УДК 666.792.34:539.89

Д. А. Стратийчук, В. З. Туркевич, Н. Н. Белявина, М. А. Тонкошкура, А. С. Осипов, Т. Н. Беляева (г. Киев)

Кристаллическая структура двойных боридов алюминия, синтезированных в условиях высоких давлений и температур

Изучены фазообразование в системе Al-B в условиях высоких давлений и температур и кристаллическая структура образующихся в ней боридов алюминия. Методами рентгеновской дифракции и сканирующей электронной микроскопии установлено существование боридов AlB_2 , AlB_{16} , AlB_{25} , Al_xB_{12} . Показано, что кристаллические структуры синтезированных при высоком давлении богатых бором фаз AlB_{16} , AlB_{25} , Al_xB_{12} близкородственны кристаллическим структурам известных модификаций бора.

Ключевые слова: бориды алюминия, высокие давления, рентгеноструктурный анализ.

Номенклатура материалов на основе двойных боридов, обладающих уникальными физико-химическими свойствами, постоянно расширяется. Среди уже нашедших свое применение можно отметить режущие и абразивные материалы на основе cBN, B₄C, B₆O, а также наплавочные износостойкие материалы, содержащие TiB₂ и CrB₂; термоионные излучатели на основе гексаборидов лантаноидов; материалы атомной энергетики на основе боридов гафния. Практическое же использование боридов алюминия пока весьма ограничено. Известно о применении дисперсных порошков AlB₂ и AlB₁₂ в металлургии в качестве легирующих добавок для раскисления сталей [1], а также об упрочнении мартенситной стали высокотвердыми наночастицами AlB₁₂, образующимися на ее поверхности в результате бомбардировки ионными пучками алюминия и бора [2]. Существенное улучшение механических свойств получено для композитов квазибинарного разреза AlB₂–TiB₂, синтезированных в условиях высоких давлений и температур [3, 4].

Основой разработки новых материалов на основе боридов алюминия является диаграмма состояния системы Al–B, компилятивный вариант которой при нормальном давлении приведен в [5]. Согласно данным [5], взаимодействие алюминия и бора ведет к образованию двух стабильных боридов AlB₂ и α -AlB₁₂, а найденные ранее бориды AlB₁₀, β -AlB₁₂ в действительности оказались тройными фазами, образование которых было вызвано загрязнением шихты углеродом или азотом. Сведения о диаграмме состояния системы Al–B в условиях высоких *p*, *T*-параметров в литературе отсутствуют. Поэтому в данной работе проведено исследование фазового состава серии сплавов системы Al–B, полученных в условиях высоких давлений (7,7 ГПа) и температур (1500–2100 °C), а также определена кристаллическая структура синтезированных впервые боридов алюминия высокого давления.

В качестве исходных материалов для приготовления образцов использовали микропорошок аморфного бора (99,9 %, средний размер частиц – 4 мкм)

ISSN 0203-3119. Сверхтвердые материалы, 2012, № 5

[©] Д. А. СТРАТИЙЧУК, В. З. ТУРКЕВИЧ, Н. Н. БЕЛЯВИНА, М. А. ТОНКОШКУРА, А. С. ОСИПОВ, Т. Н. БЕЛЯЕВА, 2012

и алюминиевую стружку фирмы "Merck", Германия (99,9 %, размер частиц -1-2 мм). С алюминиевой стружки растворением в толуоле предварительно была удалена зашитная полимерная пленка. Сухим смешиванием порошка бора и алюминия получали гомогенные смеси трех составов (табл. 1), которые в дальнейшем брикетировали и размещали в центральной части ячейки высокого давления. Синтез образцов проводили в аппарате высокого давления типа "тороид-20". В качестве нагревателей использовали полые графитовые цилиндры, от которых втулкой из CsCl изолировали реакционную Al/B смесь. Закалочные эксперименты проводили при температурах 1500, 1800 и 2100 °С и времени выдержки 90, 60 и 45 с соответственно. В результате спекания смесей в условиях высоких р, Т-параметров были получены хорошо сформированные цилиндрические образцы темно-коричневого или серого цвета, с которых промыванием в горячей дистиллированной воде удаляли остатки защитной втулки из CsCl. Аналогичные эксперименты также проводили в ниобиевой капсуле, изолируя таким образом смесь Al/B от графитового нагревателя.

