Surface chemistry of silica and related sorbents

ELECTRON SPIN RESONANCE STUDY ON Mo-SiO₂ AND Mo-TiO₂ WITH ADSORBED BENZENE

M. Ignatovych¹, V. Teslenko², A. Eremenko¹, V. Ogenko¹, and A. Chuiko¹

¹Institute of Surface Chemistry, National Academy of Sciences Gen.Naumov Str.17, 03680 Kyiv-164, UKRAINE ²Institute of Semiconductor Physics, National Academy of Sciences Prospect Nauky 45, 03028 Kyiv, UKRAINE

Abstract

The study is devoted to ESR-investigation of the primary processes upon chemisorption of benzene molecules onto the molybdenum supported on dispersed SiO₂ and TiO₂ samples. It has been confirmed that benzene chemisorption onto the Mo^{6+} species results in one-electron transfer in the ground state and paramagnetic species formation, namely reduced molybdenum species (Mo^{5+} species) and radicals of benzene. Computer treatment of ESR experimental data revealed that there are several types of Mo^{5+} species and benzene radicals, the assignment of which is proposed.

Introduction

During several decades molybdenum species (Mo-species) supported on different oxide carriers by various preparation methods are extensively studied by a multitude of the spectroscopic techniques because of prominent catalytic and photocatalytic properties of such materials [1-6]. Comprehensive investigations aimed at preparation and spectroscopic characterization have been reported by many research groups [7-10]. It is well documented that many efforts have already been made to prepare the samples with Mo-species - well-defined, highly dispersed, and of a certain local structure [3, 4, 7]. However, in the most cases in the materials obtained just several kinds of Mo-species of different oxidation, coordination and dispersion states coexist even at low Mo loadings [9, 11, 13]. ESP techniques was widely used and proved to be very informative for detailed characterization of reduced Mo-species, in particular, Mo⁵⁺-complexes [7-9, 12, 13].

This investigation have been stimulated by our previously performed studies on electron-transfer and charge-transfer complexes formation upon chemisorption of arene molecules – naphthalene (Nph), anthracene (An) and perylene (Py) onto silica or zeolites [14, 15]. It has been shown with by ESR and photoluminescence techniques that oxidation of Nph and An with cation radicals generation requested UV-irradiation. Only Py, which has the lowest ionization potential, is oxidized to cation radicals directly upon chemisorption. However, mere exposure of these molecules onto fully oxidized Mo^{6+} -SiO₂ surfaces at room temperature resulted immediately in aromatic radicals and reduced Mo^{5+} -species formation. Thus, one-electron redox process on the Mo-SiO₂ surfaces was confirmed and monitored directly by ESR [16].

The present paper is an attempt to study in more details the nature of radicals generated upon interaction of electron-donating molecules with supported Mo-species. Interaction of benzene (Bz) molecules with Mo-species supported on SiO_2 and TiO_2 .was studied by ESR technidues complemented with computer treatment.

Experimental

Sample preparation and trearment. Molybdenum-containing samples were prepared using two methods:

i) conventional impregnation technique using an aqueous solution of ammonium heptamolybdate;

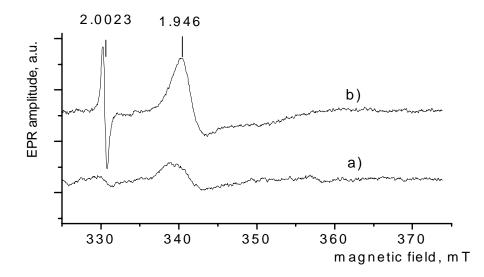
ii) grafting of $MoCl_5$ (in CCl_4 solution) onto dehydrated at 873K supports under dry nitrogen conditions (as in [9]). For sample preparation highly dispersed fumed silica and titanium oxide have been used (with specific surface area 200 and 120 m²/g respectively). As-prepared impregnated samples were dried at 393K. Grafted samples were twice washed with CCl_4 , then hydrolyzed in the water vapor for 8 hours and dried in N₂ at 393K. Hydrolyzed samples had blue color.

