

Tietze Extension Theorem for Ordered Fuzzy G_{δ} -extremally Disconnected Spaces

Elangovan Roja, Mallasamudram K. Uma, and Ganesan Balasubramanian

(Presented by A. I. Stepanets)

Abstract. In this paper, a new class of fuzzy topological spaces called ordered fuzzy G_{δ} -extremally disconnected spaces is introduced. Tietze extension theorem for ordered fuzzy G_{δ} -extremally disconnected spaces has been discussed as in [10] besides proving several other propositions and lemmas.

2000 MSC. 54A40, 03E72.

Key words and phrases. Ordered fuzzy G_{δ} -extremally disconnected spaces, ordered fuzzy G_{δ} -continuous, lower/upper fuzzy G_{δ} -continuous functions.

Introduction

The fuzzy concept has invaded almost all branches of mathematics since the introduction of the concept by L. A. Zadeh [11]. Fuzzy sets have applications in many fields such as information [7] and control [8]. The theory of fuzzy topological space was introduced and developed by C. L. Chang [5] and since then various notions in classical topology have been extended to fuzzy topological space [3, 4]. A new class of fuzzy topological spaces called ordered fuzzy G_{δ} -extremally disconnected spaces is introduced in this paper by using the concepts of fuzzy topology [6]. Some interesting properties and characterizations are studied. Tietze extension theorem for ordered fuzzy G_{δ} -extremally disconnected spaces has been discussed as in [10] besides proving several other propositions and lemmas.

Received 18.07.2005

1. Preliminaries

Definition 1.1. Let (X, T) be a fuzzy topological space and λ be a fuzzy set in X. λ is called a fuzzy G_{δ} -set if $\lambda = \bigwedge_{i=1}^{\infty} \lambda_i$ where each $\lambda_i \in T$ [2].

Definition 1.2. Let (X,T) be a fuzzy topological space and λ be a fuzzy set in X. λ is called a fuzzy F_{σ} -set if $\lambda = \bigvee_{i=1}^{\infty} \lambda_i$ where each $1 - \lambda_i \in T$.

Definition 1.3. Let (X,T) be any fuzzy topological space. For any fuzzy set λ in X we define the σ -closure of λ , denote by $cl_{\sigma} \lambda$, to be the intersection of all fuzzy F_{σ} -sets containing λ . That is

 $\operatorname{cl}_{\sigma} \lambda = \wedge \{ \mu : \mu \text{ is a fuzzy } F_{\sigma} \text{-set and } \mu \geq \lambda \}.$

Definition 1.4. Let (X,T) be any fuzzy topological space. For any fuzzy set λ in X, we define the σ -interior of λ , denote by $\operatorname{int}_{\sigma} \lambda$, to be the union of all fuzzy G_{δ} -sets contained in λ . That is,

$$\operatorname{int}_{\sigma} \lambda = \lor \{ \mu : \mu \text{ is a fuzzy } G_{\delta} \text{-set and } \mu \leq \lambda \}.$$

Definition 1.5. For each $t \in \mathbb{R}$, let $L_t, R_t : \mathbb{R}(I) \to I$ be given by $L_t(\lambda) = 1 - \lambda(t-)$ and $R_t(\lambda) = \lambda(t+)$. Define $\mathcal{L} = \{L_t : t \in \mathbb{R}\} \cup \{0,1\}$ and $\mathcal{R} = \{R_t | t \in \mathbb{R}\} \cup \{0,1\}$. Then \mathcal{L} and \mathcal{R} are called *I*-topologies on $\mathbb{R}(I)$ [9].

Definition 1.6. Suppose (X, T) is a fuzzy topological space. X is said to be fuzzy extremally disconnected [2] if $\lambda \in T$ implies $\operatorname{cl} \lambda \in T$.

Remark 1.1. The symbol $\langle t \rangle$ $(t \in \mathbb{R})$ stands for the member of $\mathbb{R}(L)$ containing λ such that $\lambda(t+) = \lambda(t-)' = 0$ [10].

2. Ordered Fuzzy G_{δ} -extremally Disconnected Spaces

In this section, the concept of ordered fuzzy G_{δ} -extremally disconnected spaces is introduced. Some interesting properties and characterizations are studied.