Полученные в результате синтеза спеки исследовали методами рентгеновского фазового и рентгеноструктурного анализов. Дифрактограммы размолотых в порошок образцов записывали в медном фильтрованном излучении на автоматизированном рентгеновском дифрактометре ДРОН-3 в дискретном режиме (шаг сканирования – 0,05°, время экспозиции в каждой точке – 3 с). Первичную обработку лифракционных данных выполняли методом полнопрофильного анализа. Положения центров тяжести пиков определяли с точностью ±(0,001-0,005°), а значения интегральных интенсивностей - с точностью ±(5-15%). Рентгеновский фазовый анализ и рентгеноструктурные расчеты проводили с помощью специального комплекса программ с использованием банка данных эталонных дифрактограмм неорганических и интерметаллических соединений [6]. При проведении фазового анализа методом наименьших квадратов уточняли периоды кристаллической решетки каждой идентифицированной фазовой составляющей, а при проведении структурных расчетов уточняли координатные и тепловые параметры структуры, а также коэффициенты заполнения атомами соответствующих правильных систем точек.

Элементный количественный анализ, изучение микроструктуры полученных боридов, а также изучение расположения фаз в характеристическом излучении выполнены на растровом электронном микроскопе Zeiss EVO 50XVP фирмы "Carl Zeiss", Германия, укомплектованном энергодисперсионным анализатором рентгеновских спектров.

Согласно данным рентгеновского фазового анализа, основной фазовой составляющей богатых алюминием спеков является диборид алюминия AlB₂, содержание которого максимально в образцах, полученных при температуре 1500 °C (см. табл. 1). По результатам сканирующей электронной микроскопии (СЭМ) при этой температуре спекания фаза AlB₂ кристаллизуется в виде крупных плоских кристаллитов (средний размер частиц – 20–30 мкм), на поверхность которых оседают зерна оплавленного алюминия (рис. 1). На стехиометричность диборида алюминия указывают как данные локального рентгеноспектрального анализа (ЛА), так и результаты уточнения его кристаллической структуры с помощью рентгеновской дифрактометрии (XRD) (табл. 2). Повышение температуры синтеза до 1800–2100 °C приводит к сильному перегреву расплава алюминия и, как следствие, к созданию неблагоприятных условий для кристаллизации фазы, в результате чего количество AlB₂ в синтезированных сплавах существенно снижается (см. табл. 1).

Шихта	Содержание	Фазовый состав при <i>Т</i> , °С			
AI:B	АІ, % (ат.)	1500	1800	2100	
1:2	33,3	AlB ₂	$50AlB_2 + 50Al$	$67AlB_2 + 33Al$	
1:6	14,3	$81\text{AlB}_2 + 12\text{AlB}_{16} + \\7\text{AlB}_{25}$	$80A1B_2 + 20A1B_{25}$	$59A1B_2 + 31A1B_{25} + \\10A1$	
1:11	8,3	$\begin{array}{l} 30\text{AlB}_{16} + 37\text{AlB}_{25} + \\ 11\text{AlB}_2 \end{array}$	$\begin{array}{l} 47AlB_2+27AlB_{25}+\\ 26AlB_{16} \end{array}$	$59A1B_{25} + 30A1B_2 + 11A1_xB_{12}$	

Таблица 1. Фазовый состав исследованных образцов, синтезированных из алюминия и бора при давлении 7,7 ГПа

Рис. 1. Микроструктура образца состава Al:B = 1:2, полученного при 7,7 ГПа, 1500 °С.

