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1. Introduction

A Markov random evolution (MRE) is created by a solution of the
evolutionary equation in Euclidean space R

d, d ≥ 1

duε(t)/dt = v(uε(t); æ(t/ε))

with the ergodic Markov switching process æ(t), t ≥ 0 on the standard
(Polish) phase-space (E, E) by the operator Q(x,B), x ∈ E, B ∈ E that
defines transition probabilities of a Markov chain æn, n ≥ 0

Q(x,B) = P{æn+1 ∈ B|æn = x}.

The operator of transition probabilities Q is defined by

Qf(x) =

∫

E

Q(x, dy)f(y), x ∈ E, (1.1)

for any bounded measurable real valued f defined on E.
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We will see later that the equation for the regular and the singular
parts of a random evolution are defined by the generator (1.1) of a uni-
formly argodic Markov switching process. The Banach space B(E) is
splitted onto the two subspaces [7]:

B(E) = NQ

⊕
RQ,

where NQ := {ϕ : Qϕ = 0} is the null-space of Q, and RQ := {ψ : Qϕ =
ψ} is the range of Q.

We define the projector Π : NQ := ΠB(E), RQ := (I − Π)B(E);
Πϕ(x) := ϕ̂1, ϕ̂ :=

∫
E
ϕ(x)π(dx), where the stationary distribution

π(B), B ∈ E of the Markov process æ(t), t ≥ 0 satisfies the relations [4]

π(dx) = ρ(dx)m1(x)/m̂,

m̂ =

∫

E

m1(x)ρ(dx).

ρ(B), B ∈ E is the stationary distribution of the Markov chain æn, n ≥ 0,
given by the equation

ρ(B) =

∫

E

Q(x,B)ρ(dx), ρ(E) = 1.

Let us consider the Banach space B(Rd) of real-valued test-functions
ϕ(u), u ∈ R

d which are bounded with all their derivatives equipped with
sup-norm

‖ϕ‖ := sup
u∈Rd

|ϕ(u)| < Cϕ.

The random evolution in B(Rd) is given by the relation

Φε
t (u, x) := E[ϕ(uε(t))|uε(0) = u,æε(0) = x]. (1.2)

The asymptotic behavior of MRE (1.2) as ε→ 0 is investigated under
the assumption of uniformly ergodicity of the Markov switching process
æ(t) described above and under the assumption of the existence of a
global solution of the deterministic equations

dux(t)/dt = v(ux(t);x), x ∈ E.

Let us consider the deterministic evolution

Φx(t, u) = ϕ(ux(t)), ux(0) = u.
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It generates a corresponding semigroup

Vt(x)ϕ(u) := ϕ(ux(t)), ux(0) = u,

and its generator has the form:

V(x)ϕ(u) = v(u;x)ϕ′(u) :=
d∑

k=1

vk(u;x)ϕ
′
k(u),

ϕ′
k(u) := ∂ϕ(u)/∂uk, ϕ(u) ∈ C∞(Rd).

By the average principle [10] the weak convergence

uε(t) ⇒ û(t), ε→ 0 (1.3)

takes place. The average limit evolution û(t), t ≥ 0 is defined by a
solution of the average equation

dû(t)/dt = v̂(û(t)).

The average velocity v̂(u), u ∈ R
d is defined by

v̂(u) =

∫

E

v(u;x)π(dx)

(i.e. by the average of the initial velocity v(u;x) over the stationary
distribution π(B), B ∈ E).

The rate of convergence in (1.3) can be investigated in two directions:
i) asymptotic analysis of the fluctuations

ζε(t) = uε(t) − û(t); (1.4)

ii) asymptotic analysis of the average deterministic evolution (1.2).
The asymptotic analysis of fluctuations (1.4) leads to the diffusion

approximation of the random evolution [5, 10].
The asymptotic analysis of evolution (1.2) is realized in what follows

by constructing the asymptotic expansion in power of the small parameter
series ε→ 0(ε > 0) in the following form (τ = t/ε):

Φε
t (u, x) = u(0)(t) +

∞∑

k=1

εk[u(k)(t) + w(k)(τ)]. (1.5)

The asymptotic expansion (1.5) contains two parts:
i) the regular term uε(t) := u(0)(t) +

∑∞
k≥1 ε

ku(k)(t),

ii) the singular term (boundary layer) wε(τ) :=
∑∞

k≥1 ε
kw(k)(τ), τ = t/ε.
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In addition the initial condition:

u(0)(0) = ϕ(u)1

has to be valid for any x ∈ E, u ∈ R
d.

