring of the faction of iodine, selected from RW on the transmitter of stable iodine. Concentration and cleaning of isotopes of iodine from present in RW of γ -emitting radionuclides of ^{137}Cs , $^{154,155}Eu$ and ^{241}Am made by an extraction method. A volume activity of ^{129}I in the investigational tests of RW is 5.3 \pm 2.1 Bq/l. Ratio of activity in RW $^{90}Sr^{\prime 129}I - (2.6 \pm 1.3) \cdot 10^6$ and $^{137}Cs^{\prime 129}I - (5.7 \pm 1.8) \cdot 10^6$. In the tests of water directly flowing through the apartments with fuel-containing materials with the high concentration of uranium, selected from the mining hole of U-9-B, short live isotopes of iodine $^{131, 132, 133, 135}I$ not found.

Keywords: 129 I, extraction, liquid radioactive waster, object "Ukryttya".

REFERENCES

- 1. *Kulychin C.A., Kamenskay A.N., Konovalova N.A.* Chemistry of radioactive iodine in waters: fundamental and applied aspects // Radiokhimya. 2011. Vol. 53, No 2. P. 107 123. (Rus).
- 2. *Berlizov A.N., Maliuk I.A., Rudyk O.F et al.* Continuous monitoring of the state of safety barriers in water-water nuclear reactors using high-resolution gamma-spectrometry // Ydernay fizika i energetika (Nuclear physics and energy). 2009. Vol. 10, No. 4. P. 387 394. (Rus.)
- 3. *Vysotckiy E.D., Kliuchnykov A.A., Lagunenko A.C. et al.* The nuclear-dangerous accumulations of fuel-carrying materials are in the blasted fourth block of Chernobyl NPP // Radiokhimya. 2011. Vol. 53, No. 2. P. 178 183. (Rus).
- 4. Bogatov S.A., Korneev A.A., Krynitsyn A. P. et al. Researches of water streams into object «Ukryttya» // Radiokhimya. 2000. Vol. 42, № 3. P. 276 280. (Rus)
- 5. *Odintsov O. O., Khan V. E., Krasnov V. O. et al.* Transuranium elements in the liquid radioactive wasters of object «Ukryttya» // Radiokhimya. 2009. Vol. 51, No. 4. P. 337 343. (Rus)
- 6. Odintsov O. O., Khan V. E., Krasnov V. O., Shcherbin V. M. Liquid radioactive waster on lower marks of object «Ukryttya» // Problemy bezpeky atomnyh elektrostantsiy I Chornobylya (Problems of nuclear power plants and of Chornobyl). 2011.- Iss. 16. P. 110 123. (Rus)
- 7. Rovinckii F.Y., Yochnelson S.B., Ushkan E.I. Methods of analysis of contamination of environment. M.: Atomizdat, 1978. 263 p.
- 8. *Odintsov O. O., Khan V. E., Krasnov V. O. et al.* Radioactive water is in the apartments of object «Ukryttya» // Problemy bezpeky atomnyh elektrostantsiy I Chornobylya (Problems of nuclear power plants and of Chornobyl). 2014. Iss. 23. P. 89 101. (Rus)
- 9. *Davydkov A.I.*, *Krasnov V.O.*, *Shcherbin V.M.* Principles of thereshold setting in fuel-containing materials subcriticality control channels // Problemy bezpeky atomnyh elektrostantsiy I Chornobylya (Problems of nuclear power plants and of Chornobyl). 2014. Iss. 23. P. 82 87. (Rus)
- 10. Matveev L.V., Ryduk A.P. Almost all about a nuclear reactor. Moskva: Energoatomizdat, 1990. 240 p. (Rus)
- 11. *Determination* of contents of isotope iodine-129 in materials of 4-th unit of ChNPP: (Report about SRW) / SPU «Radium institute name of V. G. Xlopina». No. 1704. Leningrad, 1991. 13 p. (Rus).

Надійшла 25.09.2014 Received 25.09.2014