Таблица 2. Кристаллографические данные AIB₂, полученного при давлении 7,7 ГПа и температуре 1500 °C

Атом	Позиция	Заполнение	Х	Y	Ζ
Al	1 <i>a</i>	1,00(1)	0	0	0
В	2d	1,00(1)	0,333	0,667	0,5
Пространственная группа		<i>P6/mmm</i> (No. 191)			
Периоды кристал.	a = 0,30085(4), c = 0,32728(5)				
Количество неза	9				
Температурн	$B = 0,87(2) \cdot 10^{-2}$				
Параметр текстуры, ось текстуры		$\tau = 0,40(2), [001]$			
Фактор недостоверности		$R_W = 0,036$			
Содержание бора по данным XRD, % (ат.)		33,3(2)			
Содержание бора по данным ЛА, % (ат.)		33,7(5)			
Формула		AlB_2			
Тип	ГС	ексагональн	ая [11]		

Образец, синтезированный при 7,7 ГПа и 2100 °С шихты с Al:B = 1:11, по данным рентгеновского фазового анализа, кроме отражений, присущих AlB₂, содержит два других набора дифракционных пиков (см. табл. 1). Основные отражения дифрактограммы этого образца индицируются в тетрагональной сингонии с a = 0,8883(7) нм, c = 0,5082(5) нм, а их характерное расположе-

ISSN 0203-3119. Сверхтвердые материалы, 2012, № 5

ние и соотношение интенсивностей дают возможность предположить, что кристаллическая структура этой фазы является производной от известной тетрагональной модификации бора t-B₅₀. Действительно, уточнение кристаллической структуры исследуемого борида алюминия в модели бора t-B₅₀ с введенными в нее дополнительными атомами алюминия привело к хорошему соответствию между рассчитанными и экспериментальными значениями интенсивностей отражений. Полученный результат уточнения координатных и тепловых параметров структуры приведен в табл. 3.

Атом	Позиция	Заполнение	Х	Y	Z	
B(1)	16 <i>n</i>	1,00(1)	0,088(2)	0,162(2)	0,165(2)	
B(2)	16 <i>n</i>	1,00(1)	0,179(2)	0,509(1)	0,377(2)	
B(3)	8 <i>m</i>	1,00(1)	0,514(2)	0,486(2)	0,377(2)	
B(4)	8 <i>m</i>	1,00(1)	0,637(2)	0,363(2)	0,147(4)	
B(5)	2b	0,50(1)	0,75	0,25	0,25	
Al	2a	0,87(1)	0,25	0,75	0,25	
Пространственная группа			<i>P</i> 4 ₂ / <i>nnm</i> (No. 134)			
Периоды кристаллической решетки, нм		a = 0	a = 0,8883(7), c = 0,5082(5)			
Количество независимых отражений			93			
Температурная поправка, нм ²			$B = 4,87(2) \cdot 10^{-2}$			
Фактор недостоверности			$R_W = 0,068$			
Содержание бора по данным XRD, % (ат.)		~ 3,5				
Содержание бора по данным ЛА, % (ат.)			~ 3,8			
Формула			AlB ₂₅			

Таблица 3. Кристаллографические данные борида алюминия AIB₂₅, полученного при давлении 7,7 ГПа и температуре 2100 °C

Данные СЭМ показывают, что образец состава Al:B = 1:11, синтезированный при 7,7 ГПа и 2100 °С, состоит из крупных кристаллитов (~4% (ат.) Al, ~ 96% (ат.) B, расчетная формула AlB₂₅), в промежутках между которыми располагаются мелкие кристаллы фазы AlB₂ (рис. 2, *a*). Микроструктура образца, полученного из этой же шихты при 1500 °С, мелкодисперсная (рис. 2, δ) и помимо диборида AlB₂ состоит из близких по составу фаз, одна из которых по данным рентгеновского фазового анализа отвечает бориду AlB₂₅, а набор оставшихся отражений является характерным для известного борида α-AlB₁₂. Результат уточнения структуры этого борида высокого давления в

Рис. 2. Микроструктуры образцов состава Аl:В = 1:11, полученных при 7,7 ГПа, 2100 (*a*) и 1500 (*б*) °С.

www.ism.kiev.ua/stm

модели структуры типа α -AlB₁₂ приведен в табл. 4. Ее уточненный состав, согласно данным рентгеноструктурного и локального рентгеноспектрального анализов, отвечает формуле B₁₆Al и свидетельствует о большей степени дефектности правильных систем точек, занятых в структуре атомами алюминия, чем в структуре α -AlB₁₂. Учитывая, что кристаллическая структура борида α -AlB₁₂ соответствует кристаллической структуре тетрагональной модификации бора t-B₁₉₂, синтезированный при высоком давлении борид AlB₁₆ можно рассматривать как результат частичного замещения отдельных атомов бора в структуре t-B₁₉₂ на атомы алюминия.