It’s well-known (see, e.g. [8]), that the evolution, determined by a
test-function ϕ(u) ∈ C∞(Rd) (here ϕ(u) is integrable on R

d): satisfy the
system of Kolmogorov backward differential equations:

∂

∂t
Φε

t (u, x) = [ε−1Q+ V]Φε
t (u, x),

Φε
0(u, x) = ϕ(u).

(1.6)

Asymptotic expansions with “boundary layers” were studied by many
authors (see [2, 3, 12]). In particular, functionals of Markov and semi-
Markov processes are investigated from this point of view in [6, 9, 11].

In this work we study system (1.6) with the first order singularity.
To find asymptotic expansion of the solution of (1.2) we use the method
proposed in [3,12]. The solution consists of two parts, regular terms and
singular terms, which are determined by different equations. Asymptotic
expansion lets not only determine the terms of asymptotic, but to see the
velocity of convergence in hydrodynamic limit.

Besides, when studying this problem, we improved the algorithm of
asymptotic expansion. Partially, the initial conditions for the regular
terms of asymptotic are determined without the use of singular terms,
i.e. the regular part of the solution may be found by a separate recursive
algorithm; scalar part of the regular term is found and without the use of
singular terms. These and other improves of the algorithm are pointed
later.

2. Asymptotic Expansion of the Solution

Let P (t) = eQt = {pij(t); i, j ∈ E}. Put πj = limt→∞ pij(t) and
−R0 = {

∫ ∞

0 (pij(t) − πj) dt; i, j ∈ E} = {rij ; i, j ∈ E}.
Let Π be a projecting operator on the null-spaceNQ of the operatorQ.

For any vector g we have Πg = ĝ1, where ĝ = (g, π),1 = (1, . . . , 1). Then
for the operator Q the following correlations are true (see [7], chapter 3)

ΠQΠ = 0,

QR0 = R0Q = Π − I.

We put:
exp0(Qt) := eQt − Π.
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Theorem 2.1. The solution of equation (1.6) with initial condition

Φε
0(u, x) = ϕ(u), where ϕ(u) ∈ C∞(Rd) and integrable on R

d has asymp-

totic expansion

Φε
t (u, x) = u(0)(t) +

∞∑

n=1

εn
(
u(n)(t) + w(n) (t/ε)

)
. (2.1)

Regular terms of the expansion are: u(0)(x, t), the solution of equation

∂

∂t
u(0)(t) − ΠVΠu(0)(t) = 0 (2.2)

with initial condition u(0)(0) = ϕ(u),

u(1)(t) = R0

[ d

dt
u(0)(t) − Vu(0)(t)

]
+ c(1)(t) := R0Lu

(0)(t) + c(1)(t),

for k ≥ 2 :
u(k)(t) = R0Lu

(k−1)(t) + c(k)(t)

where c(k)(t) ∈ NQ,

c(k)(u, t) = c(k)(V −1(t+ V (u)), 0) +

∫
Lk(V

−1(t+ V (u)), 0)

V −1(t+ V (u))
du

−

∫
Lk(u, t)

v(u)
du, k > 0,

here V (u) =
∫

du
v(u) , V

−1(w) is the backward function for V (u),

Lk(u, t) =
k−1∑

i=0

k−i∑

n=1

(−1)k(k − i− n+ 1)ΠVR0V
nΠ

dk−i−n

dtk−i−n
c(i)(t).

The singular terms of the expansion have the view:

w(1)(τ) = exp0(Qτ)Vϕ(u),

for k > 1 :

w(k)(τ) = exp0(Qτ)w
(k)(0) +

τ∫

0

exp0(Q(τ − s))Vw(k−1)(s) ds

− Π

∞∫

τ

Vw(k−1)(s) ds.
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Initial conditions:

c(0)(0) = ϕ(u),

w(1)(0) = −R0Lϕ(u),

c(1)(0) = 0,

for k > 1 :
w(k)(0) = −R0Lu

(k−1)(0),

c(k)(0) = Vw̃(k−1)(0),

where w̃(1)(0) = −R0Vϕ(u),

w̃(k)(0) = R0Lu
(k−1)(0) +R0Vw̃

(k−1)(0) + ΠV(w̃(k−1)(λ))′λ
∣∣
λ=0

,

(w̃(k)(λ))′λ
∣∣
λ=0

= R2
0Lu(k−1)(0)+R2

0Q1w̃
(k−1)(0)+R0V(w̃(k−1)(λ))′λ

∣∣
λ=0

.

