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DIFFERENTIAL-OPERATOR INCLUSIONS IN BANACH SPACES WITH
Wx-PSEUDOMONOTONE MAPS

Differential-operator inclusions are studied rather strongly. By analogy with differential-operator equations
are known, at the least, four methods of attack: Galerkin method, elliptic normalization, theory of semigroups,
difference approximations. In present work we introduce some constructions to prove the resolvability for
class of differential-operator inclusions with set-valued maps of wy—pseudomonotone type by Faedo—Galerkin
(FG) method.
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1. Introduction.

At study of nonlinear evolutionary equations in infinite-dimensional (functional) spaces
there is a series of methods, one of which is FG method [1-3|. In paper [4] the given method is
disseminated to a wide class of the nonlinear differential-operational equations that contains,
in particular, a multidimensional system of Navier-Stokes equations.

In present paper the substantiation of Galerkin method for differential-operator is given.
Remark that evolutionary inclusions in Banach spaces, generated by the strong solutions
of variational inequalities are investigated by FG method in [5-7]. The given results are
generalization of [5-7].

2. Problem definition.

Let (Vi,|| - |lv;) and (Va,|| - ||v,) be a reflexive separable Banach spaces, continuously
embedded in a Hilbert space (H, (-, -)) such that
Vi N V5 is dense in spaces Vi, V5 and H. (1)
After identification H = H* we get
VicHCV, Vo CHCVY, (2)

*| - |lv,) is topologically conjugate
to V; space with respect to the canonical bilinear form (-,-);, : V* x V; = R (i = 1,2)
which coincides on H with inner product (-,-) on H. Let us consider the functional spaces
X, =L, (S;H)NL, (S;V;), where S =[0,T],0 < T < +o00; 1 < p; <14, p; <400 (i =1,2).
Spaces X; are Banach spaces with norms |[|y||x, = |[yl|z, (s:vi) + |1Yllz,,(s;mm). Moreover if
r; < 400, then X; is reflexive space (i = 1,2). Let us also consider the Banach space
X = X1NX, withnorm ||y||x = [|y[|x, +|[y||x,. In virtue of spaces Ly, (S; V;*)+ L. (S; H) and
X} (i =1,2) are isometrically isomorphic, we identify them. Analogously, X* = X} + X =
Lgy (S; Vi) 4Ly (S; V5 )+ Ly (S; H)+ Ly (S; H), where ri T =g g =1 (=1, 2).
Let us define duality form on X* x X

(o) = / (7). y(r))m dr + / (ra(r). y(r))ar dr + / o (7),9(r) )y drt

S S S

with continuous and dense embedding [2|, where (V]
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" / (o). y(7))y, dr = / (7). y(r)) dr.

S
where f = fi1 + fia + for + faz2, f1i € Ly (S5 H), fos € Lg,(S; V) (i = 1,2).

Let A: X;Z X and B : X5 X are multi-valued maps. We consider the next problem:

{y'+A<y) +B(y) > f, (3)
y(0) = vo (4)

where f € X*, yo € H arbitrary elements, 3’ is derivative of y € X in sense of scalar
distribution space D*(S; V*) = L(D(S); V.}), with V' = ViNV;, V¥ equals to V* with topology
a(V*, V) 18]

Let us enter Banach space W = {y € X| ¢ € X*} with norm ||y||w = ||y||x + [|¥'||x+,

/1
= inf max{”fu

f=Ffu+ fis+ for + for:
fai € Ly, (S; V") (i = 1,2)

X* =

LTII(S;H)Q ||f12 LTIQ(S;H)Q ||f21||qu(S;V1*)§ ||f22||Lq2(S;V2*)}-

Remark that
X = Lmax{ﬁ,m}(s; H) N LmaX{Pth}(S; V)

and
X" = Luingr 25} (S5 H) + Linin{g1,4:) (5; V7).

So the space W is continuously and densely enclosed in C(S; H) (hence condition (4) have
a sense, since the solutions of the problem (3)-(4) we will search in class W). Moreover,

(W, v) + (o' ) = (u(T),v(T)) . (u((]),v((])) Vu,v € W, (5)

Under v — v we have:
Ly = & )13 — |lu(0)]13 VueWw 6

3. Classes of maps.

Let C,(X™) be a family of all nonempty closed convex bounded subsets in X*. Let us
consider classes of multi-valued maps A : X — C,(X*). For this map let us define upper

ar(y,w) = [A(y),w]s = sup (d,w) and lower a_(y,w) = [A(y),w] = inf (d,w) forms,
deA(y) T deA(y)

where y,w € X, and also, upper ||A(y)||; = sup ||d||x- and lower ||A(y)|| = inf ||d||x~
deA(y) T deA(y)
norms.

The next properties immediately follows from mentioned above constructions and Hahn-
Banach theorem.

PROPOSITION 1. Let A, B: X — C,(X*). Then Yy, v,vy,vy € X the next proportions take
place:
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1) functional X 5 v — [A(y), v]4 is convex opositively homogeneous and lower semiconti-

2) [A(y), v1 +vo]y <[A(y), vily + [A(y), vy, [A(y), v1 +va]- > [A(y), v1] - + [A(y), va] -,

[A(y), v1 +valy > [A(y), vi]y + [A(y), va] - ,[ (), v1 +wva]— < [A(y), vi]4 + [A(y), va] -,
3) [A(y) + B(y),v]+ = [A(y), v]4 + [B(y), v]+, [A(y) + B(y),v]- = [A(y),v]- + [B(y),v];
4) TAW), vl < [JAW+1vllx, [AY), vl- < AW -lv]|x;

5) functional || - ||+ : Co(X*) — Ry defines norm on Cy(X™);

6) functional ||-||- : C,(X*) — Ry satisfies such conditions:
o) 0€Aly) & [lAWIl-=0,
b) [laA()ll- = lal[|A(y)[|- VaeRy e X,
c) ||A(y) + By)ll- < [[AW)II- + [[By)I]-;
7) 11AGw) + Bl = [lAW)I1+ = [[BW)II-|, [[A(y) = Bw)ll- = [[AW)I- = [1B(y)ll+

8)deAly) & YweX [A(y),w]y > (d,w).

REMARK 1. Together with forms a,, a_ we consider affirmative forms

a(y,w) = [[Ay),wlly = Sup [{d, w)]

and
a_(y,w) = [[A(y),w]] = inf |<d w)| Vy,w € X,

- deA(y

Thus it is obvious

[A(y), wly < [[A(y), wli| < [[Ay), wilt < [[AW)]]+lw]lx,
[Ay), wl- < [[A(y), w]-| < [[Ay), W]l < [[AW)]-[lwl]x-

Remark that y, — v in Y means y, is weakly converges to y in space Y. If Y is not
reflexive, then 3, — y in Y* means y, is *-weakly converges to ¥ in space Y*.

