

К-дифференцируемость и К-экстремумы

Игорь В. Орлов

(Представлена В. Я. Гутлянским)

Аннотация. Исследуются свойства компактных экстремумов функционалов в локально выпуклом пространстве, в частности, интегральных функционалов. Рассмотрены примеры.

2000 MSC. 34A40, 49K27, 49K30.

Ключевые слова и фразы. Компактный экстремум, интегральный функционал, локально выпуклое пространство, пространство Соболева.

Введение

Экстремальные задачи вообще, и задачи об экстремумах интегральных функционалов в особенности, играют важную роль в современном анализе и его приложениях. Для решения таких задач используются различные методы (см., например, [1–3]). Одна из главных трудностей, возникающих в этом вопросе, состоит в отсутствии (за исключением тривиального случая) второй сильной производной у интегральных функционалов Эйлера—Лагранжа [1,4]. Другая сторона проблемы состоит в том, что экстремумы интегральных функционалов разыскиваются, как правило, на некотором компактном множестве. Это исключает применение классических условий экстремума по сильной производной и приводит, как правило, к исследованию в рамках тех или иных обобщений вариационного исчисления [2,5].

Подход, принятый в настоящей работе (см. также [6–8]), ближе к некоторому ослаблению сильного дифференцирования. Он позволяет применить обобщённые условия Фреше экстремумов функционалов, и в особенности функционала Эйлера—Лагранжа, достигаемых на компактных подмножествах локально выпуклых пространств (ЛВП).

Статья поступила в редакцию 10.05.2004

Работа состоит из пяти разделов. В первом разделе вводится нормальная и компактно-нормальная дифференцируемость (K-дифференцируемость) функционалов в ЛВП и исследуется соотношение между ними. По сравнению с [8], определения существенно упрощены и не требуют языка шкал пространств. Во втором разделе изучаются положительно определённые и K-положительно определенные квадратичные формы в ЛВП. Найдены критерии положительной и K-положительной определенности, связь этих понятий.

На этой базе в третьем разделе получены условия экстремума и K-экстремума функционалов в ЛВП в терминах, соответственно, нормальных производных и K-производных. Построен пример K-экстремума, который не является локальным экстремумом. В четвертом разделе работы полученные результаты применены к функционалу Эйлера—Лагранжа $\Phi(y)$. Доказана повторная K-дифференцируемость $\Phi(y)$ в пространстве Соболева, найдены достаточные условия K-экстремума $\Phi(y)$. Наконец, в пятом разделе построен пример функционала Эйлера—Лагранжа, имеющего K-экстремум, который не является локальным экстремумом. В заключении обсуждаются общие принципы и перспективы предложенного подхода.

Всюду далее под λ -топологией [9] в топологическом сопряженном E^* к некоторому ЛВП Е понимается топология индуктивного предела банаховых пространств $E_t^* = \{f \in E^* \mid \|f\|^t = \sup_{\|x\|_t \le 1} |f(x)| < \infty\}$, где $\{\|\cdot\|_t\}_{t \in T}$ — определяющая система полунорм в Е.

1. Нормальная и компактно-нормальная дифференцируемость функционалов и форм

Определим вначале нормальную дифференцируемость функционалов.

Определение 1.1. Пусть E — вещественное ЛВП с определяющей системой полунорм $\{\|\cdot\|_t\}_{t\in T}$, $f:E\to\mathbb{R}$. Назовем функционал f нормально дифференцируемым в точке $x\in E$, если найдется такой индекс $t\in T$, что f дифференцируем в точке x по Фреше относительно полунормы $\|\cdot\|_t$, m. e.

$$f(x+h) - f(x) = f'(x)h + o(||h||_t), \tag{1.1}$$

где $f'(x) \in E^*$, $h \to 0$ в E. Будем говорить, что f непрерывно нормально дифференцируем в точке x, или $f \in C^1(x)$, если отображение $f': U(x) \to E^*$ непрерывно в λ -топологии E^* (см. введение), где U(x) — некоторая окрестность точки x в E.

Перейдем к компактно-нормальной дифференцируемости.

Определение 1.2. Пусть C — абсолютно выпуклый компакт в E. Положим $E_C := \operatorname{span} C$ и введем в E_C норму

$$||h||_C := p_C(h),$$
 (1.2)

где p_C — функционал Минковского множества C.

В обозначениях определения 1.2 скажем, что f компактно-нормально дифференцируем (K-дифференцируем) в точке $x \in E$, если для любого абсолютно выпуклого компакта C в E (C = C(0)) сужение $f|_{x+E_C}$ дифференцируемо по Фреше в точке x относительно нормы $\|\cdot\|_{C}$, m. e.

$$f(x+h) - f(x) = f'_{C}(x)h + o(||h||_{C}),$$
(1.3)

еде $f_C'(x) \in E_C^*$, $h \in E_C$. Линейный функционал в E (непрерывный на каждом E_C), определяемый равенством

$$f'_{K}(x)h := f'_{C}(x)h, \quad h \in E_{C}$$
 (1.4)

при всех C=C(0), назовем компактно-нормальной производной (K-производной) функционала f в точке x. Обозначим также E_K^* множество линейных функционалов в E, непрерывных на каждом E_C ($E_K^* \supset E^*$).

