Особенности квантовых эффектов в 2*D*-структурах GaAs/*n*-InGaAs/GaAs с двойными квантовыми ямами

Ю.Г. Арапов, М.В. Якунин, С.В. Гудина, И.В. Карсканов, В.Н. Неверов, Г.И. Харус, Н.Г. Шелушинина, С.М. Подгорных

Институт физики металлов УрО РАН, ул. Софьи Ковалевской, 18, г. Екатеринбург, 620041, Россия E-mail: arapov@imp.uran.ru

Б.Н. Звонков, Е.А. Ускова

Научно-исследовательский физико-технический институт при ННГУ, г. Нижний Новгород, 603600, Россия

Статья поступила в редакцию 22 сентября 2006 г.

В двойной квантовой яме *n*-In_{*x*}Ga_{1-*x*}As/GaAs ($x \approx 0,2$) температурные зависимости продольного сопротивления $\rho_{xx}(T)$ 2*D*-электронного газа с низкой подвижностью и концентрацией электронов вблизи перехода металл – диэлектрик B = 0 имеют «диэлектрический» характер в интервале температур T = 1,8-70 К ($k_B T \tau/\hbar = 0,2-3,8$). Аномальная температурная зависимость $\sigma_{xy}(B,T)$ в области $\omega_c \tau = 1$ приводит к ряду особенностей перехода от режима слабой локализации и электрон-электронного взаимодействия к режиму квантового эффекта Холла в слабых магнитных полях.

У подвійній квантовій ямі $n - \ln_x \text{Ga}_{1-x} \text{As} / \text{GaAs}$ ($x \approx 0,2$) температурні залежності поздовжнього опору $\rho_{xx}(T)$ 2*D*-електронного газу з низькою рухливістю й концентрацією електронів поблизу переходу метал — діелектрик B = 0 мають «діелектричний» характер в інтервалі температур T = 1,8-70 К ($k_B T \tau / \hbar = 0,2-3,8$). Аномальна температурна залежність $\sigma_{xy}(B,T)$ в області $\omega_c \tau = 1$ приводить до ряду особливостей переходу від режиму слабкої локалізації й електрон-електронної взаємодії до режиму квантового ефекту Холла в слабких магнітних полях.

РАСS: 73.50. Jt Гальваномагнитные и другие магнитотранспортные эффекты (в том числе термомагнитные эффекты); 71.30.+h Переходы металл-изолятор и другие электронные переходы.

Ключевые слова: двойные квантовые ямы, магнитотранспортные эффекты, электронные переходы.

Введение

В магнитном поле плотность состояний 2*D*-электронного газа представляет собой последовательность делокализованных (критических) состояний в центре уровней Ландау и локализованных — между уровнями. При изменении энергии Ферми (E_F) или магнитного поля должны наблюдаться квантовые фазовые переходы (КФП) между этими состояниями. Экспериментальные результаты, полученные в сильных полях ($\omega_c \tau >> 1$) для КФП плато — плато и плато с фактором заполнения $\nu = 1$ — холловский изолятор в режиме квантового эффекта Холла (КЭХ), в какой-то степени согласуются с теоретическими предсказаниями. Однако КФП в слабых магнитных полях ($\omega_c \tau \leq 1$), другими словами, проблема КЭХ в слабом магнитном поле, вот уже много лет является предметом острых дискуссий [1]. Это связано с тем, что при $\omega_c \tau \leq 1$ КЭХ, а следовательно, и КФП маскируются магнитополевыми и температурными зависимостями квантовых поправок к продольной и холловской проводимости от слабой локализации и эффектов электрон-электронного взаимодействия (ЭЭВ) [1]. Кроме того, в ряде случаев эти зависимости обладают специфическими особенностями, обусловленными типом квантовой ямы (одиночная, двойная, множественная, узкая, широкая...), материалом, из которого изготовлена квантовая яма

[©] Ю.Г. Арапов, М.В. Якунин, С.В. Гудина, И.В. Карсканов, В.Н. Неверов, Г.И. Харус, Н.Г. Шелушинина, С.М. Подгорных, Б.Н. Звонков, Е.А. Ускова, 2007