DEFINITION 1. Multi-valued map A : X — C,(X*) refers to:

a) A-pseudomonotone on W (wy-pseudomonotone), if for every such sequence {y, }n>0 C
W that y, — yo in W (i.e. y, — yo in X and y), — y; in X*) from inequality

lim <dn: Yn — y0> S O: (7)

n—oo

where d,, € A(y,) Vn > 1 the existence such {y,, }x>1 from {y,},>1 and {d,, }x>1 from
{dn}nzl that

lim (dy,, Yn, —w) > [A(y), 90 —w] VYweX (8)

k—oo

is follows;
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b) Ao-pseudomonotone on W (wy,-pseudomonotone), if for every such sequence {y, }n>o
from W that y, — yo in W and d, — dy in X*, where d,, € A(y,) ¥n > 1 from
inequality (7) the existence of such subsequences {yn, }x>1 C {yn}n>1 and {dn, }x>1 C
{dn}n>1 that (8) is true is follows;

¢) +-coercive, if ||y||)_(1 [A(y),y]+ = +oo at ||y||x — +oc;
d) quasi-bounded, if Yyo € X Yk, ko > 0 3IN = N(ky, ko, yo) > O:

Vy € X |lyllx <k Vd € A(y) (d.y —yo) < ko = |d]

x+ < N < 4o0;

e) bounded, if A converts every bounded set in X to bounded in X*;
satisfies:

f) property (k), if for every bounded set D in X there exists such ¢ € R that

[A(v),v]+ > ¢||v|]|lx Vv e D.

REMARK 2. Bounded multi-valued map A : X — C,(X*) is quasi-bounded and satisfies
property (k); A-pseudomonotone on W map is Ag-pseudomonotone on W. The converse
statement is correct for bounded multi-valued maps.

Let us define W; = {y € X; | v/ € X*} (i = 1,2).

PROPOSITION 2. Let A : X7 — Cy(X7) and B: X9 — C,(X5) be A\-pseudomonotone on Wy
and correspondingly on Wy multi-valued maps. Then multi-valued map C:= A+ B: X —
Cy(X™) is A\-pseudomonotone on W.

DEFINITION 2. Multi-valued maps A : X1 — Cy(X]) and B : X9 — C,(X3) is called s-
mutually bounded, if for every M > 0 there exists such K (M) > 0 that from ||y||x < M and
(di(y) +da(y),y) < M we have or [|di(y)||x; < K(M) or||da(y)||x; < K(M). Here d, € A
and dy € B are some selectors.

REMARK 3. If the pair (A; B) is s-mutually bounded, then proposition 2 takes place for
Ao-pseudomonotone (correspondingly on Wy and on Wy ) maps.

REMARK 4. Obviously, if one of operators from the pair (A; B) is bounded, then the pair
(A; B) is s-mutually bounded. Moreover, if the pair (A; B) is s-mutually bounded, then
operator C= A+ B: X — X* has property (m) [3].

Proof. Let us prove this statement 2 for Ag-pseudomonotone maps. It is obvious that
Cly) € C,(X*) Vy € X.

Let it be y,, — yo in X, y), = vy in X7+ X5 = X* and C(y,) > d, — dp in X*, moreover
the inequality (7) takes place. Hence, d, = d], + d!, where d|, € A(y,), d. € B(y,). Because
of the pair (4; B) is s-mutually bounded from estimation {d,,(vy),y) = {(d,(y)+d!(y),y) < M
we have or ||d},(y)||x: < K(M) or ||d,(y)||x; < K(M). Then passing, if it is necessary to a
subsequence, we claim

d, —dyin X; i dl —djin X;.
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From inequality (7) we have

lim (dy,, yn — yo) + Jirgo<d;, Yn = Y0) < 1im (dn, yn — y0) <0,

n—o0

or symmetrically

Tim (d,,, yn — yo) + Hm (dy}, yn — yo) < Tim {d, yn — y0) < 0.

n—oo

Further let us consider the last inequality. It is obvious there exists such subsequence {y,,} C
{yn}nZI that

_hm <dZ: Yn — y0> + nh_>120<d;w Yn — y0> Z nll_r)%o<d;;w Ym — y0> + mh_{20<d:n: Ym — y0> (9)

n—oo

Hence, it follows:

lim (d,, Ym — yo) <0, or lim {d , ym — yo) < O. (10)

m— o0 m—o0
Without loss of generality we consider that ngl_r)r;o@l;n, Ym — Yo) < 0. Then, in virtue of -
pseudomonotony A on Wi, there exists such subsequence 3{y,, }r>1 from {y,,}m that

lim (d, , Ym, — V) > [A(y), 90 —v] Vve Xi. (11)

k—o0 -

Let us take in last inequality v = yo. We find (d,,, ,Ym, — 1) — 0. Then, due to (9),
lim (d!,, Ym — yo) < 0. In virtue of \g-pseudomonotony B on Wy, passing to a subsequence

{ym’k} C {ymk}kzl we find

—hm <d:;1;: ym;c - w> > [B(y): Y- ’U)]_ Vw € X?- (12)

m} — 00
Then from proportions (11), (12) finally obtain

lim (dpy,, Yy — ) > lim (d;n;c,ym/k —z)+ lim (d;fn;c,ym/k —z) >

/ / /
mk~>oo mkﬁoo mkﬁoo

> [A(y),y — 2] +[By),y—2] =[Cly),y—z] VreX=XNX.

The proposition is proved.

PROPOSITION 3. Let A : X1 X and B: X2Z, X} be multi-valued coercive maps, that satisfies
condition (k). Then multi-valued operator C:= A+ B: X7 X* is coercive.

Proof. We obtain this statement arguing by contradiction. Let 3{z, },>1 C X @ ||zy||x =
||Znl|x: + [|7a]lx, — 400 as n — oo, but
[Czn), 2]+

sup ————— < +o00. (13)
w21 |lznllx

Case 1. ||z,||x, = 400 as n — 00, ||zn]||x, < ¢Vn> 1.

Ya(r) = inf @), ]y () = [B(w), w],

r > 0.
llellx,=r  |[v]]x, wllx,=r  [|w]|x,
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Note that y4(r) — +oo, vp(r) = +00 as r — +oo. Then Vn > 1 ||z, ||5! [A(zn), 20] 4 >

[|zn||
Yalllznl[x)||zallx, and Blkale > g (|[z, [y, ) e
[N

Due to condition (k) for every n > 1

[B(@n), Tn+
||l [x

— +oo as ||z,|lx, — +oo and

|| |, || |,
> ’
_’YB(H:'EHHXZ) ||xn||X - ||xn||X

—0 asn — oo,

where ¢; € R is a constant in condition (k) with D = {y € X, | ||y||x, < c¢}. It is obvious

that
() zals _ [Ala). s [Ba), ol
[|znllx [|znllx [|znllx
This is a contradiction with (13).
Case 2. Case when ||z,||x, < ¢ Vn > 1 and ||z,||x, — 00 as n — oo examines

analogously.
Case 3. Let us consider situation, when ||z,||x, — oo and ||z,||x, — oc as n — oc.