All the samples were subsequently oxidized in O_2 flow for 6 hours at 673K. After this treatment both type of samples became almost white, evidencing that the most of Mo atoms were oxidized to Mo⁶⁺. The Mo-loading was in the range of 1-5 wt. %. As within this Mo concentration range the experimental results were basically the same, in the paper the samples will be regarded with 3.0 wt. % for impregnated and 3.6 wt. % for grafted specimens.

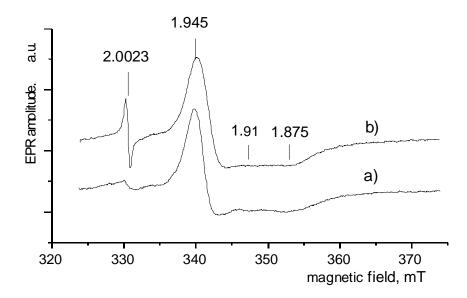
Hot oxidized samples were transferred for thermoevacuation and interaction with benzene to vacuum-spectral cell. This cell had attached ESR tubes and ampoule with benzene (Bz) previously deoxygenated by freeze-pump-thaw technique. After thermoevacuation (for 3 hours at 673K) one part of sample was transferred to ESR tube that was then sealed under vacuum. The sample remaining in the cell, after cooling to room temperature, was exposed for several minutes to Bz vapors (the excess of Bz vapor being then evacuated at room temperature) and also transferred to ESR tube. Thus, ESR spectra were taken of the samples kept in the sealed under vacuum ESR tubes.

ESR measurement. Spectra were recorded at 300 and 77K with SEX-2543 spectrometer (Radiopan). Experimental g-values were determined by direct measurements of the frequency and magnetic field. For computer simulation of ESR spectra the programs WINEPR and SIMFONIA (Bruker) were used.

Results and discussion


Figs. 1 and 2 represent respectively the typical experimental spectra of Mo-SiO₂ and Mo-TiO₂ samples. In the both cases the *a*-signals relate to thermoevacuated and *b*-signals - to the samples after Bz vapor sorption. It is important to note that in the blank experiment pure supports SiO₂ and TiO₂ have not exhibited ESR signals neither for thermoevacuated samples, nor for those ones after exposure with Bz. Thus, it is clear that ESR signals presented in the Figs. 1 and 2 should be related to Mo-species (spectra *a*) and their interaction with Bz (spectra *b*). Also it should be indicated that the receiver gain for recording of spectra in Fig. 1 is 10 times greater, than that in Fig. 2.

The temperature independence of line shape and the magnitude of g-values of 1a and 2a signals that arose upon thermoevacuation at 673K strongly pointed to the presence of reduced Mo^{5+} -species. The local structure of Mo^{5+} -species will be discussed in more details later, but now worthwhile pay an attention to different reducibility of Mo-species, supported on SiO₂ and


 TiO_{2} . Intensity of Mo⁵⁺-signal (see Fig. 2, *a*) is almost one order larger than signal (Fig. 1, *a*) at practically the same Mo-loading for Mo-SiO₂ and Mo-TiO₂ samples.

Exposure of thermoevacuated samples to Bz vapor resulted in the following:

- i) the appearance of new narrow singlet signal in the free-electron region that was similar for both samples (spectra 1b and 2b);
- ii) the remarkable increasing of Mo^{5+} signal for Mo-SiO₂ samples.

Fig. 1. Experimental ESR spectra of Mo-SiO₂ samples registered at 77K: *a* - thermoevacuated sample; b – after exposure in benzene vapor. The receiver gain for registration signals is 0.5×10^3 .

