Теорія Оптимальних Рішень

Рассматривается игровая задача о мягком сближении двух конфликтно-управляемых систем, совершающих затухающие колебания. Получены условия на параметры систем, обеспечивающие завершение преследования за конечное время.

© Г.Ц. Чикрий, 2008

удк 518.9 Г.Ц. ЧИКРИЙ

О ЗАДАЧЕ СБЛИЖЕНИЯ ДЛЯ ЗАТУХАЮЩИХ КОЛЕБАТЕЛЬНЫХ ДВИЖЕНИЙ

Введение. В работе рассматривается игровая задача сближения по координатам и скоростям двух управляемых систем, совершающих затухающие колебательные движения. Для ее решения используется некоторая модификация первого прямого метода Л.С. Понтрягина [1], основанная на идее построения управления преследователя по управлению убегающего в прошлом [2] и существенно использующая эффект запаздывания информации [3].

Рассмотрим следующие управляемые системы

В отсутствие управляющих воздействий $(u \equiv 0, v \equiv 0)$ каждое из уравнений (1) описывает свободные колебания линейной системы с учетом вязкого трения [4]. Параметр γ является собственной угловой частотой соответствующей системы. Характер поведения такой системы определяется характеристическим уравнением $\lambda^2 + 2h\lambda + \gamma^2 = 0$, точнее

его корнями $\lambda_{1.2} = -h \pm \sqrt{h^2 - \gamma^2}$.

Здесь будет рассматриваться случай малого вязкого трения для обеих систем, т.е. когда

$$h_1^2 < \gamma_1^2, h_2^2 < \gamma_2^2.$$

 $h_1^2 < \gamma_1^2 \;,\;\; h_2^2 < \gamma_2^2 \;.$ Поскольку $\sqrt{h^2 - \gamma^2} = i\sqrt{\gamma^2 - h^2} = i\omega$, то для каждой из систем $\lambda_{1,2} = -h \pm i\omega$.

Величина $\omega = \sqrt{\gamma^2 - h^2}$ — угловая частота колебаний системы с вязким трением (демфированная собственная частота), параметр h характеризует интенсивность уменьшения амплитуды колебаний системы, а сами движения являются затухающими [4].

Заданы начальные положения объектов:

$$x(0) = x_0$$
, $\dot{x}(0) = \dot{x}_0$, $y(0) = y_0$, $\dot{y}(0) = \dot{y}_0$.

Цель преследователя – добиться совпадения в некоторый конечный момент времени геометрических положений и скоростей объектов, т. е. их мягкой встречи.

Положим $z = (z_1, z_2, z_3, z_4)^T = (x, \dot{x}, y, \dot{y})^T \in \mathbb{R}^{4n}$. Тогда уравнения движения примут вид $\dot{z} = Az + u - v$, $u \in U$, $v \in V$, где

$$A = \begin{pmatrix} 0 & E & 0 & 0 \\ -\gamma_1^2 E & -2h_1 E & 0 & 0 \\ 0 & 0 & 0 & E \\ 0 & 0 & -\gamma_2^2 E & -2h_2 E \end{pmatrix}, U = \begin{pmatrix} 0 \\ \rho S_0 \\ 0 \\ 0 \end{pmatrix}, V = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \sigma S_0 \end{pmatrix}.$$

Здесь 0 и E соответственно нулевая и единичная матрицы размерности n, а S_0 – единичный n-мерный шар с центром в начале координат.

Терминальное множество является линейным подпространством в R^{4n} : $M = \{z \in \mathbb{R}^{4n} \mid z_1 = z_3, z_2 = z_4 \}$. Обозначим π – оператор ортогонального проектирования из пространства R^{4n} на подпространство L, являющееся ортогональным дополнением к M в R^{4n} . Тогда мягкая встреча объектов в некоторый момент t, $t \ge 0$, означает, что $\pi z(t) = 0$. Оператору π соответствует матрица

$$\pi = \begin{pmatrix} E & 0 & -E & 0 \\ 0 & E & 0 & -E \end{pmatrix}.$$

Будем предполагать, что преследователь в каждый момент времени строит свое управление не по текущему управлению противника, а по его управлению в прошлом. Это предположение лежит в основе следующего модифицированного условия Л.С. Понтрягина.