Remark 2.1. The initial conditions for the regular terms of asymptotic
are determined without the use of singular terms, i.e. the regular part
of the solution may be found by a separate recursive algorithm (comp.
with [6]).

Proof of Theorem 2.1. Let us substitute the solution Φε
t (u, x) in the form

(2.1) to the equation (1.6) and equal the terms at ε degrees. We’ll have
the system for the regular terms of asymptotic:

{
Qu(0) = 0

Qu(k) = d
dt
u(k−1) − Vu(k−1) := Lu(k−1), k ≥ 1

(2.3)

and for the singular terms

dwε

dt
=
dwε

dτ

dτ

dt
= ε−1dw

ε

dτ
= (ε−1Q+ V)wε.

Thus, from dwε

dτ
= (Q+ εV)wε we obtain:

{
d
dτ
w(1) = Qw(1)

d
dτ
w(k) −Qw(k) = Vw(k−1), k > 1.

(2.4)

From (2.3) we have: u(0)(t) ∈ NQ.
The solvability condition for u(1)(t) has the view:

ΠQΠu(1)(t) = 0 =
∂

∂t
u(0)(t) − ΠVΠu(0)(t).

So, we have equation (2.2) for u(0)(t).
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For u(1)(t) we have:

u(1)(t) = R0Lu
(0)(t) + c(1)(t).

Using the second equation from (2.3) we obtain:

u(k)(t) = R0Lu
(k−1)(t) + c(k)(t),

where c(k)(t) ∈ NQ.
To find c(k)(t) we’ll use the fact that u(0)(t) ∈ NQ. Let us put c(0)(t) =

u(0)(t).
For the equation

Qu(2)(t) =
∂

∂t
u(1)(t) − Vu(1)(t) =

d

dt
R0

[ d

dt
c(0)(t) − Vc(0)(t)

]

+
d

dt
c(1)(t) − VR0

[ d

dt
c(0)(t) − Vc(0)(t)

]
− Vc(1)(t)

we use the solvability condition

ΠQΠu(2)(t) = 0 =
d

dt
c(1)(t) − Vc(1)(t) + ΠR0Π

d2

dt2
c(0)(t)

− ΠR0VΠ
d

dt
c(0)(t) − ΠVR0Π

d

dt
c(0)(t) + ΠVR0VΠc(0)(t).

We find:

d

dt
c(1)(t) − Vc(1)(t) = −ΠVR0VΠc(0)(t).

By induction:

d

dt
c(k)(t) − Vc(k)(t)

=
k−1∑

i=0

k−i∑

n=1

(−1)k(k − i− n+ 1)ΠVR0V
nΠ

dk−i−n

dtk−i−n
c(i)(t), k > 0.

So, we have the following equation for c(k)(u, t):

d

dt
c(k)(u, t) − v(u)

d

du
c(k)(t) = Lk(u, t),

here

Lk(u, t) =
k−1∑

i=0

k−i∑

n=1

(−1)k(k − i− n+ 1)ΠVR0V
nΠ

dk−i−n

dtk−i−n
c(i)(t).
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To find a solution we should write down a system

dt

1
= −

du

v(u)
=

dc(k)

Lk(u, t)
.

The independent integrals of this system are:

t+

∫
du

v(u)
= C1,

c(k)(u, t) +

∫
Lk(u, t)

v(u)
du = C2.

As soon as c(k)(u, t) is only in one of the first integrals, we may present
the solution in the form:

c(k)(u, t) = fk

(
t+

∫
du

v(u)

)
−

∫
Lk(u, t)

v(u)
du, k > 0,

where fk is any differentiable function. Using initial condition for c(k)(u, t)
we find a condition for fk:

fk

(∫
du

v(u)

)
= c(k)(u, 0) +

∫
Lk(u, 0)

v(u)
du.

We may put now V (u) =
∫

du
v(u) and make a change of variables

w = V (u). So, u = V −1(w) and we have:

fk(w) = c(k)(V −1(w), 0) +

∫
Lk(V

−1(w), 0)

v(V −1(w))

dw

w
.

Thus, we obtain

c(k)(u, t) = c(k)(V −1(t+ V (u)), 0)

+

∫
Lk(V

−1(t+ V (u)), 0)

V −1(t+ V (u))
du−

∫
Lk(u, t)

v(u)
du, k > 0.

Initial conditions for c(k)(u, 0) are found later through Laplace trans-
form for the singular terms of asymptotic.

For the singular terms we have from (10):

w(1)(τ) = exp0(Qτ)w
(1)(0).