— 400 as mn — oQ.

then (Clan), ] 72
Tn)y Tn)+ Tp X1
oo > sup Db Tkt 5 )
el el + lznllnn
TnllX-
T . 11— (14)

[|znllxy + [J2al|x,

It is obvious, that Vn > 1 ||||m"|‘|‘xl > 0 and ‘|‘$"”|X2 > 0 and moreover, if even one of the

boundaries, for example, ol 0, then lznllxy _ g Jlonllx,
(14) ll#n||x |$nHX ll#n||x
n .

The proposition is proved.

— 1. We have a contradiction

DEFINITION 3. Operator L : D(L) C X — X* refers to:
1) monotone, if for every y1,y2 € X (L(y1) — L(y2),y1 — y2) > 0;

2) mazimal monotone, if it is monotone and from (w — L(u),v —u) > 0 for all u € D(L)
follows that v € D(L) and L(v) =

4. Auxiliary statements.

In virtue of (1) and (2) V = V; NV, C H with continuous and dense embedding.
As V is separable Banach space, then there exists complete in V' and consequently in H
countable vector system {h;};>1 C V. Let for every n > 1 H, be a linear capsule stretched
on {h;}",. On H, we consider the inner product induced from H that we also denote as
(+,-). Let P, : H — H, C H be an operator of orthogonal projection from H to H,, i.e.
Vh € H P,h=argming, cp, ||h — hy||g-

DEFINITION 4. We say that the triple ({hi}izl; V; H) satisfies condition () if

sup || Pl pv,v) < oo,
n>1

ol



P.O. Kasyanov, V.S. Mel’nik

i.e. there exists such C' > 1 that for every v € Vi NV, and n > 1

1Bollve <C - lollvi [[Pavllve < C - lv]]vs. (15)

REMARK 5. In case when vector system {h;};>1 C V is orthogonal in H condition () means
that the given system is a Schauder base in space V' (in particular in V; and in V3) [9].

Due to equivalence of H* and H it follows that H = H,. Further for every n > 1 let
us consider the Banach space X,, = L,,(S; H,) C X (where py := max{ry,r,}) with norm
Il || x, induced from space X. This norm is equivalent to the natural norm in L, (S; Hy,) [2].

The space Ly, (5: H,) (3" +7;" = 1) with norm [|f[lx; = sup Wl = sy V1]
z€X,\{0} zeX,\{0} "

isometrically isomorphic to conjugate to X, space X (further the given spaces are identified).

is

R9<f,z>=/

S

()l dr = [ (F7).a() i =
= (f,o)x, —{firp e X x Xy
be duality form on X} x X,,. This statement is correct due to X} = L, (S; H,) C Ly (S; H) C
Ly (S; H) + Ly (S; H) + Lg, (S; Vi') 4 Ly (S5 V5') = X (see [2]).
For every n > 1 as I,, we denote the canonical embedding X, in X,i.e.Vx € X,, [, x = .
It is necessary to notice that I,, € L((Xn, Il 1x.); (X, || - ||X)) and, moreover,

I, =1

! ”L((Xn,n-nxn) L (X Hx))

From [10] follows, that conjugate operator I € L((X*, I M) 5 (X3 || - |X:;)) and
(Lyy. ) = (y,7)x Vo € Xy Yy € X"\ Ll lngxcs, lx-)s (2 IHlxs)) = L (16)

LEMMA 1. Let the condition (v) is satisfied. Then for the constant C' > 1 from (15) and
norm || - ||, induced from space X* to X}, it is fulfilled:
xp Slnlly < C -l fnl

a)  |[fal

b) Vi, € X I;fn = fn;
moreover, the following takes place:

X Vn >1, Vf, € X

c) if for arbitrary u € X to put u,(:) := Pyu(-) € X,,, then

Vie Xy (fiun) = (fu), lunllx < C|lullx. (17)

Proof. b) This statement is correct. It is remained to prove that for every f, € X and
Tn € Xy (fn — I fn, xn) = 0. From definitions I} and I,, follows

Vi, € X, <fn o I;:fn,l'n> = <fnaxn> - <I;fn,1'n> =
= <fnaxn> - <fnalnxn> = <fn,l"n> - <fn,l“n> = 0.

52



Differential-operator inclusions in Banach spaces with Wy -pseudomonotone maps

c¢) For every u € X let u,(-) := Pyu(:) € Xy, i.e. u,(t) = P,u(t) almost everywhere (a.e.)
in S. Because of P, is linear and continuous on V;, V5, and H we have that u,, € X,, C X. In
virtue of (15) and definitions of || - ||, (s;vi)s || - ||z, (s:m) (2 = 1,2) it follows: [lu, ||z, (s37) <
C - Null iy siviys Il s < Ml goiny (G = 1,2): Thus Jlugllx < C-[Jullx.

Now prove that for all f € X (f,u,) = (f,u). As f € L, (S; H,) then

@w=memmm=éwmﬁmmm=/mm%mw:q%m

S

because of for alln >1h € Hv € H, (h— P,h,v)g = (h — P,h,v) = 0. So, (17) is proved.
a) For every f € X} C X*

(o)l o MRl 1)

[flln = [Ifllx- = sup_ > . = . = fllxz- (18
zeX\{0} ]| x 2€X,\{0} ]| x z€X,\{0} 2]|x.,
In virtue of (17)
) |(f,2)|
£ = [Ifllx- = sup <
zeX\{0} [Ed1BS
C-|{f,zn(z C-|(f, x,
< wup ZMEm@l g G oy
zeX\{0} |20 () || x 2, €X,\{0} |Znl X,
that with (18) finishes the proof of a).
The lemma is proved.
COROLLARY 1. For every f € X* and n > 1
o fllx < O fl]xe (19)

The proof immediately follows from (16) and lemma 1 a).
For all n € N let us define the Banach space W, = {y € X, v € X;:} with norm

lyllw, = llyllx. +1|¥[I%, . where the derivative ¢/ is considered in sense of scalar distributions
space D*(S;H,). As far as D*(S;H,) = L(D(S);H,) C L(D(S);V}) = D*(S;V*) the
derivative of an element y € X, it is possible to consider in sense of D*(S; V*). From lemma
1 it follows that W,, C W.