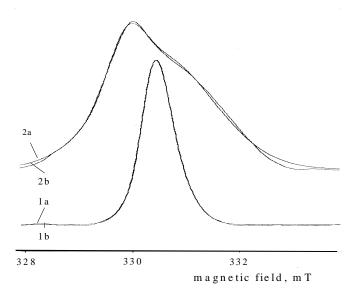


Fig. 2. Experimental ESR spectra of Mo-TiO₂ samples registered at 77K: *a* - thermoevacuated sample; *b* - after exposure in benzene vapor. The receiver gain for registration signals is 5×10^3 .

The appearance of new singlet ESR signals in the free-electron region is a quite common feature, observed in the numerous studies at interaction of organic electron-donating molecules with the solids, which possessed electron-accepting properties. It is usually assigned to cation radicals [17].

Previously we also observed very similar intensive narrow singlet signals with g=2.0025 and g=2.0029, developed at interaction of Mo-SiO₂ samples with aromatic molecules - naphthalene and anthracene, respectively [14]. It is worth to note that the intensities of these singlets were significantly larger as compared with intensities developed upon Bz interaction, that is in good agreement with the ionization potentials of these molecules. Thus, it seems quite reasonable to assume one-electron oxidation of adsorbed Bz molecules leading to Bz radicals generation.

Fig. 3 demonstrates the line shape simulation of the experimental signals in free-electron region for $Mo-SiO_2$ sample, recorded at 300K (curves 1 and 1a) and at 77K (curves 2 and 2a).

Fig. 3. Integrated form of ESR spectra for Mo-SiO₂ sample in the free-electron region: l – registered at 300K; 2 – at 77K (1a and 2a are experimental spectra, 1b and 2b are approximations by Gauss singlets).

The asymmetric single signal recorded at 300K may be satisfactorily approximated by two Gaussian curves with such widths as 0.59 and 1.18 mT (Fig. 3, curves 1 and 1a). The line shape of the signal recorded at 77K is more complicated, *i.e.* experimental signal is approximated by three Gaussian curves with the following widths – 1.04, 1.42 and 3.1 mT (Fig. 3, curves 2 and 2a). It is important to note that each of them is broader than the corresponding curves recorded at 300K. Results concerning Mo-TiO₂ sample are rather similar as it is seen from data of Table. Line shape analysis of Bz-radicals experimental signal revealed the superposition of individual Gauss-shape singlets with slight difference of g-values but noticeable difference of width (Δ H). Results of line shape simulation of Bz-radicals signal are expressed as appropriate parameters of centers 1, 2, and 3 in the Table.

Thus, two types of Bz radicals (for $Mo-TiO_2$) and three types of them (for $Mo-SiO_2$) should be considered at benzene interaction, but further specification can not be done because resolved spectra with hyperfine structures are lacking. But it deserves to explain the possible

reasons of it. Available numerous data, discussed in the comprehensive review[17], give evidence that:

i) singlet signals with $g\sim 2.00$, as a rule, were observed when benzene molecule (or other electron donors) were adsorbed from the vapor phase;

ii) resolved spectra with hyperfine structure of Bz or other aromatic adicals succeeded to detect after contact of diluted solution with microporous materials;

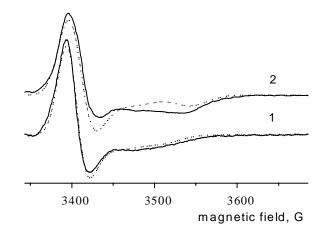
iii) the primary Bz radical $C_6H_6^+$ very quickly undergoes the subsequent transformations and rearrangements that lead to biphenyl radical, then to more stable polyphenyl species, that displays the singlet signals.

We can also speculate about other possible reasons such as:

iv) anisotropic broadening:

Preliminary we showed that the broadening (more than 0.4 mT) of individual components of 7-component primary cation Bz-radical spectrum causes unresolved singlet lineshape.

v) restriction of motion due to adsorption on surface and interaction with neutral Bz molecules.