Атом	Позиция	Заполне- ние	X	Y	Z
B(1)	8b	1,00(1)	0,895(9)	0,199(9)	0,125(5)
B(2)	8b	1,00(1)	0,995(6)	0,126(9)	0,210(7)
B(3)	8b	1,00(1)	0,965(4)	0,331(4)	0,187(7)
B(4)	8b	1,00(1)	0,965(4)	0,380(9)	0,093(5)
B(5)	8b	1,00(1)	0,982(5)	0,074(9)	0,070(8)
B(6)	8b	1,00(1)	0,965(4)	0,236(9)	0,034(5)
B(7)	8b	1,00(1)	0,119(4)	0,194(9)	0,250(4)
B(8)	8b	1,00(1)	0,119(4)	0,460(9)	0,180(5)
B(9)	8b	1,00(1)	0,169(5)	0,142(9)	0,156(4)
B(10)	8b	1,00(1)	0,119(4)	0,207(6)	0,052(5)
B(11)	8b	1,00(1)	0,119(4)	0,369(9)	0,052(5)
B(12)	8b	1,00(1)	0,229(9)	0,295(8)	0,156(4)
B(13)	8b	1,00(1)	0,350(9)	0,089(9)	0,347(6)
B(14)	8b	1,00(1)	0,393(7)	0,213(9)	0,347(6)
B(15)	8b	1,00(1)	0,214(7)	0,188(9)	0,339(7)
B(16)	8b	1,00(1)	0,462(3)	0,113(9)	0,452(3)
B(17)	8b	1,00(1)	0,462(3)	0,310(9)	0,419(5)
B(18)	8 <i>b</i>	1,00(1)	0,184(7)	0,127(8)	0,452(3)
B(19)	8 <i>b</i>	1,00(1)	0,294(9)	0,177(9)	0,549(4)
B(20)	8b	1,00(1)	0,337(8)	0,029(6)	0,452(3)
B(21)	8b	1,00(1)	0,466(8)	0,270(6)	0,549(4)
B(22)	4a	1,00(1)	0,319(9)	0,319(9)	0,5
B(23)	4 <i>a</i>	1,00(1)	0,054(9)	0,054(9)	0,5
Al(1)	8b	0,20(2)	0,140(9)	0,377(9)	0,255(7)
Al(2)	8 <i>b</i>	0,41(2)	0,066(8)	0,013(5)	0,355(3)
Al(3)	8b	0,18(3)	0,289(9)	0,389(9)	0,355(3)
Al(4)	8b	0,20(2)	0,254(6)	0,440(8)	0,140(9)
Al(5)	86	0,30(3)	0,289(9)	0,357(9)	0,259(6)
Пространственная группа		P4 ₃ 2 ₁ 2 (No. 96)			
Периоды кристалли	a = 1,0124(4), c = 1,4288(4)				
Количество незави		21	13		

Таблица 4. Кристаллографические данные борида алюминия AIB₁₆, полученного при давлении 7,7 ГПа и температуре 1500 °C

ISSN 0203-3119. Сверхтвердые материалы, 2012, № 5

29

Таблица 4. (Продолжение)

Температурная поправка, нм ²	$B = 1,05(4) \cdot 10^{-2}$
Параметр текстуры, ось текстуры	$\tau = 2,27(2), [001]$
Фактор недостоверности	$R_W = 0,069$
Содержание бора по данным XRD, % (ат.)	~ 5,5
Содержание бора по данным ЛА, % (ат.)	~ 6,1
Формула	$\sim AlB_{16}$