5. Faedo-Galerkin method.

For every n > 1 let us enter A,, := I*Al, : X, X}, B, :=I!BI, : X,2 X}, [, =1:f €
X. We consider such sequence {yon }n>0 C H that

Vn>1 H, >y, — 4y in H at n — +o0. (20)
With problem (3)—(4) we consider the following class of problems:
Yo+ An(Yn) + Ba(yn)  fu, (21,)

yn(o) = Yon- (22n)
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DEFINITION 5. We say that the solution of (3)—(4) y € W turns out by Faedo-Halerkin
method, if y is a weak limit of some subsequence {y,, }x>1 form {y,},>1 in W and

a) for every n > 1 W, 3>y, is a solution of the problem (21),, — (22),;

b) Yon — Yo in H as n — oo;

¢) Yn, > yin L, (S;H) as k — o0, i = 1,2.

6. Choice of basic.

We say that the vector system {h;};>; from separable Hilbert space (V; (-, -)v), continuously
and densely embedded in a Hilbert space (H;(-,-)y), is called special basis for the pair of
spaces (V; H), if it satisfies the following conditions:

i) {h;}i>1 is orthonormal in (H, (-, -)x);
ii) {hi}i>1 is orthogonal in (V, (-, -)v);

iii) Vi > 1 (hj,v)y = Xi(hs,v)g Yo € V, where 0 < A < Ay, ..., \j — 00 at j — oc.

LEMMA 2. IfV s a Hilbert space, compactly and densely embedded in a Hilbert space H,
then there exists a special basis {h;}i>1 for (V; H). Moreover, for an arbitrary such system,

the triple ({hi}izl; V; H) satisfies condition () with constant C' = 1.

Proof. From [11, page 54-58| under these assumptions it is well-known, that there exists
a special basis {h;};>1 for the pair (V; H). So, in order to complete the proof it is enough

to show that the triple ({hi}izl; V: H) satisfies condition () with constant C' = 1 for an

arbitrary special basis {h; }i>1 for (V; H). Therefore, let us take as H,, a linear span, stretched
on {h;}_,. We point out H, is a finite-dimensional space. Thus, the norms || ||z and || - ||,
are equivalent on H, (see [8]). From here it follows Vn > 1 3¢, > 0, 3C > 0 : Vh €
H, ||P.hllv < cnl|Poblla < enllblla < e,C||h]|y. It also means that P, € L(V,V).

Further let us prove that Vn > 1

1Babllv < Ikl Vhe | Hp (23)

m>1

Let n > 1 be fixed , then Vh € |J H, = Imeg > n+1: h € Hp,. From here, taking

m>1
into account i) and ii), we have h = Z(h hi)ghi, Poh = Z(h hi)gh;. In order to obtain
(23) it is necessary to show that P,h is orthogonal to (h — P h) in V. Because of (P,h,h —

Pah)y = (2 (hh)hs, S (hhy)uhy)y =2 S (hho)u(hyhy)a(he hy)y = 0, {hi}isy s
i=1 j=n+1 i=1j=n+1

orthogonal in V. So, in virtue of continuity of || - ||y and P, on V' Vn > 1 we have that for

alln > 1and v € V [|Pyollv < ||v]|v.

The lemma is proved.

For interpolating pair Ay, A; (i.e. for Banach spaces Ay and Aj, that are linearly and
continuously embedded in some linear topological space) on a set Ag + A; let us consider
the functional

K(t 2) = inf ( ) > Ap + Ay
ta)=__ b Ul + el ), 120, 26 Ao+ A
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For fixed x € Ay + Ay, this map is monotone increasing, continuous and convex upwards
function of the variable ¢ > 0 (see [9, lemma 1.3.1]).
For # € (0,1) and 1 < p < 400 let us consider the following space:

“+o00

/ [tGK(t,x)r% < +oo}. (24)

0

(A(],Al)g’p = {.ZU € A() + Al

“+oc

(Ao, A1)pp with ||z]]g, = ( of [t K¢, z)]p%)% is a Banach space (for more details see [9,1.3])

and it results in (see [9, theorem 1.3.3]):
Ag N Ay C (Ao, Ar)ap C Ao+ Ay Vo € (0,1), V1 < p < 400 (25)

with dense and continuous embedding.

DEFINITION 6. Let it be 1 < r < 2. We say that the filter of Banach spaces {Z,},>, and
Hilbert space H satisfy main conditions, if
a) Vps > py >r Z,, C Z, C H with continuous and dense embedding;
b) Vpe >p >p1 > 1 (Zpys Zpy)op = Zp, where 8 = 0(p) € (0,1)
¢) Z, is a Hilbert space.

_ 16, 0.

.1
‘p P1 p2’

LEMMA 3. Let us assume: 1 < r < 2, filter of Banach spaces {Z,},>, and Hilbert space
H satisfy main conditions, vector system {h;}i>1 C Zy such that the triple ({hi}izl; Zs; H)
satisfies condition () with constant C > 1 and {h;};>1 C Z, for all p > r. Then, for all
p > r the triple ({hi}izl; Zy; H) satisfies condition (vy) with constant C.

REMARK 6. In the case Z; C H with compact embedding, thanks to lemma, as a vector
system {h;},>1 we can choose a special basis for the pair (Z,; H). In particular, the above
result means that the special basis for (Zy; H) is a Schauder basis for an arbitrary space Z,
atr < p <2

Proof. For 1 < r < 2 let {h;}i>1 C Z, be a vector system such that the triple
({hi}izl;Zz;H) satisfies condition () with constant C' > 1. Let us prove that Vp > r

the triple ({hi}izl; Zy; H) satisfies condition () with constant C.

At first we consider the case p > 2. Let N > 2 be an arbitrary fixed number. We check,
that Vp € [2, N) the triple ({hi}izl; Zy; H) satisfies condition () with constant C. For the
proof of this fact we benefit from transfinitary induction method. The set W = [2, N) is well
ordered by order " <7 :=7 <7,

For an arbitrary p € W the statement G(p) consists of the triple ({hi}izl;Zp;H)
satisfies condition () with constant C. So,

1) as p = 2 (for the first element of W) the statement G(p) holds, thanks to conditions
of this theorem:;

2) let p be an arbitrary element in W. Assuming G(q) is true for all ¢ € I(p) = [2,p),
we prove that from here the statement G(p) follows. Let x be a fixed element in the space
Z,, dense in Z, (a € (r,2) is arbitrary). Then Vg € [2,p], in virtue of (24) and the main
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condition b) for {Z,},>, and H with p = ¢, p1 = a, p» = N, it results in:

+o00 1
_ adt)\ ¢
lellz, = lellizzp, = ( [ [r(e0]"F)" (26)
0

Q=

where 0 = 6(q) =

S

N

—+ €[0(2),0(p)] = [5?, %

In the following we prove

|zllz, = llzllz, as ¢—p(q€(2,p)) (27)

Denoted by
al
fltq) = [ OK )] 5 V(ta) € 10, +00) x [27]
from (24) and (26) it obviously follows that for every Vq € [2,p] f(-,q) € L1[0, +00); moreover
for almost every ¢ € [0,+00) f(t,-) € C[2, p]. Furthermore, pointing out that for every ¢ > 0
and ¢ € [2,p|
a1 D

[t’e(‘”K(t,x)} - < max { [tg(Q)K(t,x)r; [t*"@)K(t, x)] ;

3

(R R g ER

having in mind (25) and =z € Z, = Z, N Zy, we have:

i e +oo +oo
/|g(t)|dt: /g(t)dtgmax{/ [”@)K(t’fﬂ)r%;/ [tg(Q)K(t,x)r%;
0 5 , /

i —6(p) 2dt o —0(p) pdt

/[t K(t,z)] 7;/ [t K(t,x)} 7}:

0 0

2 . . 2 .
= max{ 11212, 2u)ucm 2 171072 Zrnensi 171 e 12 2 | < OO

Thus, the theorem of continuous dependence of Lebesgue integral on parameter all conditions
of the theorem on continuous association of an integral of Lebesgue on parameter [12, theorem
8.1.1| assures the convergence (27).