Gaussian line shapes and the absence of hyperfine (HF) pattern suggest that the anisotropic HF interactions with the surface protons of SiO_2 and TiO_2 and magnetic dipole-dipole interaction between the primary Bz-radicals occur.

The narrowing of the line width of the signal at 300K in comparison with that at 77K (Fig. 3 and Table) confirms our suggestion about anisotropic HF interaction; as upon increasing the temperature the interaction of Bz-radical with the surface becomes more weak and anisotropic part of HF interaction is averaged, so ESR line is narrowed. Broadening of the signal of the type 2 Bz-center comparing to the type 1 can be explained also by dipole-dipole interaction between Bz-radicals of the type 2.

Now anisotropic signal of Mo^{5+} -species are to be considered. It is beyond doubt that the oxidation state of molybdenum is Mo^{5+} , so we will focus attention to local structure of Mo^{5+} -species. For discrimination of two most common site symmetry of Mo^{5+} -species distorted octahedral (O_h) and tetrahedral (T_d) should be regarded the following features of the ESR signal:

i) the temperature dependence of the line shape;

ii) relative magnitudes of g_{\perp} , $g_{//}$ and Δg -degree of g-value anisotropy.

Fig. 4. Experimental and computer simulated spectra of Mo^{5+} species: $l - Mo-SiO_2$, $2 - Mo-TiO_2$ samples. Solid line – experimental spectra; dotted line – simulated ones.

Centre type	Sample	Temperature of measurement				Relative concentration*	
		300K		77K		300K	77K
		g-value	$\Delta H(mT)$	g-value	$\Delta H(mT)$		
1	Mo/SiO_2	2.0023	0.59	2.0023	1.04		2.0
	Mo/TiO_2	2.0023	0.76	2.0022	0.90		2.0
2	Mo/SiO ₂	2.0019	1.18	2.0030	1.42		2.5
	Mo/TiO_2	2.0003	1.74	1.9883	2.19		
3	Mo/SiO ₂	-	-	2.0021	3.1		3.0
4		-	-	g _ 1.946	2.5		
				g // 1.885	4.0		
5	Mo/SiO_2	_	-	g _ 1.946	2.5	95	250
				g // 1.905	4.5		
6		-	-	1.95	15		
7 8		-	-	g_{\perp} 1.944	3.0		
				g // 1.867	4.0		
	Mo/TiO ₂	_	_	-	3.0	470	1600
		-	-	$\begin{array}{c}g\perp 1.944\\g\not\parallel 1.900\end{array}$	3.0 4.0		
				-			
6		-	-	1.95	15		

Table. Parameters of paramagnetic centres of Mo-SiO₂ and Mo-TiO₂ samples.

• For correct comparison of relative concentrations for Mo⁵⁺ species measured at 300 and 77K relative concentrations for Mo⁵⁺ species measured at 300 K should be multiplied by 300/77 factor.

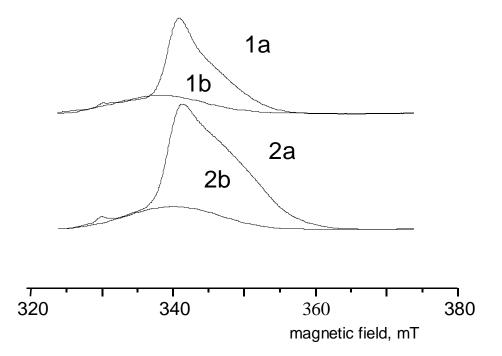
Registration of the Mo^{5+} signal at 300K with the same line shape as at 77K clearly points on distorted O_h coordination in our case. Besides, the intensities of Mo^{5+} species signals recorded at 300 and 77K obeyed the Curie law. The relative concentration of Mo^{5+} species (measured by double integration of spectra) revealed good coincidence between concentration of Mo^{5+} species at 300 and 77K (Table). This is an important fact that confirms the absence of Mo^{5+} species non-observable at room temperature but detectable at 77K. It is well known that just tetrahedrally coordinated Mo^{5+} complexes can be detected only at 77K or lower because of fast spin-lattice relaxation [13]. The absence of T_d Mo^{5+} species has been shown for both $Mo-SiO_2$ and $Mo-TiO_2$ as for impregnated and grafted samples as well.