Here we should note that the ordinary solution w(1)(τ) = exp(Qτ)×
w(1)(0) is corrected by the term −Πw(1)(0) in order to receive the fol-
lowing limτ→∞w(1)(τ) = 0. We choose this limit to be equal 0 for all
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singular terms, that may done due to uniform ergodicity of switching
Markovian process.

The following statements are made using a method proposed in [2].
For the second equation of the system the corresponding solution should
be

w(k)(τ) = exp0(Qτ)w
(k)(0) +

τ∫

0

exp0(Q(τ − s))Vw(k−1)(s) ds,

where the homogenous part has the following solution

w(k)(τ) = exp0(Qτ)w
(k)(0).

But here we should again correct the solution, in order to receive the
limit lim

τ→∞
w(k)(τ) = 0, by the term −Π

∫ ∞

τ
Vw(k−1)(s) ds.

And so the solution is:

w(k)(τ) = exp0(Qτ)w
(k)(0) +

∫ τ

0
exp0(Q(τ − s))Vw(k−1)(s)ds

− Π

∞∫

τ

Vw(k−1)(s) ds.

We should finally find the initial conditions for the regular and sin-
gular terms.

We put c(0)(t) = u(0)(t), so c(0)(0) = u(0)(0) = ϕ(u).

From the initial condition for the solution uε(0) = u(0)(0) = ϕ(u),
we have to determine u(k)(0) + w(k)(0) = 0, k ≥ 1. Let us rewrite this
equation for the null-space NQ of matrix Q:

Πu(k)(0) + Πw(k)(0) = 0, k ≥ 1, (2.5)

and the space of values RQ:

(I − Π)u(k)(0) + (I − Π)w(k)(0) = 0, k ≥ 1. (2.6)

So, for k = 1 we obtain:

u(1)(0) = R0Lu
(0)(0) + c(1)(0) = (I − Π)R0Lϕ(u) + Πc(1)(0),

w(1)(0) = (I − Π)w(1)(0).

Thus, c(1)(0) = 0, w(1)(0) = −R0Lϕ(u).
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By analogy, for k > 1:

u(k)(0) = R0Lu
(k−1)(0) + c(k)(0) = (I − Π)R0Lu

(k−1)(0) + Πc(k)(0),

w(k)(0) = (I − Π)w(k)(0) − Π

∞∫

0

Vw(k−1)(s) ds.

Functions w(k−1)(s), u(k−1)(0) are known from the previous steps of
induction. So, we’ve found Πw(k)(0) in (2.5) and (I −Π)u(k)(0) in (2.6).

Now we may use the correlations (2.5), (2.6) to find the unknown
initial conditions:

c(k)(0) =

∞∫

0

Vw(k−1)(s) ds,

w(k)(0) = −R0Lu
(k−1)(0).

In [6] an analogical correlation was found for c(k)(0). To find c(k)(0)
explicitly and without the use of singular terms we’ll find Laplace trans-
form for the singular term. The following lemma is true.

Lemma 2.1. Laplace transform for the singular term of asymptotic ex-

pansion

w̃(k)(λ) =

∞∫

0

e−λsw(k)(s) ds

has the view:

w̃(1)(λ) = (λ− Π + (R0 + Π)−1)−1[−R0Vϕ(u)],

w̃(k)(λ) = (λ− Π + (R0 + Π)−1)−1
Lu(k−1)(0)

+ (λ− Π + (R0 + Π)−1)−1
Vw̃(k−1)(λ)

+
1

λ
ΠV[w̃(k−1)(λ) − w̃(k−1)(0)],

where

w̃(1)(0) = −R0Vϕ(u),

(w̃(1)(λ))′λ
∣∣
λ=0

= −R2
0VΠϕ(u),

w̃(k)(0) = R0Lu
(k−1)(0) +R0Vw̃

(k−1)(0) + ΠV(w̃(k−1)(λ))′λ
∣∣
λ=0

,

(w̃(k)(λ))′λ
∣∣
λ=0

= R2
0Lu(k−1)(0)+R2

0Q1w̃
(k−1)(0)+R0V(w̃(k−1)(λ))′λ

∣∣
λ=0

.
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Proof.

w̃(1)(λ) =

∞∫

0

e−λsw(1)(s) ds =

∞∫

0

e−λs[eQs − Π] ds · w(1)(0)

= (λ− Π + (R0 + Π)−1)−1[−Vϕ(u)],

where the correlation for the resolvent was found in [7].

w̃(1)(0) = −R0Vϕ(u),

(w̃(1)(λ))′λ
∣∣
λ=0

= lim
λ→0

R(λ) −R0

λ
[−Vϕ(u)] = −R2

0Vϕ(u).