By using the induction assumption

Vg€ 2,p) Ve eZ, Yn>1 | Pox||z, < Cl|7|| 2,
and passing to the limit as ¢ ' p in the last inequality, we obtain
| Pazl|z, < Cllzl|z, Ve e Z, Vn>1.

Then from density Z, in Z, and continuity P, on Z, ¥n > 1 the statement G(p) follows. So,
for all p € [2, N) the statement G(p) is true. Because of N is arbitrary greater than 2, the

triple ({hz’}izl; Zy; H) satisfies condition () with C for every p > 2.
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In order to conclude the proof of the theorem it is necessary to remark that the case
p € (r,2] can be proved similarly to the case p > 2, by replacing ” <" with ” >" and setting
W = (N, 2], where N € (r,2) is arbitrary.

The lemma is proved.

COROLLARY 2. Let Vi, V5 be Banach spaces, continuously embedded in the Hilbert space H.
Let us assume that for some filters of Banach spaces {Z;;}pzri (ri € [1;2), i = 1,2), that
together with H satisfy main conditions, there exist p; > r; such that V; = Zzin (i=1,2),
within to equivalence of norms. Moreover, there exist Hilbert space Z C Vi N'Vy, compactly
embedded in H, such that for special basis {h;}i>1 for pair (Z;H), for some 0 < p; <
Py oyt —> 00 at j —> 00 and s; >0 (1=1,2)

{UEH‘ Zusluh <+oo}

be a Hilbert space with inner product
Z,uzsl u, h;)(v, hy). (28)

Then triple ({hi}izl; Vis H) satisfies condition () with constant C =1 (i =1,2).

Proof. Having in mind lemma 2 and lemma 3, it is enough to show that {h;};>; is a
special basis for (Z4; H) (i = 1,2). Condition i) of definition 1 is obviously satisfied. Using
(7) and condition i) we have

.. s s ]-7 = .’
Vi, 7> 1 hz;h zi ZM hz:hk h]ah’k) ?5ij:u? { 0 z#;

so the condition ii) holds. Finally condition iii) follows from the last equality.
The lemma is proved.

REMARK 7. Further we shall consider, that the triple of spaces Vj, V5 and H satisfies
conditions of corollary 2! To obtain convergence ¢) in definition 5 we need to assume V; C H
or Vo C H with compact embedding.

7. The main result.
THEOREM. Let A: Xy — Cy(X]) and B : Xy — C,(X3) be such multi-valued maps that
1) A is Ag-pseudomonotone on Wy, bounded and +-coercive on X;;
2) B is M\p-pseudomonotone on Wy, quasi-bounded, satisfies condition (k) and +-coercivity

condition on X, contraction of B on arbitrary finite-dimensional subspace F C W 1is
locally bounded.
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Moreover let {h;}j>1 C Vi NV, is complete vector system, that exists by corollary 2,
and Vi = 1,2 the triple <{hj}j21§ Vi; H) satisfies condition (v). Then for every f € X* and
Yo € H the set

Ky(f) = {y €W |y the solution of (3)-(4), obtained by Faedo-Halerkin method }

15 non-empty and presentation

Ku(f) = U N U Kol (29)

{Yon}n>1CH, that satisfies (20) n=1 ~mz2n X

with Yn > 1 K, (fn)(Yon) = {yn € W, | yn solution of (21), — (22n)}, where | - |x, 1
closure operator in space X with weak topology, is true.

Proof. Let us consider the map:
X>y—Cy):=A(y)+ B(y) C X"
Due to proposition 2 and proposition 3 the multi-valued map

C: X — Cy(X*) is Ag-pseudomonotone on W,

+-coercitive and satisfies condition(k). (30)

Let {yon}n>1 C H be an arbitrary sequence that satisfies (20). Then there exists such
0 > 0 that

sup ||yon||m < 0. (31)
n>1

For every n > 1 we search such z,, € W,, C C(S; H) that z,(0) = yo, and ||z,|lw <
1. Now use the +-coercivity condition. Let us define v : R, — R in such way: vy(r) =

inf ||y||% ([C’(y),y]+>. It is obvious that y(r) — +o00 as 7 — +o0o. Remark that for

lyllx=r

alln>1landye X [C(y) — f+x,,y]+ >

> (+(1lol1) = 1711 = el Yol > (v(llwll) = 171l = 1) ol

So, there exists such ry > 0 that
ro>1>0, [Cly)— f+2,yly >0Vn>1Vy e X : ||yl|x > ro. (32)

Let us put R = 3ry. Then for every z € B(0) C B,,(0)

B,,(0) C Boy(2) = {y e X ‘ lly — 2||x < 21"0} c Br(0). (33)

7.1. Resolvability of approximating problems.
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LEMMA 4. For all n > 1 there ezists a solution of the problem (21),, — (22)n yn € W, such
that ||ya|lx < R.

Proof. Let us for every n > 1 define D, () := Cy( - +x,) : X, X,;. Now prove that the
given map satisfies the next properties:

i1) Cn, Dy 0 Xy = Cy(X}));

iz) Cy, Dy, is Ap-pseudomonotone on W, locally finite-dimensional bounded;

i3) [Dn(y) = fo + 2,9l 20 Yy e X [lyllx, = 2ro.
Let us prove 7). The convexity and completeness of C,,(y) and D, (y) are evident. Now
prove that for every w,y € X,, and n > 1

[Cn(w) = fo + 20, yl4 = [Clw) = [ + 27,4

In virtue of definitions of [-, -], and I we have

[Cn(w) - fn + aj’my]+ = [[;:(C(w) - f + xln)ay]Jr = d:gF)<I;(d - f + x'ln)ay> =

= d:g?)(d — f + x’n,y> = [C(W) - f + xlnvIny]-I- = [C(w) - f + m;’y]—l--

Let us put in last w = y + . Due to (33) and (32) we receive i3).