In order to obtain the additional information about the site symmetry of Mo^{5+} species a computer simulation of the line shape was performed. The results are demonstrated in the Fig. 4 and Table. In the Fig. 4 the experimental spectra are compared Mo^{5+} species with adsorbed Bz on SiO₂ (spectrum 1) and on TiO₂ (spectrum 2) with the simulated ones.

For Mo-SiO₂ sample, a good fitting was achieved by superposition of two signals with the following parameters: 1A $g_{\perp} = 1.946$; $g_{//} = 1.885$; 1B $g_{\perp} = 1.946$; $g_{//} = 1.905$. Centers 1A and 1B are denoted in the Table as centers 4 and 5. The contribution of 1B signal is three times larger than that for 1A.

Similarly, for Mo-TiO₂ sample, to fit satisfactorily the experimental spectrum, two signals are also requested with such parameters: 2A $g_{\perp} = 1.944$; $g_{//} = 1.867$; 2B $g_{\perp} = 1.944$; $g_{//} = 1.900$; centers 2A and 2B are denoted in the Table as center 7 and 8. In this case the contributions of 2A and 2B signals into simulated spectrum are equal. It should be noted that the fitting for Mo-SiO₂ is better than that for Mo-TiO₂ sample, in particular, in the $g_{//}$ range. It is probable, that on TiO₂ there are more than two types of Mo⁵⁺ species with the same g_{\perp} but with slightly different $g_{//}$.

The parameters obtained by computer simulation permit to discuss in more details the local structures of Mo^{5+} species, taking into account relative magnitude of g_{\perp} and g_{\parallel} and degree of Δg anisotropy.


All four types of revealed Mo⁵⁺ centers are characterized by $g_{\perp}>g_{//}$, that gives clear evidence on the presence of octahedral distorted (compressed) Mo⁵⁺oxo-complexes with Mo=O double bond [18]. The elongated octahedral complexes exhibit reversal relation $g_{\perp} < g_{//}$ [13]. Distorted tetrahedral Mo⁵⁺ complexes are characterized by essentially different g-values and significantly greater Δg . Besides it has been shown that tetrahedral Mo⁵⁺ species are generated only by low temperature (77K) photoreduction and are irreversibly transformed into octahedral at room temperature [8].

Revealed two types of octahedral Mo⁵⁺ species, as it seen in the Table, display different degree of Δg anisotropy; in accordance with [8] it reflects the different degree of symmetry distortion. *Tentatively we presume, that it may be connected with two different routes of reducing of supported Mo: the former is achieved during thermoevacuation and is caused by* O^{2^-} extraction, while the second - by electron donating from Bz molecule. In the first case more distorted penta-coordinated Mo⁵⁺ species will be formed (centers 4 and 7), while the electron donating will result in less distorted six-coordinated Mo⁵⁺ species generation (centers 5 and 8).

Besides above-described types of Mo^{5+} species, it was revealed also the presence of additional type (on both Mo-SiO₂ and Mo-TiO₂ samples). Computer simulation of experimental spectra 1b (Fig. 1) and 2b (Fig. 2) using the parameter for centers 1-3; 4-5 and 7-8 in the Table revealed the presence of additional center 6 with isotropic g-value g=1.95 and very large linewidth ($\Delta H=15$ mT). Fig. 5 demonstrates the presence of Mo^{5+} centers of type 6 (1b curve - for Mo-SiO₂; 2b curve - for Mo-TiO₂). The contribution of type 6 center to total Mo^{5+} spectrum is 1/5 for Mo-SiO₂ and 1/3 for Mo-TiO₂. Obtained g-value of this center is in a good agreement for polymolybdate clusters like molybdenum "blues" or heteropolyanions, reported in the literature [19-20]. But a certain controversy should be noted concerning the line width and its temperature dependence. At present time we have no sufficient data to discuss this question.