В результате проведенных исследований показано, что взаимодействие алюминия и бора в условиях высоких давлений и температур (7,7 ГПа, 1500– 2100 °C) помимо двух известных боридов AlB₂ и α -AlB₁₂ (состав фазы высокого давления AlB₁₆) ведет к образованию двух других боридов AlB₂₅ и Al_xB₁₂, кристаллические структуры которых являются аналогами кристаллических структур известных модификаций бора. Таким образом, при высоком давлении небольшие добавки алюминия стабилизируют высокотемпературные тетрагональные модификации бора t-B₁₉₂ и t-B₅₀ с образованием боридов AlB₁₆ и AlB₂₅ и низкотемпературную ромбоэдрическую модификацию B₁₂ с образованием борида Al_xB₁₂ (возможно, твердого раствора алюминия в α -B). Синтезированные в условиях высокого давления бориды охарактеризованы в табл. 5.

Нормально	Нормальное давление					
Бор	Борид алюминия	Борид алюминия				
Структурный	Структурный тип AlB ₂ (пространственная группа P6/mmm)					
	AlB ₂	AlB ₂ (1500 °C)				
_	<i>a</i> = 0,30090	a = 0,30085(4)				
	<i>c</i> = 0,32620	c = 0,32728(5)				
Структурный	Структурный тип α-AlB ₁₂ (пространственная группа P4 ₃ 2 ₁ 2)					
t-B ₁₉₂	α -AlB ₁₂	AlB ₁₆ (1500 °C)				
<i>a</i> = 1,014	<i>a</i> = 1,0158	a = 1,0124(4)				
<i>c</i> = 1,417	<i>c</i> = 1,4270	c = 1,4288(4)				
Структурный	Структурный тип t-B ₅₀ (пространственная группа P4 ₂ /nnm)					
t-B ₅₀		AlB ₂₅ (2100 °C)				
<i>a</i> = 0,873	-	a = 0,8883(7)				
<i>c</i> = 0,503		c = 0,5082(5)				
Структурный тип α -B ₁₂ (пространственная группа $R \overline{3}m$)						
α -B ₁₂		Al _x B ₁₂ (2100 °C)				
<i>a</i> = 0,490	-	a = 0,545(4)				
<i>c</i> = 1,256		c = 1,240(5)				

Таблица 5. Сравнительная характеристика бора и боридов алюминия, полученных при нормальном давлении [10, 11] и высоких *р*, *Т*-параметрах (данные авторов)

Примечание. В скобках приведена температура синтеза, при которой содержание борида в образце максимально.

По данным [7, 8] стабильными модификациями чистого бора при нормальном давлении являются только две ромбоэдрические фазы α -B₁₂ и β -B₁₀₆. Повышение давления ведет к появлению стабильной ромбической фазы γ -B₂₈, существующей в широком *p*, *T*-интервале (10–90 ГПа, до 3000 °C), и высокотемпературной тетрагональной фазы t-B_{190–192} (10–40 ГПа, 2000–3500 °C). Фаза t-B₁₉₀, по мнению авторов [9], формируется из существующей в широком температурном интервале фазы β -B₁₀₆ с образованием высокотемпературной промежуточной метастабильной фазы t-B₅₀.

Возможно, что реакция β -B₁₀₆ \rightarrow t-B₅₀ \rightarrow t-B₁₉₂ характерна и для стабилизированных алюминием фаз AlB₂₅ и AlB₁₆. Но если в чистом боре это превращение проходит в условиях высоких *p*, *T*-параметров (давление выше 8 ГПа, температура выше 2000 °C), то в присутствии алюминия эти параметры значительно снижаются. Так, стабильная при высоких температурах фаза AlB₂₅ (2100 °C) уже при 1500 °C переходит в борид AlB₁₆. Об образовании борида AlB₁₆ из промежуточной фазы может свидетельствовать и мелкий размер частиц (дисперсность) образца, синтезированного из шихты Al:B = 1:11 при 1500 °C (см. рис. 2, δ).

Таким образом, в данной работе в условиях высоких p, T-параметров (7,7 ГПа, 1500–2100 °C) синтезированы бориды алюминия AlB₂, AlB₁₆, AlB₂₅ и Al_xB₁₂. Показано, что кристаллические структуры богатых бором фаз являются аналогами кристаллических структур известных модификаций бора высокого давления t-B₅₀, t-B₁₉₂ и нормального давления α -B₁₂.