For the next terms we have:

w̃(k)(λ) = (λ− Π + (R0 + Π)−1)−1
Lu(k−1)(0)

+ (λ− Π + (R0 + Π)−1)−1
Vw̃(k−1)(λ)

+
1

λ
ΠV[w̃(k−1)(λ) − w̃(k−1)(0)],

here the last term was found using the following correlation:

∞∫

0

e−λs

∞∫

s

Vw(k−1)(θ) dθ ds =

∞∫

0

θ∫

0

e−λs
Vw(k−1)(θ) ds dθ

=

∞∫

0

(
−

1

λ

)
(e−λθ − 1)Vw(k−1)(θ) dθ =

1

λ
V[w̃(k−1)(λ) − w̃(k−1)(0)].

So,

w̃(k)(0) = R0Lu
(k−1)(0) +R0Vw̃

(k−1)(0) + ΠV(w̃(k−1)(λ))′λ
∣∣
λ=0

,

(w̃(k)(λ))′λ
∣∣
λ=0

=R2
0Lu(k−1)(0)+R2

0Q1w̃
(k−1)(0)+R0V(w̃(k−1)(λ))′λ

∣∣
λ=0

− lim
λ→0

{ 1

λ2
ΠV[w̃(k−1)(λ) − w̃(k−1)(0)] −

1

λ
ΠV(w̃(k−1)(λ))′λ

}
,

where the last limit tends to 0.
Lemma is proved.

So, the obvious view of the initial condition for the c(k)(t) is:

c(k)(0) = Vw̃(k−1)(0).

Theorem is proved.
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3. Estimate of the Remainder

Let function ϕ(u) in the definition of the functional Φε
t belongs to

Banach space of twice continuously differentiable by u functions C2(Rd).
Let us write (1.6) in the view

Φ̃ε(t) = Φε(t) − Φε
2(t) (3.1)

where Φε
2(t) = u(0)(t)+ε(u(1)(t)+w(1)(t))+ε2(u(2)(t)+w(2)(t)), and the

explicit view of the functions u(i)(t), w(j)(t), i = 0, 2, j = 1, 2 is given in
Theorem 2.1.

By Theorem 3.2.1 from [7] in Banach space C2(Rd × E) for the gen-
erator of Markovian evolution Lε = ε−1Q + V, exists bounded inverse
operator (Lε)−1.

Let us substitute the function (3.1) into equation (1.6):

d

dt
Φ̃ε − LεΦ̃ε =

d

dt
Φε

2 − LεΦε
2 := εθε. (3.2)

Here εθε = ε[ d
dt
u(1) − εV(u(2) + w(2))].

The initial condition has the order ε, so we may write it in the view:

Φ̃ε(0) = εΦ̃ε(0).

Let Lε
tϕ(u) = E[ϕ(uε(t))|uε(0) = u,æε(0) = x] be the semigroup

corresponding to the operator Lε.

Theorem 3.1. The following estimate is true for the remainder (3.1)
of the solution of equation (1.6):

‖Φ̃ε(t)‖ ≤ ε‖Φ̃ε(0)‖ exp
{
εL‖θε‖

}
,

where L ≥ 2||(Lε)−1||.

Proof. The solution of equation (3.2) is:

Φ̃ε(t) = ε

[
Lε

t Φ̃
ε(0) +

t∫

0

Lε
t−sθ

ε(s) ds

]
.

For the semigroup we have Lε
t = I+Lε

∫ t

0 L
ε
sds, so

∫ t

0 L
ε
sds = (Lε)−1×

(Lε
t − I).
Using Gronwell–Bellman inequality [1], we receive

‖Φ̃ε(t)‖ ≤ εLε
t‖Φ̃

ε(0)‖ exp

{
ε

t∫

0

Lε
sθ

ε(t− s) ds

}

≤ εLε
t‖Φ̃

ε(0)‖ exp{εL‖θε‖},
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where L ≥ 2‖(Lε)−1‖.

Theorem is proved.

Remark 3.1. For the remainder of asymptotic expansion (1.5) of the
view

Φ̃ε
N+1(t) := Φε(t) − Φε

N+1(t),

where Φε
N+1(t) = u(0)(t)+

∑N+1
k=1 ε

k(u(k)(t)+w(k)(t)) we have analogical
estimate:

‖Φ̃ε
N+1(t)‖ ≤ εN‖Φ̃ε(0)‖ exp{εNL‖θε

N‖},

where d
dt

Φε
N+1 − LεΦε

N+1 := εNθε
N .
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