Definition 2.1. Let (X, T, \leq) be an ordered fuzzy topological space and let λ be any fuzzy set in (X, T, \leq) , λ is called fuzzy increasing G_{δ}/F_{σ} if $\lambda = \wedge_{i=1}^{\infty} \lambda_i / if \lambda = \vee_{i=1}^{\infty} \lambda_i$ where each λ_i is fuzzy increasing open/closed in (X, T, \leq) . The complement of fuzzy increasing G_{δ}/F_{σ} -set is fuzzy decreasing F_{δ}/G_{σ} . **Definition 2.2.** Let λ be any fuzzy set in the ordered fuzzy topological space (X, T, \leq) . Then we define

$$\begin{split} I_{\sigma}(\lambda) &= \textit{fuzzy increasing } \sigma\text{-closure of } \lambda. \\ &= \textit{the smallest fuzzy increasing } F_{\sigma}\text{-set containing } \lambda. \\ D_{\sigma}(\lambda) &= \textit{fuzzy decreasing } \sigma\text{-closure of } \lambda. \\ &= \textit{the smallest fuzzy decreasing } F_{\sigma}\text{-set containing } \lambda. \\ I_{\sigma}^{0}(\lambda) &= \textit{fuzzy increasing } \sigma\text{-interior of } \lambda. \\ &= \textit{the greatest fuzzy increasing } G_{\delta}\text{-set contained in } \lambda. \\ D_{\sigma}^{0}(\lambda) &= \textit{fuzzy decreasing } \sigma\text{-interior of } \lambda. \\ &= \textit{the greatest fuzzy decreasing } G_{\delta}\text{-set contained in } \lambda. \end{split}$$

Prorosition 2.1. For any fuzzy set λ of an ordered fuzzy topological space (X, T, \leq) , the following equalities are valid.

(a)
$$1 - I_{\sigma}(\lambda) = D^0_{\sigma}(1 - \lambda).$$

(b)
$$1 - D_{\sigma}(\lambda) = I_{\sigma}^0(1 - \lambda).$$

(c)
$$1 - I_{\sigma}^{0}(\lambda) = D_{\sigma}(1 - \lambda).$$

(d)
$$1 - D^0_\sigma(\lambda) = I_\sigma(1 - \lambda).$$

Proof. We shall prove (a) only, (b), (c), and (d) can be proved in a similar manner.

(a) Since $I_{\sigma}(\lambda)$ is a fuzzy increasing F_{σ} -set containing λ , $1 - I_{\sigma}(\lambda)$ is a fuzzy decreasing G_{δ} -set such that $1 - I_{\sigma}(\lambda) \leq 1 - \lambda$. Let μ be another fuzzy decreasing G_{δ} -set such that $\mu \leq 1 - \lambda$. Then $1 - \mu$ is a fuzzy increasing F_{σ} -set such that $1 - \mu \geq \lambda$. It follows that $I_{\sigma}(\lambda) \leq 1 - \mu$. That is, $\mu \leq 1 - I_{\sigma}(\lambda)$. Thus, $1 - I_{\sigma}(\lambda)$ is the largest fuzzy decreasing G_{δ} -set such that $1 - I_{\sigma}(\lambda) \leq 1 - \lambda$. That is, $1 - I_{\sigma}(\lambda) = 1 - D_{\sigma}^{0}(1 - \lambda)$.

Definition 2.3. Let (X, T, \leq) be an ordered fuzzy topological space. Let λ be any fuzzy increasing G_{δ} -set in (X, T, \leq) . If $I_{\sigma}(\lambda)$ is fuzzy increasing G_{δ} -set in (X, T, \leq) , then (X, T, \leq) is said to be upper fuzzy G_{δ} -extremally disconnected. Similarly we can define lower fuzzy G_{δ} -extremally disconnected space. (X, T, \leq) is said to be ordered fuzzy G_{δ} -extremally disconnected if it is both upper and lower fuzzy G_{δ} -extremally disconnected.