Вивчено фазоутворення в системі Al-B в умовах високих тисків та температур і кристалічну структуру утворених боридів алюмінію. Методами рентгенівської дифрактометрії та скануючої електронної мікроскопії встановлено існування боридів AlB_2 , AlB_{16} , AlB_{25} и Al_xB_{12} . Показано, що кристалічні структури синтезованих при високих тисках збагачених бором фаз AlB_{16} , AlB_{25} и Al_xB_{12} близькі до кристалічних структур відомих модифікацій бору.

Ключові слова: бориди алюмінію, високі тиски, рентгеноструктурний

аналіз.

The phase formation in the Al-B system under high pressures and temperatures as well as of crystal structures of aluminum borides forming in the system have been studied. The existence of AlB_2 , Al_{16} , AlB_{25} , Al_xB_{12} have been detected by X-ray diffraction and scanning electron microscopy. It has been shown that the crystal structures of boron-rich high-pressure synthesized Al_{16} , AlB_{25} , Al_xB_{12} phases are closely related to the crystal structures of known boron modifications.

Keywords: aluminum borides, high-pressure, X-ray diffraction analysis.

- Пат. 2365467 РФ, МПК⁷ С22С 33/00. Способ получения боросодержащего сплава для легирования стали / И. М. Шатохин, М. Х. Зиатдинов, В. А. Бигеев и др. – Заявл. 09.07.07; Опубл. 27.08.09, Бюл. № 24.
- 2. Сергеев О. В., Федорищева М. В., Сергеев В. П. и др. Изменение механических свойств мартенситно-стареющих сталей при ионно-пучковом наноструктурировании поверхностного слоя // Изв. Томского политехн. ун-та. 2011. **319**, № 2. С. 99–103.
- 3. Sulima I., Figiel P., Suśniak M., Świątek M. Sintering of TiB₂-Al composites HP-HT method // Archives Mater. Sci. Eng. 2008. **33**, N 2. P. 117-120.
- 4. *Fjellstedt J., Jarfors A., Svendsen L.* Experimental analysis of the intermediary phases AlB₂, AlB₁₂, and TiB₂ in the Al–B and Al–Ti–B systems // J. Alloys Comp. 1999. **283**. P. 192–197.
- 5. *Диаграммы* состояния двойных металлических систем: Справ. / Под общ. ред. Н. П. Лякишева. М.: Машиностроение, 1996. С. 117–118.

- 6. Марків В. Я., Белявіна Н. М. Апаратно-програмний комплекс для дослідження полікристалічних речовин за їх дифракційними спектрами // Тез. доп. ІІ Міжнар. конф. "КФМ 97", Львів, 14–16 жовт. 1997 р. – Львів, 1997. – С. 260–261. 7. Oganov A. R., Solozhenko V. L. Boron: a hunt for superhard polymorphs // Сверхтв.
- материалы. 2009. № 5 С. 3–11.
- 8. Oganov A. R., Solozhenko V. L., Gatti C. et al. The high-pressure phase of boron, γ-B₂₈: dispute and conclusion of 5 years after discovery // Там же. – 2011. – № 6 – С. 3–22.
- 9. Jiaqian Qin, Tetsuo Irifune, Haruhiko Dekura et al. Phase relations in boron at pressures up to 18 GPa and temperatures up to 2200 °C // Phys. Rev. B. - 2012. - 85, N 1, art. 014107 (6 p.).
- 10. Кравчук В. М., Мельников В. С., Прихна Т. А., Кислый П. С. Морфология двойных кристаллов α- и γ-AlB₁₂// Сверхт. материалы. – 2009. – № 1 – С. 21–24.
- 11. Кислый П. С., Неронов В. А., Прихна Т. А., Бевза Ю. В. Бориды алюминия. Киев: Наук. думка, 1990. – 191 с.

Ин-т сверхтвердых материалов им. В. Н. Бакуля НАН Украины Поступила 04.04.12