Let us consider iy). Because of boundedness of I,, € L(X,; X), A: X; — C,(X7), I} €
L(X*; X) and locally finite-dimensional boundedness of B : Xy — C,(X3) follows the locally
finite-dimensional boundedness of C,,.

Now prove the Ap-pseudomonotony of C,, on W,. Let {y}m>0 C W, be an arbitrary
such sequence that v, — yo in Wy, I*C(ym) = Cn(ym) > dyy, — d € X as m — +oo and
inequality (7) is holds. As W,, C W with continuous embedding then

Ym — Yo in W as m — +o0. (35)

From (34) follows that for every m > 1 there exists such ¢, € C(yn) that I*g, = d,. So,
forallm>1
gm € C(ym) and I g, = dpy,. (36)

Inasmuch as Vm > 1
<dma Ym — y0> = <I;:gm7 Ym — y0> = <gma Ym — y0>7

then
Lim (dp, Ym — yYo) = Hm (g, ym — yo) < 0. (37)
m—oQ m— 00

In virtue of boundedness of A and quasi-boundedness of B we have that the sequence {gm, }m
is bounded in X*. Consequently from (35)—(37) and (30) the existence of such subsequences

{mi b1 CH{Ymbm>1 and {gm, i>1 C {gm}m>1 and g € X* that Vw € X

Bm (g, Ym,, —w) > [C(yo). yo — w]- and g,,, — g in X* as k — oo (38)

k—o00

is follows. Remark that for every £ > 1 and w € X,
<gmka ymk - w> = <I;,gmka ymk - w> = <dmka ymk - w>; (39)
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C LYo — w|_ = inf Yo —w) = inf (Irg,y0—w) =
[C(y0). yo — w] gec(yo)@ Yo — w) gec(y0)< g, Yo — W)
= inf  (I;g.y0 — w) = [Cn(yo), yo — w]-. (40)
I;IQGCn(yo)

From (38)—(40) follows that Yw € X,

lim (dp, , Ym, — w) > [Crn(v0),y0 — w]- and dp,, — ;g in X* as k — oc.

k—oo

So, C,, is Ag-pseudomonotone on W,,. Due to properties of C, and from z, € W, it
follows that D, is finite-dimensional locally bounded and \g-pseudomonotone on W,.
Simultaneously with the problem (21),—(22),, let us consider the next

problem on searching solution z, in W),.

Let L, : D(L,) C X,, — X} with D(L,)) = {y € W,, | y(0) = 0} = W? be such operator
that for every y € W9 L,y = y'. The derivative 3’ of an element y we understand in sense of
scalar distributions space D*(S; H,,).

LEMMA 5. For every n > 1 the operator L, satisfies next properties:
i4) Ly is linear;

is) for cvery y € W2 (Luy,y) > 0;

ig) Ln is mazimal monotone.

Proof. Property i4) is obvious. Now prove i5). Due to (6) for all y, € W? we have

(Lt o) = {0t = 3 (DI~ O3 = LD > 0. (43)

In virtue of the linearity of L, on W? and (43) the monotony of L, on W0 is follows.

Let us prove the maximal monotony of L, on W?. For such v € X,,, w € X} that for
every u € WP (w — Lyu,v — u) > 0 is true let us prove that v € W,, and v' = w. If we take
u = hor € W with ¢ € D(S), x € H, and h > 0 we get

0< (w—¢'hw,v — phz) = (w,v)—

([0 + wloruls)ds. e ) + (ha oha) =

= <w7 U> + h<v’(90) o 'w((,O), I,E>,
where v'(¢), w(p) are values of distributions v and w on ¢ € D(S). So, for every ¢ € D(S)
and x € X,, (v'(¢) —w(p),z) > 0 1is true. Thus we obtain v'(¢) = w(y) for all ¢ € D(S). It
means that v’ = w € X*. Now prove v(0) = 0. Due to (6) with u(t) = v(T)-% € W we receive
0< (v'=Lnu,v—u) = (v'=u', v—u) = %(||’U(T)—U(T)||%1—||v(0)—U(0)||%1) = —[[o(0)][F <0
and |[v(0)||x, = 0.
Lemma 5 is proved.

60



Differential-operator inclusions in Banach spaces with Wy -pseudomonotone maps

Now let us continue the proof of lemma 4. In virtue of [13, theorem 2.1| with V- = W =
X=X,A=D, B=0,L=1L,, D(L)=W?, f=f,—al, r = 2ry and properties
i1)—ig) the problem (41),—(42), has such solution z, € W, that ||z,||x < 2r;. Remark that
under boundedness condition on A, and quasi-boundedness condition on B, it is easy to
find the estimate for selectors (similar to (55)) to apply the Ag-pseudomonotony for A and
B on W,,. Because of (33) and z, € W, it follows that y, := z, + x, € W, is such solution
of (21),~(22), that |[y,|[x < R.

Lemma 4 is proved.

7.2. Boundary transition.

Due to lemma 4 we have a sequence of Halerkin approximate solutions {y,}n>1 that
satisfies next conditions

a)Vn 21: |[jynllx < R; (44)
byVn>1: y, e W, CW, y+ Cn(yn) D fu; (45)
c)Vn>1: y,(0) =yon — Yo in H as n — oo. (46)
From (45) it follows
Vn>1 3d, €Cy,): Iid,=:d:= fo—1y, € Colyn) = ICp(yn). (47)

LEMMA 6. In virtue of (44)—(47) there exist such subsequences {yn, }k>1 C {Yn}n>1 and
{dn, }i>1 C {dn}n>1 that for some y € W, d € X*, z € H the next

1) Y, =~y in X as k — oo; (48)
2) Yo, =y in Ly (S;H) as k — oc; (49)
3) Y, =y in X* as k — oo; (50)
4) d,, —=d in X~ as k — oo; (51)
5) Yn,(T) = z in H as k — oo (52)
is true. Moreover, in (48)—(52):
(1) y(0) =y, (i) 2=y(T), (ii)d=[f-y. (53)

Proof. 1°. At first we prove that {d, },>1 is bounded in X*. In virtue of (47) and definition
of C it follows that for every n > 1 there exists such d, € A(y,) and d € B(y,) that
d, + d!! = d,. Due to boundedness of A there exists such ¢; > 0 that

Vn > 1 ||| x: < 1. (54)
From (47), (6), (54) and (31) it results in for all n > 1
+00 > || fllx-R = | fllx-lynllx = (f,yn) = (fas ¥n) = (Y Yn)+
(s Yn) = (Ys Yn) + (dy yn) + (i, yn) >
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> (||yn<T)||‘z - ||yn<o>||%q) SR+ () >

> —§2/2 — e1 R+ (d", yn).

DO | —

So, for every n > 1
(dy) < ||fllx-R+06%/2+ 1R =: ¢y < +o0.