Условие [2]. Существует скалярная, монотонно неубывающая, непрерывная, кусочно-непрерывно дифференцируемая функция $I(t), t \in [0, \infty)$, такая, что $I(0) = 0, I(t) \ge t$ и выполнено условие непустоты следующего многозначного отображения:

$$W(t) = \pi e^{At} U \stackrel{*}{-} \dot{I}(t) \pi e^{I(t)A} V \neq \emptyset$$
 для всех $t \ge 0$. (2)

Операция над множеством * это разность Минковского [1]:

$$X \stackrel{*}{-} Y = \Big\{ z, z \in \mathbb{R}^n : z + Y \subset X; X, Y \subset \mathbb{R}^n \Big\}.$$

Здесь это условие имеет вид

$$\bigcap_{\|v\|\leq 1} \bigcup_{\|u\|\leq 1} \left\{ \frac{\rho}{\omega_{1}} e^{-h_{1}t} \left| \sin \omega_{1}t \right| u - \frac{\sigma}{\omega_{2}} \dot{I}(t) e^{-h_{2}I(t)} \left| \sin \omega_{2}I(t) \right| v \right\} \\
\rho e^{-h_{1}t} \left| -\frac{h_{1}}{\omega_{1}} \sin \omega_{1}t + \cos \omega_{1}t \right| u - \\
-\sigma \dot{I}(t) e^{-h_{2}I(t)} \left| -\frac{h_{2}}{\omega_{2}} \sin \omega_{2}I(t) + \cos \omega_{2}I(t) \right| v$$

$$(3)$$

Анализ, аналогичный тому, который проводился при решении примеров в [3], дает подходящую функцию

$$I(t) = \frac{1}{\omega_2} \left\{ (k-1)\pi + \operatorname{Arcctg} \frac{\omega_1}{\omega_2} \left[\operatorname{ctg} \omega_1 \left(t - \frac{(k-1)\pi}{\omega_1} \right) \right] \right\}$$

для
$$t \in \left[\frac{(k-1)\pi}{\omega_1}, \frac{k\pi}{\omega_1}\right)$$
, где $k=1,2,...$

и условия, необходимые для выполнения (3)

$$h_1 = h_2, \ \omega_1 \ge \omega_2. \tag{4}$$

Найдем ее производную

$$\dot{I}(t) = \frac{\omega_1^2}{\omega_2^2 \sin^2 \omega_1 \left(t - \frac{(k-1)\pi}{\omega_1}\right) + \omega_1^2 \cos^2 \omega_1 \left(t - \frac{(k-1)\pi}{\omega_1}\right)}.$$

Функция I(t) удовлетворяет равенству

$$\omega_1 \operatorname{ctg} \omega_1 t = \omega_2 \operatorname{ctg} \omega_2 I(t) . \tag{5}$$

Дифференцируя его, получаем формулу

$$\sin \omega_2 I(t) = \frac{\omega_2}{\omega_1} \sqrt{\dot{I}} \sin \omega_1 t \,. \tag{6}$$

Комбинируя (5) и (6), приходим к выражению

$$-h_1 \sin \omega_2 I(t) + \omega_2 \cos \omega_2 I(t) = \frac{\omega_2}{\omega_1} \sqrt{\dot{I}} \left(-h_1 \sin \omega_1 t + \omega_1 \cos \omega_1 t \right). \tag{7}$$

Таким образом, условие (3), ввиду (4), (6) и (7), свелось к требованию о выполнении неравенства

$$\rho > \sigma (\dot{I}(t))^{3/2}$$
 для всех $t \ge 0$.

Итак, (3) обеспечивается условиями

$$h_1 = h_2, \quad \gamma_1^2 \ge \gamma_2^2, \quad \frac{\rho}{\omega_1^3} > \frac{\sigma}{\omega_2^3}.$$
 (8)