An analysis of data concerning the total concentration of Bz radicals (centres 1-3) and Mo^{5+} -species (centres 4-6) for Mo-SiO₂ sample revealed an important fact. It appeared, that the concentration of Bz radicals is more than 40 times less comparing to the total Mo^{5+} species concentration. For this sample Mo^{5+} -species are formed mainly during the redox process that can be schematically written as

Benzene+ Mo^{6+} \rightarrow Bz-radical + Mo^{5+} species (1)

Fig. 5. Integrated form of experimental spectra: *1* - Mo-SiO₂, *2* - Mo-TiO₂ samples. Curve 1a is integrated form of experimental spectrum 1b (from Fig. 1); curve 2a is integrated form of experimental spectrum 2b (from Fig. 2); curves 1b and 2b are simulated ones for Mo⁵⁺ species (6 type centers in the Table).

This oversimplified schematic representation (1) predicts that the concentration of Bz-radicals and Mo⁵⁺-species should be equal. So, observed discrepancy in these concentrations indicates that the significant part of Bz radicals is ESR-silent. We consider this fact as an independent confirmation of complicated secondary reactions of primary Bz-radicals already discussed in this paper.

Conclusions

Direct experimental ESR evidence was obtained that the benzene chemisorption on the surface species of supported molybdenum results in one-electron redox processes and paramagnetic centres formation - reduced molybdenum (Mo^{+5} -species) and benzene radicals (Bz-radicals). Computer treatment of ESR experimental data revealed the superposition of several types of Mo^{+5} -species and Bz-radicals. There are three types of Bz-radicals on Mo-SiO₂ and two types on Mo-TiO₂ samples. All Bz-radicals showed singlet with Gauss line shape signals with slight difference in g-values and noticeable one in linewidths. Such features of Bz-radicals spectra are explained as a result of secondary transformations and rearrangements of the primary Bz-cation radicals that led to polyphenyl radical formation. Besides, the anisotropic hyperfine coupling of primary Bz-radicals and their dipole-dipole interactions are also considered to be responsible for unresolved singlet lineshape.

The are three types of Mo^{5+} -species on both $Mo-SiO_2$ and $Mo-TiO_2$ samples. Two of Mo^{5+} -species displayed the features, typical for localized Mo^{5+} state with distorted octahedral coordination. The analysis of g-value magnitudes and degree of Δg anisotropy give evidence

for penta-coordinated and six-coordinated distorted octahedral Mo^{5+} -species. The assumption is advanced that different degree of octahedral Mo^{5+} -species distortion reflects two different routes of reduced Mo^{5+} -species formation: extraction of O^{2-} at thermoevacuation and electron donating at benzene interaction. Third type of Mo^{5+} species exhibited the characteristics of Mo^{5+} clusters.