Example 2.1. Let $X = \{a, b, c\}$ and $T = \{0, 1, \lambda_1, \lambda_2, \lambda_3, \lambda_4\}$ where

$$\lambda_1 : X \to [0,1]$$
 is such that $\lambda_1(a) = 0$, $\lambda_1(b) = 1/4$, $\lambda_1(c) = 3/4$,
 $\lambda_2 : X \to [0,1]$ is such that $\lambda_2(a) = 1$, $\lambda_2(b) = 3/4$, $\lambda_2(c) = 3/4$,

 $\lambda_3: X \to [0,1]$ is such that $\lambda_3(a) = 1$, $\lambda_3(b) = 3/4$, $\lambda_3(c) = 1/4$, and

 $\lambda_4: X \to [0,1]$ is such that $\lambda_4(a) = 0, \ \lambda_4(b) = 1/4, \ \lambda_4(c) = 1/4.$

The partial order " \leq " is defined as $a \leq b$, $b \leq c$. Then (X, T, \leq) is an ordered fuzzy topological space. It is clear that (X, T, \leq) is an ordered fuzzy G_{δ} -extremally disconnected space.

Prorosition 2.2. For an ordered fuzzy topological space (X, T, \leq) , the following statements are equivalent.

- (a) (X, T, \leq) is upper fuzzy G_d elta-extremally disconnected.
- (b) For each fuzzy decreasing F_{σ} -set λ , $D^0_{\sigma}(\lambda)$ is a decreasing fuzzy F_{σ} -set.
- (c) For each fuzzy increasing G_{δ} -set λ , we have

$$I_{\sigma}(\lambda) + D_{\sigma}(1 - I_{\sigma}(\lambda)) = 1.$$

(d) For each pair of fuzzy increasing G_{δ} -set λ and a fuzzy decreasing G_{δ} -set μ in (X, T, \leq) with $I_{\sigma}(\lambda) + \mu = 1$, we have

$$I_{\sigma}(\lambda) + D_{\sigma}(\mu) = 1.$$

Proof. (a) \Rightarrow (b). Let λ be any fuzzy decreasing F_{σ} -set. We claim $D^0_{\sigma}(\lambda)$ is a fuzzy decreasing F_{σ} -set. Now $1 - \lambda$ is fuzzy increasing G_{δ} and so by assumption (a), $I_{\sigma}(1-\lambda)$ is fuzzy increasing G_{δ} . That is, $D^0_{\sigma}(\lambda)$ is fuzzy decreasing F_{σ} .

 $(b) \Rightarrow (c)$. Let λ be any fuzzy increasing G_{δ} -set. Then,

$$1 - I_{\sigma}(\lambda) = D^0_{\sigma}(1 - \lambda). \tag{2.1}$$

Consider $I_{\sigma}(\lambda) + D_{\sigma}(1 - I_{\sigma}(\lambda)) = I_{\sigma}(\lambda) + D_{\sigma}(D_{\sigma}^{0}(1 - \lambda))$. As λ is any fuzzy increasing G_{δ} -set, $1 - \lambda$ is fuzzy decreasing F_{σ} and by assumption (b), $D_{\sigma}^{0}(1 - \lambda)$ is fuzzy decreasing F_{σ} . Therefore,

$$D_{\sigma}(D_{\sigma}^{0}(1-\lambda)) = D_{\sigma}^{0}(1-\lambda).$$

Now,

$$I_{\sigma}(\lambda) + D_{\sigma}(D_{\sigma}^{0}(1-\lambda)) = I_{\sigma}(\lambda) + D_{\sigma}^{0}(1-\lambda) = 1.$$

That is,

$$I_{\sigma}(\lambda) + D_{\sigma}(1 - I_{\sigma}(\lambda)) = 1.$$

 $(c) \Rightarrow (d)$. Let λ be any fuzzy increasing G_{δ} -set and μ be any fuzzy decreasing G_{δ} -set such that

$$I_{\sigma}(\lambda) + \mu = 1. \tag{2.2}$$

By assumption (c),

$$I_{\sigma}(\lambda) + D_{\sigma}(1 - I_{\sigma}(\lambda)) = 1$$

= $I_{\sigma}(\lambda) + \mu.$ (2.3)

That is, $\mu = D_{\sigma}(1 - I_{\sigma}(\lambda))$. Since $\mu = 1 - I_{\sigma}(\lambda)$,

$$D_{\sigma}(\mu) = D_{\sigma}(1 - I_{\sigma}(\lambda)). \tag{2.4}$$

From (2.3) and (2.4)

$$I_{\sigma}(\lambda) + D_{\sigma}(\mu) = 1.$$

 $(d) \Rightarrow (a)$. Let λ be any fuzzy increasing G_{δ} -set. Put $\mu = 1 - I_{\sigma}(\lambda)$. Clearly, μ is fuzzy decreasing G_{δ} -set and from the construction of μ it follows that $I_{\sigma}(\lambda) + \mu = 1$. By assumption (d), we have $I_{\sigma}(\lambda) + D_{\sigma}(\mu) = 1$ and so $I_{\sigma}(\lambda) = 1 - D_{\sigma}(\mu)$ is fuzzy increasing G_{δ} . Therefore, (X, T, \leq) is upper fuzzy G_{δ} -extremally disconnected.