From here, taking into account X; C X with continuous embedding, estimation (44) and
quasi-boundedness of B it follows that

de3>0:Vn>1 ||d]

x; < ¢
With help of (54) we have:

dey>0: Vn>1 ||d,

X * S Cyq. (55)

2°. Now let us prove the boundedness of {y]},>1 in X*. From (47) it follows that for
every n > 1y, = I*(f — d,) and so, with help of (55) and (19), for all n > 1

lynllx= = I115(f = dn)llx- < C - [If = dullx- < C(|Ifllx- + 1) =2 5 < F00, (56)

where C' > 1 is the constant from condition (7).

3°. Here we prove the precompactness of {y, }n>1 in L,,(S; H) (i = 1,2). Without loss of
generality it is enough to prove the existence of such subsequence {y,, }x>1 C {yn}n>1 that
converges in L, (S; H).

Due to estimates (44) and (56) the boundedness of {y, },>1 in W is holds, i.e.

e >0 |yallw = llynllx + U] 1x- < 6 < +00 ¥Yn > 1. (57)
In virtue of W C C(S; H) with continuous embedding the existence of such ¢; > 0 that
Vn>1 foraa.teS yn(t)||r < ez < 400 (58)

is follows. Now use [1, theorem 1.5.1] with r; = p;, p1 = min{qo, ¢1,¢2}, By = Vi or
By = Vo, B = H and By = V* = V + V. Because of X C L, (S;V1) and X* C
Linin{go.q1,¢2} (S: V*) with continuous embedding, thanks to (57), it follows that {y,},>1 is
precompact in L, (S;H). Let {ym}m be such subsequence from {y,},>1 that tends to
some y in L, (S; H). Setting ¢, (t) = |lym(t) — y()||x : S — Ry for all m and t € S
(Ym — 0 in L, (S)) it follows the existence of such {yn, }x>1 C {ym} that for almost all
t €8 |, (t)P* — 0 (see [14]). Consequently, 1, () — 0 a.e. in S. Due to (58) we have
[[yllcs;my < ¢r- So, the sequence 1y (-) satisfies the conditions of the Lebesgue theorem with
the integrable majorant g(-) = (2¢7)™ (i = 1, 2). Therefore, the sequence

{Yn}n>1 is precompact in L, (S;H) i=1,2. (59)

4°. In virtue of inequalities (6), (57) and a priory estimates (44), (55) and (31), the
boundedness of {y,(T)},>1 in H is follows. For every n > 1 (yl, yn) + (dh. Yn) = (fas Yn)-
Thus,

(D)7 < Nlyonllzr + 2(f = dn, yn) < 0%+ 2(]| /]

x+ + )R =: cg < 400, (60)
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where cg > 0 is not depends on n > 1.

5°. Due to (57), (59), (55), (60) and to the Banach-Alaoglu theorem it follows the
existence of such {y,, }x>1 from {y,}n>1, {dy, }i>1 from {d,, },>1, y from W, d from X* and

z from H that (48)—(52) are true.

6°. Let us prove (iii). For ¢ € D(S), n > 1 and h € H, let ¢(-) = h- () € X, C X.

Then for every such k > 1 that ny > n due to lemma 1 b) we have

</<P(T)(yé,c (1) + dy, (1))dr, h) — /<¢(T)(y§lk (7) +dnk(7_)),h> g —

= [ (90 .0 ) = G 4 ) = 0+ o D) =

S

= <I;k(y;;k + dnk)ﬂv/)> = <y;zk + d'}zk7,¢> = <fnka7>/)> = <f7 Ink¢> =
- / ((7). p(r)h)dr = / (o(r) (7)., h)dr = ( / () f(r)dr, h).

S S S
So, for all such £ > 1 that n, > n

</§0(T)y;zk(7')d7', h) = </<,0(7')(f(7-) — d, (7))dr, h) _

S

((f(7) = du, (7)), o(T)R)dT = (f — du,., ) = (f — d, ) =

I
i

_ (/w(f)(f(f) — d(r))dr, h> as k — oc.

It follows from d,, — d in X*. In virtue of (50) we have
([ eomi@arn) = ([ o) = @) as k- s
s s
Due to (61)—(62) we obtain

Vo e D(S) Vhe | JH, (/(0).h) = ( [ eo)s) — dteya, h).

n>1

The set |J H, is dense in V, then

n>1

Vo e D(S) (o) = / o(7)(f(r) — d(r))dr.

S

So,y=f—dandd=f—1.

(61)

(62)
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7°. Now prove (i). Let us for every n > 1 and h € H,, define ¢(-) as (T'—-)h € X,,. From
(51) it follows:

Woo) = [ W eir = [(10) = dir),vr)dr = (7 - d.v) =

S
_ . _ . * _ . 1 _ .
=l (f = dy,. L) = i (L (f = dy,) ) = lim (fo, —d,,, ) = lim (yy, 0.

Now let us use (5). Remark that ¢)'(7) = —h a.e. in S. Then, taking into account y,, — y
in X and y,,0 — yo in H as k — oo, we obtain:

klggj<y:1k’ 1/)> = klggo{ - <¢I: ynk> + (y”k (T)7 T/J(T)) - (yﬂkﬂi 77b(0)) } =

k—o00 k—00

= Jim {000 = (e 70 = g [ 7).

- Jim (s TH) = [ (0(7). 1) = (0. TH) = ~(0'.3) = (o, ).

Let us use (5) again: —(¢',y) — (vo, Th) = (y', ) — (y(T), (T))+
+(y(0),9(0)) = (yo, Th) = (¥, ) + T(y(0) — yo, ).

So, for every h € U Hn (y', %) = (y',¥) + T(y(0) — yo, h). Hence, (y(0) — yo, ) = 0. From

n>1
density |J H, in H it follows that y(0) = y,.
n>1
8°. It is remain to prove (ii). The proof is similar to 7°. Let us take ¢/(-) = h € |J H,.

n>1

Hence, ¢ € X,,, for some ng. Due to (5), (52) and (i) from (53)

(y(T) - y(0), h) = / /(7). h)dr = tim [ (4, (), h)dr =

k—o0
S s
= lim (y, (T) = 4, (0), h) = (2 = y(0), h).
Thus, for every h € |J H, (y(T) — 2,h) = 0. Hence, y(T) = 2.

n>1
The lemma is proved.

To prove y is a solution of problem (3)-(4), obtained by FG method, it is remain to
show (due to lemma 6) that d € C(y). At first we make sure that

lim (d,, , yn, —y) < 0. (63)
k— oo

In virtue of (6) and (iii) for all £ > 1
<dnka Yny, — y> = <dnka ynk> - <dnk7 y> = <d;k7 ynk> - <dnka y> =
- <fnk - y;zkaynk> - <dnkay> = <fnkaynk> - <y;1kaynk> - <dnkay> =

64



Differential-operator inclusions in Banach spaces with Wy -pseudomonotone maps

= (f,un) = {dny0) + % (1yn, ()5 = Nlym, (DII) - (64)
Due to lemma 6, (6), [2, lemma 1.5.3], (52), (53) and (64)

klggo<dnka Ynp — y> < l}g&(fa ynk> + klggo<dnk’ _y>+
—1
15 (9 O)7 ~ (D)) < () — (. w)+

5 (IO~ (D) = (F — do) = {5') = O — ') = 0.