(*n*-, *p*-GaAs/AlGaAs, *n*-, *p*-InGaAs/GaAs...), количеством заполненных подзон размерного квантования и т.д. В последнее время как теоретически [2-4], так и экспериментально [5-18] (см. также ссылки в [14]) показано, что эти специфические особенности квантовых поправок в различных квазидвумерных структурах в широком интервале температур (в диффузионном $(k_B T \tau / \hbar << 1)$ и баллистическом $(k_B T \tau / \hbar > 1)$ режимах) и концентраций носителей заряда ($n_s < n_c$ и $n_s > n_c$, где n_c — критическая концентрация перехода металл-диэлектрик в нулевом магнитном поле) приводят к ряду аномалий квантовых эффектов как в сильных (в режиме квантового эффекта Холла), так и в слабых магнитных полях. В частности, анализировать КФП изолятор (В = 0) – квантово-холловское состояние с большими значениями фактора заполнения (v > 1) без учета особенностей температурных и магнитополевых зависимостей квантовых поправок нельзя.

2. Экспериментальные результаты и их обсуждение

Исследованы образцы GaAs/n-In_rGa_{1-r}As/GaAs с двойными квантовыми ямами (ДКЯ). Гетеросистема $GaAs/n-In_rGa_{1-r}As/GaAs$, хотя обычно имеет качество хуже, чем традиционно исследуемая n-GaAs/Al_rGa_{1-r}As, интересна для физики ДКЯ наличием существенно больших спиновых расщеплений. Квантовые ямы *n*-In_xGa_{1-x}As имели ширину 5 нм, барьер GaAs — 10 нм, изначальная полная концентрация электронов $n_T = 2,3 \cdot 10^{15} \text{ м}^{-2}$ и подвижность $\mu_n = 1,15 \text{ м}^2/(\text{B}\cdot\text{c})$. Инфракрасная подсветка позволяла повысить концентрацию примерно в 1,5 раза, повышенная концентрация остается практически неизменной за время эксперимента. Концентрация электронов $n_T > n_c$, что соответствует «металлической» стороне перехода металл-диэлектрик в нулевом магнитном поле. Были измерены $\rho_{xx}(B,T)$ и *р_{хи}*(*B*,*T*) при 1,8 К *< T <* 77 К и 0 *< B <* 9 Тл. Параметр $k_B T \tau / \hbar = 0, 1-3, 8$ (баллистический режим). На рис. 1 видно, что осцилляции Шубникова-де Гааза (с фактором заполнения v = 10) начинаются с полей $B_1 \approx 0.75$ Tπ ($ω_c \tau \le 1$), $ρ_{xx}(B,T) = ρ_{xy}(B,T)(ω_c \tau = 1)$ в полях $B_2 = 0,89$ Тл, а в поле $B_3 \approx 1,6$ Тл ($\omega_c \tau > 1$) на $\rho_{xx}(B,T)$ наблюдается так называемая температурно-независимая точка $T_{\rm ind}$. Пр
иT>8К эта точка начинает размываться.

Хорошо известно, что в соответствии с «глобальной фазовой диаграммой» [19], построенной на «гипотезе всплывания» критических (делокализованных) состояний Лафлина и Хмельницкого, согласно которой при уменьшении магнитного поля делокализованные состояния на уровне Ландау не могут исчезать скачком, а должны вместо этого бесконечно «всплывать» по энергиям при $B \rightarrow 0$ [20].

Рис. 1. Экспериментальные зависимости $\rho_{\chi\chi}(B,T)$ и $\rho_{\chi y}(B,T)$ при фиксированных значениях температуры (T = 1,8-5,0 К, верхняя кривая соответствует T = 1,8 К). Точечная кривая соответствует зависимости от магнитного поля второй производной $\rho_{\chi\chi}(B,T)$ по магнитному полю.