Prorosition 2.3. Let (X, T, \leq) be an ordered fuzzy topological space. Then (X, T, \leq) is an upper fuzzy G_{δ} -extremally disconnected space \Leftrightarrow for fuzzy decreasing G_{δ} -set λ and fuzzy decreasing F_{σ} -set μ such that $\lambda \leq \mu$, we have $D_{\sigma}(\lambda) \leq D_{\sigma}^{0}(\mu)$.

Proof. Suppose (X, T, \leq) is an upper fuzzy G_{δ} -stremally disconnected space. Let λ be any fuzzy decreasing G_{δ} -set such that $\lambda \leq \mu$. Then by (b) of Proposition 2.2, $D^0_{\sigma}(\mu)$ is fuzzy decreasing F_{σ} . Also, since λ is fuzzy decreasing G_{δ} and $\lambda \leq \mu$, it follows that $\lambda \leq D^0_{\sigma}(\mu)$. Again, since $D^0_{\sigma}(\mu)$ is fuzzy decreasing F_{σ} , it follows that $D_{\sigma}(\lambda) \leq D^0_{\sigma}(\mu)$.

To prove the converse, let μ be any fuzzy decreasing F_{σ} -set. By Definition 2.2, $D^0_{\sigma}(\mu)$ is fuzzy decreasing G_{δ} and it is also clear that $D^0_{\sigma}(\mu) \leq \mu$. Therefore by assumption, it follows that $D_{\sigma}(D^0_{\sigma}(\mu)) \leq D^0_{\sigma}(\mu)$. This implies that $D^0_{\sigma}(\mu)$ is fuzzy decreasing F_{σ} . Hence by (b) of Proposition 2.2, it follows that (X, T, \leq) is upper fuzzy G_{δ} -extremally disconnected.

Remark 2.1. Let (X, T, \leq) be an upper fuzzy G_{δ} -extremally disconnected space. Let $\{\lambda_i, 1 - \mu_i : i \in \mathbb{N}\}$ be a collection such that $\lambda_i, i \in \mathbb{N}$ are fuzzy decreasing G_{δ} -sets and $\mu_i, i \in \mathbb{N}$ are fuzzy decreasing F_{σ} -sets.

Let λ , $1 - \mu$ be fuzzy decreasing G_{δ} -set and fuzzy increasing G_{δ} -set respectively. If $\lambda_i \leq \lambda \leq \mu_j$ and $\lambda_i \leq \mu \leq \mu_j$ for all $i, j \in \mathbb{N}$, then there exists a fuzzy decreasing $G_{\delta}F_{\sigma}$ -set γ such that

$$D_{\sigma}(\lambda_i) \leq \gamma \leq D_{\sigma}^0(\mu_j) \text{ for all } i, j \in \mathbb{N}.$$

By Proposition 2.3,

$$D_{\sigma}(\lambda_i) \le D_{\sigma}(\lambda) \land D_{\sigma}^0(\mu) \le D_{\sigma}^0(\mu_j) \qquad (i, j \in \mathbb{N}).$$

Put $\gamma = D_{\sigma}(\lambda) \wedge D_{\sigma}^{0}(\mu)$. Now γ satisfies our required condition.

Prorosition 2.4. Let (X, T, \leq) be an ordered fuzzy G_{δ} -extremally disconnected space. Let $\{\lambda_q\}_{q\in Q}$ and $\{\mu_q\}_{q\in Q}$ be monotone increasing collections of fuzzy decreasing G_{δ} -sets and fuzzy decreasing F_{σ} -sets of (X, T, \leq) respectively and suppose that $\lambda_{q_1} \leq \mu_{q_2}$ whenever $q_1 < q_2$ (\mathbb{Q} is the set of rational numbers). Then there exists a monotone increasing collection $\{\gamma_q\}_{q\in Q}$ of fuzzy decreasing $G_{\delta}F_{\sigma}$ -sets of (X, T, \leq) such that $D_{\sigma}(\lambda_{q_1}) \leq \gamma_{q_2}$ and $\gamma_{q_1} \leq D_{\sigma}^0(\mu_{q_2})$ whenever $q_1 < q_2$.