References

- Che M., Figuras F., Forissier M., McAteer J., Perrin M., Portefaix J. L., and Praliaud H. Influence of the symmetry of the molybdenum ion on the selectivity for propylene oxidation // Proc. 6th Int. Congress on Catalysis, London, 1976. - V.1. - P.261-270.
- Che M., McAteer J.C., and Tench A.J. Electron paramagnetic resonance study of molybdenum supported calalysts labelled with ⁹⁵Mo // J. Chem. Soc., Faraday Trans. -1978. - V.74. - P.2378-2384.
- 3. Iwasawa Y., Nakano Y., and Ogasawara S. Surface properties and catalytic activity of Mo-fixed catalyst // J. Chem. Soc., Faraday Trans. 1978. V.74. P.2968-2981.
- Iwasawa Y. and Ogasawara S. Spectroscopic study on the surface structure and environment of fixed Mo- catalysts // J. Chem. Soc., Faraday Trans. - 1979. - V.75 -P.1465-1475.
- Anpo M., Suzuki T., and Kubokawa Y. Photoluminescence evidence for the influence of symmetry of molybdenum ions upon photocatalytic activity // J. Phys. Chem. - 1984. -V.88. - P.5778-5779.
- 6. Castellan A., Vart J.C.J., Vaghi A., and Giordano N. Structure and catalytic activity of MoO₃ SiO₂-system. Solid state properties // J. Catal. 1976. V.36 P.162-172.
- Louis C. and Che M. EPR and diffuse reflectance studies of physicochemical phenomena ocurring during the preparation of Mo/SiO₂.catalysts by the grafting method // J. Catal. -1992. - V.135. - P.156-172.
- Seyedmonir S.R. and Howe R.F. Redox chemistry of molybdena-silica catalysts // J. Catal. - 1988. - V. 110. - P.229-242.
- Fricke R., Hanke W., and Ohlmann G. Studies on catalytically active surface compounds. Preparation of Mo/SiO₂ catalysts from MoCl₅ studied by ESR and UV-vis spectroscopy // J. Catal. – 1983. - V.79. - P.1-12.
- 10. Kucherov A.V. and Slinkin A.A.. Introduction of Cr(V), Mo(V) and V(IV) ions in cationic positions of high silica zeolites by a solid-state reaction // Zeolites. 1987. -V.7. P.38-42.
- Stencel J.M., Diehl J.R., D'Este J.R., Makovsky L.E., Rodrigo L., Marcinkowska K., Adnot A., Roberge P.C., and Kaliaguine S. // J. Phys. Chem. - 1986. - V.90. -P.4739-4743.
- 12. Plyuto Yu.V., Babich I.V., Plyuto I.V., Van Langeveld A.D., and Moulijn J.A. Characterization of molybdenum(VI) oxo-species aggregation in MoO₃/Al₂O₃ and MoO₃/SiO₂ model systems // Europacat-III: Abstracts. 1997. P.849.
- Kravets G.A., Shokhireva T.Kh., Anufrienko V.F., and Yurieva T.M. ESR studies of molybdenum in Ti-Mo heteropolyacid supported on TiO₂ // React. Kinet. Catal. Lett. -1982. - V.19. - P.85-89.
- Ignatovych M.V., Eremenko A.M., and Chuiko A.A. Photoactivated electron transfer in the surface complexes of aromatic molecules on silica // Dop. Akad. Nauk Ukrainy. – 1989 - N1. - P.39-41.
- Ignatovych M., Ogenko V., and Chuiko A. Spectral study of the donor-acceptor complexes of aromatic moleculees adsorbed on zeolites // Stud. Surf. Sci. Catal. -1995. -V.94. - P.614-618.

- Ignatovych M., Eremenko A., Ogenko V., and Chuiko A. Photoproceses in Mo-SiO₂ and V-SiO₂ with adsorbed aromatic molecules // XV IUPAC Symposium on Photochemistry, Prague, 1994. - Book of Abstracts. - P.265.
- 17. Yoon K.B. Electron and charge-transfer reaction within zeolites // Chem. Rev. 1993. V.93. P.321-339 (and references therein).
- 18. Che M., Fournier M., and Launay J.P. The analog of surface molybdenyl ion in Mo/SiO_2 supported catalysts: the isopolyanion $Mo_6O_{19}^{3^-}$ studied by EPR and UV-visible spectroscopy. Comparision with other molybdenyl compounds // J. Chem. Phys. 1979. V.71. P.1954-1960.
- 19. Serwicka E. ESR study of 12-molybdophosphate catalyst // Z. Phys. Chem. 1987. Bd.152. S.105-112.
- 20. Serwicka E. ESR study of supported $H_3PMo_{12}O_{40}/K_3PMo_{12}O_{40}$ catalysts for the oxidation of acrolein // Z. Phys. Chem. 1989. Bd.165. S.95-101.