Прохождение уровней Ландау через уровень Ферми должно привести к квантованию холловской проводимости в слабых магнитных полях. Таким образом, в этом интервале магнитных полей при $B = B_{\rm cr}$ должен наблюдаться КФП изолятор (B = 0) — квантово-холловское состояние с большими значениями фактора заполнения (v > 1). Часто в качестве критерия определения фазовой границы используют тот факт, что в поле $B_{\rm cr}$ на зависимости $\rho_{xx}(B,T)$ должна иметь место точка $T_{\rm ind}$, при этом также возможно равенство $\rho_{xx}(B,T) = \rho_{xy}(B,T)$, т.е. $\omega_c \tau = 1$.

Существует и альтернативная точка зрения [6,7,21]. Аналогичная картина должна наблюдаться и в следующем случае: предсказание теории квантовых поправок (ТКП) об отсутствии поправок в σ_{xy} от *e-e* взаимодействия ($\Delta \sigma_{xy}^{ee} = 0$) в диффузионном режиме при инвертировании тензора проводимости в тензор сопротивления приводит к тому, что в компоненте $\rho_{xx}(B,T)$ появляется множитель [1 – ($\omega_c \tau$)²]. И как следствие, в магнитном поле, соответствующем $\omega_c \tau = 1$, сопротивление перестает зависеть от температуры (появляется точка T_{ind}) [21]. Сопротивление в этом поле равно друдевскому ρ_D , что и позволяет определить друдевскую проводимость $\sigma_D = \rho_D^{-1}$.

В работе Хакестейна [1] довольно убедительно показано, что все имеющиеся эксперименты по КЭХ и КФП в слабых магнитных полях могут быть поняты в рамках стандартных теорий слабой локализации и ЭЭВ без привлечения каких-либо экзотических гипотез типа «гипотезы всплывания». Мы также придерживаемся этой точки зрения и считаем, что в наших образцах $n-\ln_r Ga_{1-r} As/GaAs$ с коцентрацией электронов, соответствующей металлической стороне перехода металл – диэлектрик в нулевом магнитном поле ($k_F l_{tr} > 6$), наблюдаемая точка T_{ind} на зависимости $\rho_{xx}(B,T)$ в слабых магнитных полях связана с ЭЭВ в диффузионном режиме. А сильное отличие наблюдаемой картины (рис. 1) от ожидаемой как в случае КФП, так и в случае появления множителя $[1 - (\omega_c \tau)^2]$ вследствие взаимоигры ЭЭВ и циклотронного характера движения носителей заряда в магнитном поле мы связываем с наличием температурной зависимости $\sigma_{xy}(B,T)$ (см. рис. 2) и $\mu(T)$ (см. рис. 3). При T > 8 K 2 D-электронный газ переходит в баллистический режим ($k_B T \tau / \hbar > 1$), где отсутствует требование об отсутствии ЭЭВ вклада в $\sigma_{xy}(B,T)$. При инвертировании σ_{xx} и σ_{xy} в ρ_{xx} и ρ_{xy} в компаненте ρ_{xx} исчезнет множитель $[1 - (\omega_c \tau)^2]$ и, следовательно, исчезнет точка $T_{\rm ind}$, вернее, она начнет размываться.

На рис. 2 хорошо видно, что $\sigma_{xy}(B,T)$ в слабых магнитных полях ($\omega_c \tau \leq 1$) сильно зависит от температуры — сдвигается максимум в область более слабых полей, а также изменяется значение $\sigma_{ru}(B,T)$ в максимуме. Из теории Друде известно, что зависимость $\sigma_{xy}(B)$ максимум имеет при $\mu_n B = 1$, а ее значение в максимуме равно $\sigma_D/2$. Используя эти соотношения, мы определили температурные зависимости как $\sigma_D(T)$, так и $\mu_n(T)$ (см. рис. 3). Выше было показано, что концентрация электронов в этом интервале температур остается постоянной. Эффекты слабой локализации в этих полях уже подавлены $(B_{\rm tr} = 0,16$ Тл). Остается только $\tau(T)$ [3,14]. Мы считаем, что размытие точки T_{ind} на $\rho_{xx}(B,T)$ при T > 4,0 К и отсутствие равенства $\rho_{xx}(B_{cr}, T) =$ $= \rho_{xu}(B_{cr}, T)$ в магнитном поле, где наблюдается

Рис. 2. Зависимости $\sigma_{xx}(B,T)$ и $\sigma_{xy}(B,T)$ от магнитного поля в области $\omega_c \tau \approx 1$ в интервале температур 2,0–70 К.