Proof. Let us arrange into sequence $\{q_n\}$ of rational numbers without repetitions. For every $n \geq 2$, we shall define inductively a collection $\{\gamma_{q_i} : 1 \leq i \leq n\} \subset I^X$ such that

$$D_{\sigma}(\lambda_q) \le \gamma_{q_i} \qquad \text{if } q < q_i, \gamma_{q_i} \le D_{\sigma}^0(\mu_q) \qquad \text{if } q_i < q,$$

$$(S_n)$$

for all i < n.

By Proposition 2.3, the family $\{D_{\sigma}(\lambda_q)\}$ and $\{D_{\sigma}^0(\mu_q)\}$ satisfying $D_{\sigma}(\lambda_{q_1}) \leq D_{\sigma}^0(\mu_{q_2})$ if $q_1 < q_2$. By Remark 2.1, there exists fuzzy decreasing $G_{\delta}F_{\sigma}$ -set δ_1 such that

$$D_{\sigma}(\lambda_{q_1}) \le \delta_1 \le D_{\sigma}^0(\mu_{q_2}).$$

Setting $\gamma_{q_1} = \delta_1$ we get (S_2) . Assume that fuzzy sets γ_{q_i} are already defined for i < n and satisfy (S_n) . Define

$$\Sigma = \lor \{\gamma_{q_i} : i < n, \ q_i < q_n\} \lor \lambda_{q_n}$$

and

$$\Phi = \wedge \{\gamma_{q_j} : j < n, \ q_j > q_n\} \wedge \mu_{q_n}.$$

Then we have that

$$D_{\sigma}(\gamma_{q_i}) \le D_{\sigma}(\Sigma) \le D_{\sigma}^0(\gamma_{q_i})$$

and

$$D_{\sigma}(\gamma_{q_i}) \le D_{\sigma}(\Phi) \le D_{\sigma}^0(\gamma_{q_i})$$

whenever $q_i < q_n < q_j$ (i, j < n) as well as $\lambda_q \leq D_{\sigma}(\Sigma) \leq \mu_{q'}$ and $\lambda_q \leq D_{\sigma}^0(\Phi) \leq \mu_{q'}$ whenever $q < q_n < q'$. This shows that the countable collection $\{\gamma_{q_i} : i < n, q_i < q_n\} \cup \{\lambda_q : q < q_n\}$ and $\{\gamma_{q_i} : j < n, q_j > q_n\} \cup \{\mu_q : q > q_n\}$ together with Σ and Φ fulfill all conditions of the mentioned Remark 2.1. Hence, there exists a fuzzy decreasing $G_{\delta}F_sigma$ set δ_n such that

$$D_{\sigma}(\delta_n) \leq \mu_q \qquad \text{if } q_n < q,$$

$$\lambda_q \leq D\sigma^0(\delta_n) \qquad \text{if } q < q_n,$$

$$D_{\sigma}(\gamma_{q_i}) \leq D_{\sigma}^0(\delta_n) \qquad \text{if } q_i < q_n,$$

$$D_{\sigma}(\delta_n) \leq D_{\sigma}^0(\gamma_{q_j}) \qquad \text{if } q_n < q_j,$$

where $1 \leq i, j \leq n-1$. Now, setting $\gamma_{q_n} = \delta_n$ we obtain the fuzzy sets $\gamma_{q_1}, \gamma_{q_2}, \ldots, \gamma_{q_n}$ that satisfy (S_{n+1}) . Therefore, the collection $\{\gamma_{q_i} : i = 1, 2, \ldots\}$ has the required property. This completes the proof. \Box

Definition 2.4. Let (X,T,\leq) and (Y,S,\leq) be ordered fuzzy topological spaces. A mapping $f : (X,T,\leq) \to (Y,S,\leq)$ is called fuzzy increasing/decreasing G_{δ} -continuous if $f^{-1}(\lambda)$ is fuzzy increasing/decreasing G_{δ} -set of (X,T,\leq) for every fuzzy G_{δ} -set λ of (Y,S,\leq) . If f is both fuzzy increasing and fuzzy decreasing G_{δ} -continuous, then it is called ordered fuzzy G_{δ} -continuous.