The inequality (63) is proven.
In virtue of (48), (50), (51), (63) and due to A¢-pseudomonotony of C' on W it follows
that there exist such subsequences {d,,,} C {dy, }x>1 and {yn} C {yn, }x>1 that Vw € X

li_m <dma Ym — w> 2 [C(y)a Yy — w]— . (65)

m— o0

To finish the proof of the theorem it is enough to show
(d,y) > Tim (dpn, Ym)- (66)
m—0o0

Because of (65), (66), (51) and (48) we obtain that for every w € X [C(y),y —w]_ <
(d,y — w). It is equivalent to [C(y),w], > (d,w) Vw € X. It means that d € C(y). So, y is
the solution of (3)—(4).

Now prove (66) m@o<dma ym> = m@o<dma Imym> = m@o<d}n’ ym> =

T o . T (/0 _ .
= lm (fi = s Yon) < T (s Ym) + T (=(Y Ym)) = T (f, yn)+

b T (lom )1 — ln(T)IE) < () = 5 (DI — lo(0) ) =

(f,y) — (¥, y) = (d,y). So, we proved that y € W is the solution of (3)—(4).

Remark that (29) is immediately follows from boundary transition, [15, property 2.29.
IV.8] and definition 5.

The theorem is proved.

8. Example.

Let us consider bounded domain 2 C R" with rather smooth boundary 09; S = [0, T],
Q=0x(0;T), Ty = 00x (0;T); Ni(correspondingly Ni) be a number of differentiations by
x of order < m; — 1 (correspondingly m;) and let A’ (z,¢,7,&) be a family of real functions
(Ja| < m;) defined in @ x RN x R (i =1,2). Let

DFy = {DPu, |B| = k} be differentiation by z,

6u = {u, Du, .., D™ 'u},
Al (z,t,0u, D™) : x,t — A’ (x,t, 6u(x,t), D™v(z, 1)), i=1,2.
Moreover let 1 : R — R be convex lower semicontinuous coercive functional, ® : R R

be its subdifferential.
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Let us consider the next problem with Dirichlet boundary conditions:

WD S (1D (AL .18y, D) + 3 (1D (A 1.3y, D)
laj<mi laj<ma
+®(y(z,t)) > f(x,t) a.e. in @, (67)
y(x,0) = yo(z) a.e. in €, (68)
y(z,t) =0 a.e. in I'p. (69)

On some conditions on coefficients A? the given problem is equivalent to the next
differential-operator inclusion

y' + Ai(y) + Aao(y) + 00(y) 2 f,  y(0) = o, (70)

where f € X* = Ly(S; Lo(2)) + Ly, (S; W9 (Q)) + Ly, (S; W 92(Q)), yo € Lo(Q2) are
some fixed elements, Oy is subdifferential from the integral functional

o(y) = /Q’éb(y(x,t))da:dt

in space Ly(S; Ly(€2)). The element y € X that satisfies (70) is called the generous solution
of the problem (67)—(69).

Let us also take (H, (-,-)) = (La(Q), (-, o)), Vi := WP (Q) (i = 1,2). It follows
that V; (i = 1, 2) is a reflexive separable Banach space. Further, we consider that p; > 1 and
m; € N.

CHOICE OF BASIS. Due to the corollary 2 and [9, theorem 4.3.1.2] as complete vector system
in spaces W™ (Q) we can take the special basis for the pair (H&™ ™™} (Q): L,(Q)) with
some £ > 0.

DEFINITION OF OPERATORS A;. Let the family of real functions Af(z,t,71.€) (Ja| < my)
defined in Q x RN x RM: satisfies next conditions 4 4
for almost all z,t € Q the map n, & — A’ (z,t,71,£) is continuous on RN x RN:;

for all n, & the map z,t — A’ (x,t,7,€) is measurable on Q. (71)
for all u,v € LP/(0,T;Vi(Q)) =: V; A! (x,t,6u, D™u) € L%(Q). (72)
Then for every u € V;
w — a;(u, w) = Z /Az(:v,t, du, D™u) D*wdzdt, (73)
Jal<m &
is continuous and
for every u € V; there exists such A;(u) € V; that a;(u, w) = (4;(u), w). (74)

CONDITIONS ON A4;. Similarly to [1, sections 2.2.5, 2.2.6, 3.2.1] we have

Az(u) = AZ(U, U), Az(u, U) = Aﬂ (U, ’U) + Aig(’u),
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where
(Aauv)w) = 32 [ Aot du, D) D,

ler|=m; Q

(Aip(u),w)y =" > [ Al(2,t,0u, D™u)D*wdadt (i =1,2).
|a|<m;—1 Q
Now consider the next conditions:
(Aip(u,u),u —v) — (Aj(u,v),u —v) >0 Yu,v € V;
if uj—=win Vi, wj—u' in Vi (Ai(uy,uj) — A (uj,u),uj —u) — 0, then
Afl(x,t, duj, D™iu;) — Aia(x,t, du, D™u) in LY%(Q);

coercivity.

REMARK 8. Similarly to [1, theorem 2.2.8| the sufficient conditions of (77), (78) are:

> ALt 6)ea

la|=m;

1
7|£| e — +oc as |£]| = o0

for almost all z,¢ from () and bounded 7;

D (A, t,m,€) — A, 6,0, ) (€ — &) > 0 as £ £

|a|=m;

for almost all x,t € ) and V7.
The next condition guarantees the coercivity:

Z Al (z,t,m,8)E > c|€P* for rather large |€].

la|=m;

The sufficient condition of (72) (see [1, p. 336]) is:

|45 (2, 6,0, )] < cllnl” " + €7 + k(. 1)), k€ Le(Q)-

(75)

(76)

(80)

(81)

(82)

By analogy with the proof of [1, theorem 3.2.1] and [1, statement 2.2.6] for i = 1,2 we

can receive the next

PROPOSITION 4. Let operator A; : Vi — Vi (i = 1,2), defined in (74), satisfies (71), (72),

(77) and (78). Then A; is pseudomonotone on Wy and bounded operator.

Due to last statement and to the theorem it follows that under listed above conditions
for all f € X* there exists such R > 0 that Ky (f) := {y € W ‘ y is a generous solution
of the problem (67)-(69), turned out by FG method } is non-empty weakly compact in

(Bgr, ||+ ||x) set with representation (29).
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