Рис. 3. Температурная зависимость подвижности электронов, полученная из анализа зависимости $\sigma_{xy}(B,T)$ в области $\omega_c \tau \approx 1$ в интервале температур 2,0–70 К (рис. 2) по друдевским формулам (см. в тексте).

точка T_{ind} , связано с наличием температурной зависимости $\tau(T)$ и, как следствие, $\sigma_D(B,T)$. Если из экспериментальных зависимостей $\sigma_{xx}(B,T)$ и $\sigma_{xy}(B,T)$ вычесть температурную зависимость $\sigma_D(T)$ и с такими скорректированными значениями $\sigma_{xx}^*(B,T)$ и $\sigma_{xy}^*(B,T)$ вновь рассчитать компоненты тензора сопротивления $\rho_{xx}^*(B,T)$ и $\rho_{xy}^*(B,T)$, то температура, где начнется размытие точки T_{ind} , повысится до 10 К, температурная зависимость $\rho_{xx}^*(B_{cr},T)$ существенно ослабнет (см. рис. 4) и теперь уже в поле B_{cr} появится равенство $\rho_{xx}^*(B_{cr},T) = \rho_{xy}^*(B_{cr},T)$. В чем причина такого

Рис. 4. Те же зависимости $\rho_{xx}^*(B,T)$ и $\rho_{xy}^*(B,T)$ при фиксированных значениях температуры, что и на рис. 1, полученные при инвертировании модифицированных компонент тензора проводимости $\sigma_{xx}^*(B,T)$ и $\sigma_{xy}^*(B,T)$ (учитывалась температурная зависимость подвижности на рис. 3).

поведения $\rho_{xx}(B,T)$ и $\rho_{xy}(B_{cr},T)$ в области B_{cr} и точки T_{ind} ?

Как уже упоминалось выше, в соответствии с предсказанием ТКП, отсутствие квантовых поправок в σ_{xy} от ЭЭВ ($\Delta \sigma_{xy}^{ee} = 0$) в диффузионном режиме при инвертировании тензора проводимости в тензор сопротивления приводит к тому, что в поправке к $\rho_{xx}(B,T)$ от эффектов ЭЭВ появляется множитель $[1 - (\omega_c \tau)^2] \sigma_{xx}^{ee}(B,T)$. И как следствие — в магнитном поле, соответствующем $\omega_c \tau = 1$, так называемое отрицательное магнитосопротивление перестает зависеть от температуры (появляется точка $T_{\rm ind}$ – см. рис. 4). По нашему мнению, появление размытия этой точки по температуре связано с нарушением условия $k_B T \tau / \hbar << 1$ для диффузионного режима. При T > 4,2 К 2D-электронный газ переходит в баллистический режим, где требование об отсутствии вклада в σ_{xy} от ЭЭВ отсутствует. При инвертировании σ_{xx} и σ_{xy} в ρ_{xx} и ρ_{xy} в компаненте ρ_{xx} исчезнет множи-тель $[1 - (\omega_c \tau)^2]$ и, следовательно, исчезнет температурно-независимая точка.

О переходе в баллистический режим свидетельствует и само появление температурной зависимости $\sigma_{xy}(T)$ в магнитном поле после T > 4,2 К. Аналогичное утверждение для 2D-структур GaAs/AlGaAs высказано и в работе [14]. Могут возникнуть возражения различного типа — например, наблюдаемая температурная зависимость холловской проводимости (сопротивления) связана с температурной зависимостью концентрации электронов в этой области температур ($n_s(T)$). Об отсутствии $n_s(T)$ для нашего образца можно утверждать по отсутствию сдвига положений по магнитному полю осцилляционных пиков на $\rho_{rr}(B,T)$ и «плато» квантового эффекта Холла на $\rho_{xy}(B,T)$ [7]. Кроме того, $\sigma_{xy}(B,T)$ может возникнуть из-за появления температурной зависимости $\sigma_D(T)$. В баллистическом режиме $\tau(T)$ появляется как в модели ЭЭВ [3,4], так и в модели температурно-зависимого экранирования [2].