Definition 2.5. Let (X, T, \leq) be an ordered fuzzy topological space. A function $f: X \to \mathbb{R}(I)$ is called lower fuzzy G_{δ} -continuous if $f^{-1}(R_t)$ is fuzzy increasing of fuzzy decreasing G_{δ} for each $t \in \mathbb{R}$ and upper fuzzy G_{δ} -continuous if $f^{-1}(L_t)$ is fuzzy increasing of fuzzy decreasing G_{δ} for each $t \in \mathbb{R}$.

Lemma 2.1. Let (X, T, \leq) be an ordered fuzzy topological space, let $\lambda \in I^X$, and let $f: X \to \mathbb{R}(I)$ be such that

$$f(x)(t) = \begin{cases} 1 & \text{if } t < 0, \\ \lambda(x) & \text{if } 0 \le t \le 1, \\ 0 & \text{if } t > 1, \end{cases}$$

for all $x \in X$. Then f is lower/upper fuzzy G_{δ} -continuous iff λ is fuzzy increasing of decreasing G_{δ}/F_{σ} -set.

Proof. If suffices to observe that

$$f^{-1}(R_t) = \begin{cases} 1 & \text{if } t < 0, \\ \lambda & \text{if } 0 \le t \le 1, \\ 0 & \text{if } t \ge 1 \end{cases}$$

and

$$f^{-1}(L_{t'}) = \begin{cases} 1 & \text{if } t \le 0, \\ \lambda & \text{if } 0 < t \le 1, \\ 0 & \text{if } t > 1. \end{cases}$$

Thus proved.

Definition 2.6. The characteristic function of $\lambda \in I^X$ is the map $\chi_{\lambda} : X \to [0,1](I)$ defined by $\chi_{\lambda}(x) = (\lambda(x)), x \in X$ [10].

Lemma 2.2. Let (X, T, \leq) be an ordered fuzzy topological space, let $\lambda \in I^X$. Then χ_{λ} is lower/upper fuzzy G_{δ} -continuous iff λ is fuzzy increasing or decreasing G_{δ}/F_{σ} -set.

Proof. Proof is similar to Lemma 2.1.

Prorosition 2.5. Let (X, T, \leq) be an ordered fuzzy topological space. Then the following statements are equivalent.

- (a) (X, T, \leq) is upper fuzzy G_{δ} -extremally disconnected.
- (b) If $g, h: X \to \mathbb{R}(I)$, g is lower fuzzy G_{δ} -continuous, h is upper fuzzy G_{δ} -continuous and $g \leq h$, then there exists an fuzzy increasing G_{δ} -continuous function $f: (X, T, \leq) \to \mathbb{R}(I)$ such that $g \leq f \leq h$.
- (c) If 1λ is fuzzy increasing G_{δ} -set, μ is fuzzy decreasing G_{δ} -set and $\mu \leq \lambda$, then there exists fuzzy increasing G_{δ} -continuous function $f: (X, T, \leq) \to [0, 1](I)$ such that $\mu \leq (1 L_1)f \leq R_0 f \leq \lambda$.

Proof. (a) \Rightarrow (b). Define $H_r = L_r h$ and $G_r = (1 - R_r)g$, $r \in \mathbb{Q}$. Thus we have two monotone increasing families of respectively fuzzy decreasing G_{δ} -sets and fuzzy decreasing F_{σ} -sets of (X, T, \leq) . Moreover, $H_r \leq G_s$ if r < s. By Proposition 2.4, there exists a monotone increasing family $\{F_r\}_{r \in \mathbb{Q}}$ of fuzzy decreasing $G_{\delta}F_{\sigma}$ -sets of (X, T, \leq) such that $D_{\sigma}(H_r) \leq$ F_s and $F_r \leq D_{\sigma}^0(G_s)$ whenever r < s. Letting $V_t = \wedge_{r < t}(1 - F_r)$ for all $t \in \mathbb{R}$, we define a monotone decreasing family $\{V_t : t \in \mathbb{R}\} \subset I^X$.