Теперь опишем способ построения управления преследователя, приводящий к цели. На начальном отрезке времени $[0, I(t_1) - t_1)$ положим его тождественно равным нулю. Тогда, согласно теореме 2 [3], остается потребовать выполнения в некоторый конечный момент t_1 включения

$$-\pi e^{I(t_1)A} z_0 \in \int_0^{t_1} W(\theta) d\theta . \tag{9}$$

Положим $\tau_0 = I(t_1) - t_1$. Тогда, выбирая на отрезке $\left[\tau_0, \tau_0 + t_1\right]$ управление в виде измеримого решения уравнения

$$\pi e^{(t_1 - \theta)A} u(\tau_0 + \theta) = \dot{I}(t_1 - \theta) \pi e^{(I(t_1) - \theta)A} v(I(t_1) - I(t_1 - \theta)) + \omega(t_1 - \theta),$$

$$\theta \in [\tau_0, \tau_0 + t_1], \quad \omega(\theta) \in W(\theta),$$
(10)

(его существование обеспечивает теорема Филиппова-Кастена об измеримом выборе [5]), преследователь добьется выхода траектории системы в момент $I(t_1)$ на терминальное множество M, т.е. $\pi z(I(t_1) = 0$. В нашем случае вектор, стоящий в левой части включения (9) имеет вид:

$$\begin{cases} e^{-h_{1}I(t)} \Biggl[\Biggl(\frac{h_{1}}{\omega_{2}} \sin \omega_{2}I(t) + \cos \omega_{2}I(t) \Biggr) y_{0} + \frac{\sin \omega_{2}I(t)}{\omega_{2}} \dot{y}_{0} \Biggr] - \\ - e^{-h_{1}I(t)} \Biggl[\Biggl(\frac{h_{1}}{\omega_{1}} \sin \omega_{1}I(t) + \cos \omega_{1}I(t) \Biggr) x_{0} + \frac{\sin \omega_{1}I(t)}{\omega_{1}} \dot{x}_{0} \Biggr] \\ e^{-h_{1}I(t)} \Biggl[-\frac{\gamma_{2}^{2}}{\omega_{2}} \sin \omega_{2}I(t) \cdot y_{0} + \Biggl(-\frac{h_{1}}{\omega_{2}} \sin \omega_{2}I(t) + \cos \omega_{2}I(t) \Biggr) \dot{y}_{0} \Biggr] - \\ - e^{-h_{1}I(t)} \Biggl[-\frac{\gamma_{1}^{2}}{\omega_{1}} \sin \omega_{1}I(t) \cdot x_{0} + \Biggl(-\frac{h_{1}}{\omega_{1}} \sin \omega_{1}I(t) + \cos \omega_{1}I(t) \Biggr) \dot{x}_{0} \Biggr] \end{cases}$$

Его норма ограничена конечной величиной. Поэтому в некоторый конечный момент времени $t = t_1$ этот вектор будет поглощен шариком радиуса rt,

$$r = \frac{\rho}{\omega_1^3} - \frac{\sigma}{\omega_2^3}$$
 , принадлежащим множеству из правой части включения (9).

Таким образом, показано, что при выполнении условий (8), преследователь, выбирая свое управление по управлению убегающего в прошлом (10), добьется своей цели в конечный момент времени $I(t_1)$ при любых начальных положениях и скоростях преследователя и убегающего.

Г.Ц. Чикрій

ПРО ЗАДАЧУ ЗБЛИЖЕННЯ ДЛЯ ЗГАСАЮЧИХ КОЛИВАНЬ

Розглядається задача про м'яке зближення двох конфліктно-керованих систем, що виконують згасаючі коливання. Одержані умови на параметри систем, що забезпечують завершення переслідування за скінченний час.

G.Ts. Chikrii

ON THE PROBLEM OF MEETING FOR DAMPING OSCILLATIONS

The paper deals with the problem of soft meeting of two conflict-controlled systems performing damping oscillations. Conditions on systems parameters are obtained, ensuring the meeting in a finite time.

- 1. *Понтрягин Л.С.* Избранные научные труды. М.: Наука, 1988. **2**. 576 с.
- Зонневенд Д. Об одном типе превосходства игрока // Докл. АН СССР. 1973. 208. – № 3. – С. 520–523.
- 3. *Чикрий Г.Ц*. Использование эффекта запаздывания информации в дифференциальных играх преследования // Кибернетика и системный анализ. 2007. № 2. С. 90–105.
- 4. Василенко Н.В. Теория колебаний. Киев: Вища школа, 1992. 430 с.
- Йоффе А.Д., Тихомиров В.М. Теория экстремальных задач. М.: Наука, 1974. 480 с.

Получено 04.04.2008