Ранее было установлено, что и для исследованных нами гетероструктур *p*-Ge/Ge_{1-x}Si_x гипотеза «всплывания» неприменима. Наблюдаемая в эксперименте точка T_{ind} , в которой пересекаются все кривые $\rho_{xx}(B)$ в поле $B_c \sim 1$ Тл для различных температур в диапазоне 0,3 К $\leq T \leq 12,2$ К, связана не с переходом изолятор—квантово-холловская жидкость (как принято считать), а с совместным действием классического циклотронного движения и ЭЭВ в диффузионном канале. Критерием существования этого перехода является скейлинговая зависимость $\rho_{xx}(B,T) = f((B - B_{cr})/T^{\kappa})$ вблизи точки перехода B_{cr} с критическим индексом $\kappa = 0,43$. Как для образцов из серии 1123–1125, так и для 1578 нам не удалось смасштабировать все зависимости с единым критическим индексом к (из теории квантовых фазовых переходов к = 0,43).

Как и для структур *p*-Ge/Ge_{1-x}Si_x, нам не удалось смасштабировать все зависимости с одним и тем же критическим индексом $\kappa = 0,43$ и для структур GaAs/*n*-In_xGa_{1-x}As/GaAs с двойными квантовыми ямами мы считаем, что и в последнем случае наблюдаемая на эксперименте точка T_{ind} , в которой пересекаются все кривые ρ_{xx} (*B*) в поле $B_{cr} = 0,89$ Тл для различных температур в диапазоне 0,3 К $\leq T \leq 12,2$ К, связана не с переходом изолятор — квантово-холловское состояние с большими значениями фактора заполнения ($\nu > 1$) (как принято считать), а с совместным действием классического циклотронного движения и ЭЭВ в диффузионном канале.

Работа выполнена при поддержке проектов РФФИ: № 04-02-16614, № 05-02-16206 и программы президиума РАН «Низкоразмерные квантовые гетероструктуры».

- E.L. Shangina and V.T. Dolgopolov, *cond-mat*/0402135;
 B. Huckestein, *Phys. Rev. Lett.* 84, 3141 (2000).
- A. Gold and V.T. Dolgopolov, *Phys. Rev.* B33, 1076 (1986);
 S. Das Sarma and H.W. Hwang, *Phys. Rev. Lett.* 83, 164 (1999); *Phys. Rev.* B61, R7838 (2000).
- I.V. Gornyi and A.D. Mirlin, *Phys. Rev. Lett.* **90**, 076801 (2003); *Phys. Rev.* **B69**, 045313 (2004)]); S. Das Sarma and E.H. Hwang, *cond-mat/0412670*.
- G. Zala, B.N. Narozhny, and I.L. Aleiner, *Phys. Rev.* B64, 214204 (2001); *ibid.* B65, R02201 (2002).
- G.M. Minkov, A.A. Sherstobitov, A.V. Germanenko, O.E. Rut, V.A. Larionova, A.K. Bakarov, and B.N. Zvonkov, *Phys. Rev.* B64, 235327 (2001); condmat/0512087.
- Ю.Г. Арапов и С.В. Гудина, В.Н. Неверов, Г.И. Харус, Н.Г. Шелушинина, М.В. Якунин, С.М. Подгорных, Б.Н. Звонков, Е.А. Ускова, *Материалы симпозиума «Нанофизика и наноэлектроника»*, Н-Новгород, 25–29 марта 2005, с. 336.
- Yu.G. Arapov, S.V. Gudina, G.I. Harus, V.N. Neverov, N.G. Shelushinina, M.V. Yakunin, S.M. Podgornyh, E.A. Uskova, and B.N. Zvonkov, *Proc. of 13th Int. Symp. «Nanostructures: Physics and Technology»*, St. Petersburg, Russia, 2005, p. 403.
- P.T. Coleridge, A.S. Sachrajda, and P. Zawadzki, *Phys. Rev.* B65, 125328 (2002).
- 9. A.A. Shashkin, S.V. Kravchenko, V.T. Dolgopolov, and T.M. Klapwijk, *Phys. Rev.* B66, 073303 (2002).
- H. Noh, M.P. Lilly, D.C. Tsui, J.A. Simmons, L.N. Pfeiffer, and K.W. West, *Phys. Rev.* B68, R241308 (2003).
- V.M. Pudalov, M.E. Gershenson, H. Kojima, G. Brunthaler, A. Print, and G. Bauer, *Phys. Rev. Lett.* **91**, 126403 (2003); *cond-mat/0504475*.
- Y.Y. Proskuraykov A.K. Savchenko, S.S. Safonov, M. Pepper, M.Y. Simmons, and D.A. Ritchie, *Phys. Rev. Lett.* 89, 076406 (2002).