Moreover, we have $I_{\sigma}(V_t) \leq I_{\sigma}^0(V_s)$, whenever s < t. We have

$$\bigvee_{t \in \mathbb{R}} V_t = \bigvee_{t \in \mathbb{R}} \bigwedge_{r < t} (1 - F_r) \ge \bigvee_{t \in \mathbb{R}} \bigwedge_{r < t} (1 - G_r)$$
$$= \bigvee_{t \in \mathbb{R}} \bigwedge_{r < t} g^{-1}(R_r) = \bigvee_{t \in \mathbb{R}} g^{-1}(R_t) = g^{-1} \left(\bigvee_{t \in \mathbb{R}} R_t\right) = 1.$$

Similarly, $\wedge_{t \in \mathbb{R}} V_t = 0.$

We now define a function $f: (X, T, \leq) \to \mathbb{R}(I)$ satisfying the required properties. Let $f(x)(t) = V_t(x)$ for all $x \in X$ and $t \in \mathbb{R}$. By the above discussion, it follows that f is well defined. To prove f is fuzzy increasing G_{δ} -continuous, we observe that

$$\bigvee_{s>t} V_s = \bigvee_{s>t} I^0_{\sigma}(V_s), \qquad \bigwedge_{s$$

Then

$$f^{-1}(R_t) = \bigvee_{s>t} V_s = \bigvee_{s>t} I^0_{\sigma}(V_s)$$

is fuzzy increasing G_{δ} . Now

$$f^{-1}(1-L_t) = \bigwedge_{s < t} V_s = \bigwedge_{s < t} I_{\sigma}(V_s)$$

is fuzzy increasing F_{σ} so that f is fuzzy increasing G_{δ} -continuous. To conclude the proof it remains to show that $g \leq f \leq h$, that is $g^{-1}(1 - L_t) \leq f^{-1}(1 - L_t) \leq h^{-1}(1 - L_t)$ and $g^{-1}(R_t) \leq f^{-1}(R_t) \leq h^{-1}(R_t)$ for each $t \in \mathbb{R}$.

We have

$$g^{-1}(1 - L_t) = \bigwedge_{s < t} g^{-1}(1 - L_s) = \bigwedge_{s < t} \bigwedge_{r < s} g^{-1}(R_r)$$
$$= \bigwedge_{s < t} \bigwedge_{r < s} (1 - G_r) \le \bigwedge_{s < t} \bigwedge_{r < s} (1 - F_r) = \bigwedge_{s < t} V_s = f^{-1}(1 - L_t)$$

and

$$f^{-1}(1 - L_t) = \bigwedge_{s < t} V_s = \bigwedge_{s < t} \bigwedge_{r < s} (1 - F_r) \le \bigwedge_{s < t} \bigwedge_{r < s} (1 - H_r)$$
$$= \bigwedge_{s < t} \bigwedge_{r < s} h^{-1}(1 - L_r) = \bigwedge_{s < t} h^{-1}(1 - L_s) = h^{-1}(1 - L_t).$$

Similarly, we obtain

$$g^{-1}(R_t) = \bigvee_{s>t} g^{-1}(R_s) = \bigvee_{s>t} \bigvee_{r>s} g^{-1}(R_r) = \bigvee_{s>t} \bigvee_{r>s} (1 - G_r)$$
$$\leq \bigvee_{s>t} \bigwedge_{rt} V_s = f^{-1}(R_t)$$

and

$$f^{-1}(R_t) = \bigvee_{s>t} V_s = \bigvee_{s>t} \bigwedge_{rt} \bigvee_{r>s} (1-H_r)$$
$$= \bigvee_{s>t} \bigvee_{r>s} h^{-1}(1-L_r) = \bigvee_{s>t} h^{-1}(R_s) = h^{-1}(R_t).$$

Thus, (b) is proved.

 $(b) \Rightarrow (c)$. Suppose $1 - \lambda$ is fuzzy increasing G_{δ} and μ is fuzzy decreasing G_{δ} , such that $\mu \leq \lambda$. Then $\chi_{\mu} \leq \chi_{\lambda}$, χ_{μ} and χ_{λ} are lower and upper fuzzy G_{δ} -continuous functions respectively. Hence by (b), there exists fuzzy increasing G_{δ} continuous function $f : (X, T, \leq) \rightarrow \mathbb{R}(I)$ such that $\chi_{\mu} \leq f \leq \chi_{\lambda}$. Clearly, $f(x) \in [0, 1](I)$ for all $x \in X$ and $\mu = (1 - L_1)\chi_{\mu} \leq (1 - L_1)f \leq R_0 f \leq R_0\chi_{\lambda} = \lambda$.

 $(c) \Rightarrow (a)$. This follows from Proposition 2.3, and the fact that $(1-L_1)f$ and R_0f are fuzzy decreasing F_{σ} and fuzzy decreasing G_{δ} -sets respectively. Hence the result.

Remark 2.2. Propositions 2.2–2.5 and Remark 2.1 can be discussed for other cases also.

3. Tietze Extension Theorem for Ordered Fuzzy G_{δ} -extremally Disconnected Spaces

In this section, Tietze extension theorem for ordered fuzzy G_{δ} -extremally disconnected space is studied.

Prorosition 3.1 (Tietze Extension Theorem). Let (X, T, \leq) be an upper fuzzy G_{δ} -extremally disconnected space and let $A \subset X$ be such that χ_A is fuzzy increasing G_{δ} in (X, T, \leq) . Let $f : (A, T/A) \to [0, 1](I)$ [6] be an increasing fuzzy G_{δ} -continuous function. Then f has an increasing fuzzy G_{δ} -continuous extension over (X, T, \leq) .

Proof. Let $g, h: X \to [0,1](I)$ be such that

$$g = f = h$$
 on A and $g(x) = \langle 0 \rangle$, $h(x) = \langle 1 \rangle$ if $x \notin A$.

We now have

$$R_t g = \begin{cases} \mu_t \wedge \chi_A & \text{if } t \ge 0\\ 1 & \text{if } t < 0 \end{cases}$$

where μ_t is fuzzy increasing G_{δ} such that

$$\mu_t / A = R_t f$$

and

$$L_t h = \begin{cases} \lambda_t \wedge \chi_A & \text{if } t \le 1\\ 1 & \text{if } t > 1 \end{cases}$$

where λ_t is increasing fuzzy G_{δ} such that

1

$$\lambda_t / A = L_t f.$$

Thus, g is lower fuzzy G_{δ} -continuous, h is upper fuzzy G_{δ} -continuous and $g \leq h$. By Proposition 2.5, there exists an increasing fuzzy G_{δ} -continuous function $F: X \to [0,1](I)$ such that $g \leq F \leq h$; hence $F \equiv f$ on A. \Box

Remark 3.1. The above proposition can be discussed for other cases also.

References

- G. Balasubramanian, Fuzzy disconnectedness and its stronger forms // Indian J. Pure Appl. Math., 24 (1993), 27–30.
- [2] G. Balasubramanian, Maximal fuzzy topologies // Kybernetika, 31 (1995), 459– 464.
- [3] G. Balasubramanian, On fuzzy β-compact spaces and fuzzy β-extremally disconnected spaces // Kybernetica, 33 (1997), 271–277.
- [4] G. Balasubramanian and P. Sundaram, On some generalizations of fuzzy continuous functions // Fuzzy Sets and Systems, 86 (1997), 93–100.
- [5] C. L. Chang, *Fuzzy topological spaces* // J. Math. Anal. Appl., **24** (1968), 182–190.
- [6] A. K. Katsaras, Ordered fuzzy topological spaces // J. Math. Anal. Appl., 84 (1981), 44–58.
- [7] P. Smets, The degree of belief in a fuzzy event // Information Sciences, 25 (1981), 1–19.
- [8] M. Sugeno, An intoductory survey of fuzzy control // Information Sciences, 36 (1985), 59-83.
- [9] G. Thangaraj and G. Balasubramanian, On fuzzy basically disconnected spaces // The Journal of Fuzzy Mathematics, 9 (2001), 103–110.
- [10] Tomasz Kubiak, Extending continuous L-real functions // Math. Japonica, 6 (1986), 875–887.
- [11] L. A. Zadeh, *Fuzzy sets* // Information and Control, 8 (1965), 338–353.

CONTACT INFORMATION

Elangovan Roja,	Department of Mathematics
Mallasamudram	Sri Sarada College for Women
Kuppuratnam Uma	Salem–636 016 Tamil Nadu,
	India
	<i>E-Mail:</i> sudha_nice@yahoo.com
Ganesan	University of Madras
Balasubramanian	Chennai–600 005 Tamil Nadu.
	India
	E-Mail: rpbalan@sancharnet.in