- Z.D. Kvon, O. Estibals, G.M. Gusev, and J.C. Portal, *Phys. Rev.* B65, 161304 (2002).
- V.T. Renard, I.V. Gornyi, O.A. Tkachenko, V.A. Tkachenko, Z.D. Kvon, E.B. Olshnetsky, A.I. Toropov, and J.-C. Portal, *Phys. Rev.* B72, 075313 (2005); cond-mat/0412311; cond-mat/0505474.
- S.A. Vitkalov, K. James, B.N. Narozhny, M.P. Sarachik, and T.M. Klapwijk, *Phys. Rev.* B67, 113310 (2003).
- M.Y. Simmons, A.R. Hamilton, M. Pepper, E.H. Linfield, P.D. Rose, and D.A. Ritchie, *Phys. Rev. Lett.* 84, 2489 (2000).
- X.P.A. Gao, G.S. Boebinger, A.P. Ramirez, L.N. Pfeiffer, and K.W. West, *Phys. Rev. Lett.* **93**, 256402 (2004), cond-mat/0411391.
- A. Senz, t. Ihn, T. Heinzel, K. Ensslin, G. Dehlinger, D. Gretzmacher, and U. Gennser, *Phys. Rev. Lett.* 85, 4357 (2000).
- S. Kivelson, D-H. Lee, and S.-C. Zhang, *Phys. Rev.* B46, 2223 (1992).
- 20. D.E. Khmelnitskii, *Phys. Lett.* A106, 182 (1984);
 R.B. Laughlin, *Phys. Rev. Lett.* 52, 2304 (1984).
- K.K. Choi, D.C. Tsui, and S.C. Palmateer, *Phys. Rev.* B33, 8216 (1986); Yu.G. Arapov, G.I. Harus, V.N. Neverov, N.G. Shelushinina, and O.A. Kuznetov, *Semiconductors* 33, 978 (1999).

Quantum effects peculiarities in 2D-structures GaAs/n-InGaAs/GaAs with double quantum wells

Yu.G. Arapov, M.V. Yakunin, S.V. Gudina, I.V. Karskanov, V.N. Neverov, G.I. Harus, N.G. Shelushinina, S.M. Podgornyh, B.N. Zvonkov, and E.A. Uskova,

The resistivity $\rho_{xx}(B,T)$ for a low mobility dilute 2D elecron gas in GaAs/n-InGaAs/GaAs double quantum wells exhibits a monotonic «insulating-like» temperature dependence at T == 1.8–70 K $(d\rho_{xx}(T)/dT < 0)$ in zero magnetic field and $d\sigma_{xy}(B,T)/dT < 0$ in the vicinity of $\omega_c \tau \approx 1$. This temperature interval corresponds to diffusive and ballistic regimes $(k_B T \tau/\hbar = 0.1 - 3.8)$ for our samples. The electron density is on a «metallic» side $(n > n_c)$ of the so-called B = 0.2Dmetal – insulator transition. Due to this anomalous $\sigma_{xy}(B,T)$ T-dependence we observed some peculiarities of the insulator – quantum Hall state (with $\nu = 10$) transition in low magnetic fields.

- PACS: 73.50.Jt Galvanomagnetic and other magnetotransport effects (including thermomagnetic effects);
 71.30.+h Metal-insulator transitions and other electronic transitions.
- Keywords: double quantum wells, magnetotransport effects, electronic transitions.