Замечание 1.1. Если C_1 и C_2 абсолютно выпуклые компакты, то взяв в (1.3) $C_3 = \text{conv}\,(C_1 \cup C_2)$, приходим к равенству $f'_{C_1} = f'_{C_2}$ на $E_{C_1} \cap E_{C_2}$; таким образом, определение K-производной (1.4) корректно. Отметим, что близкое по духу понятие малости относительно компактных полунорм давно и плодотворно используется в теории монотонных операторов [1,2].

Нетрудно видеть, что нормальная дифференцируемость сильнее, вообще говоря, *K*-дифференцируемости.

Предложение 1.1. Если функционал $f: E \to \mathbb{R}$ нормально дифференцируем в точке $x \in E$, то f K-дифференцируем в точке x, u $f'_K(x) = f(x)$.

Доказательство. Пусть C — абсолютно выпуклый компакт в E. Так как C ограничен относительно каждой полунормы $\|\cdot\|_t$, то из (1.2) следует $\|\cdot\|_t \leq M_t \cdot \|\cdot\|_C$ в E_C при всех $t \in T$, для некоторых констант $M_t < \infty$. Следовательно, $o(\|\cdot\|_t) = o(\|\cdot\|_C)$ при всех $t \in T$, и каждое сужение $f'(x)|_{E_C}$ непрерывно относительно $\|\cdot\|_C$. Таким образом, из (1.1) следует (1.3) при $f'_C(x) = f'(x)|_{E_C}$, т. е. f K-дифференцируем в точке x.

Перейдем к производным второго порядка.

Определение 1.3. Пусть E и F — ЛВП c соответствующими определяющими системами полунорм $\{\|\cdot\|_t\}_{t\in T}$ и $\{\|\cdot\|^s\}_{s\in S}, g: E\to F^*$. Назовем g нормально дифференцируемым e точке $x\in E$, если найдутся такие индексы $t\in T, s\in S$ и такая билинейная непрерывная на $E\times F$ форма $g'(x)\in (E,F)^*$, что

$$(g(x+h) - g(x)) \cdot k = g'(x)(h,k) + o(||h||_t \cdot ||k||^s)$$

при $h \to 0$, $k \to 0$ в F. B частности, назовем функционал $f: E \to \mathbb{R}$ дважды нормально дифференцируемым в точке $x \in E$, если f нормально дифференцируем в некоторой окрестности U(x) точки x, u его нормальная производная $f': E \supset U(x) \to E^*$ нормально дифференцируема в точке x. B этом случае обозначим f''(x) := (f')'(x). Будем говорить, что f непрерывно дважды нормально дифференцируем в точке x, или $f \in C^2(x)$, если отображение $f'': U(x) \to (E,E)^*$ непрерывно в точке x относительно λ -топологии $(E,E)^*$.

Определение 1.4. В обозначениях предыдущего определения, назовем отображение $g: E \to F^*$ компактно-нормально дифференцируемым (К-дифференцируемым) в точке $x \in E$, если для любых абсолютно выпуклых компактов C_1 в E и C_2 в F найдется такая билинейная непрерывная на $E_{C_1} \times F_{C_2}$ форма $g'_{C_1C_2}(x) \in (E_{C_1}, F_{C_2})^*$, что

$$(g(x+h) - g(x)) \cdot k = g'_{C_1C_2}(x)(h,k) + o(\|h\|_{C_1} \cdot \|k\|_{C_2})$$

при $h \to 0$ в $E, k \to 0$ в F. Билинейную форму в $E \times F$ (непрерывную на каждом $E_{C_1} \times F_{C_2}$), определяемую равенством

$$g_K'(x)(h,k) = g_{C_1C_2}'(x)(h,k) \qquad (h \in E_{C_1}, k \in F_{C_2})$$

при всех $C_1 = C_1(0)$ в E и $C_2 = C_2(0)$ в F, назовем компактнонормальной производной (K-производной) отображения g в точке x.

В частности, назовем функционал $f: E \to \mathbb{R}$ дважды K-диф-ференцируемым в точке $x \in E$, если f K-дифференцируем в некоторой окрестности U(x) точки x, u его K-производная $f'_K: E \supset U(x) \to E_K^*$ K-дифференцируема в точке x. B этом случае обозначим $f''_K(x) := (f'_K)'_K(x)$.

По аналогии с предложением 1.1 легко проверить следующее

Предложение 1.2. Если отображение $g: E \to F^*$ нормально дифференцируемо в точке $x \in E$, то g K-дифференцируемо в точке x,

и $g_K'(x) = g'(x)$. В частности, для функционалов $f: E \to \mathbb{R}$ верны равенства:

$$f_K''(x) = f''(x)$$
 u $f_K''(x) = (f')_K'(x)$

при наличии соответствующих нормальных производных.

Рассмотрим соотношение компактной и нормальной дифференцируемости в случае слабой топологии.

Пример 1.1. Пусть E — рефлексивное вещественное банахово пространство. Перейдем к слабой топологии $\sigma(E)$ в E. Нетрудно убедиться, что определение нормальной дифференцируемости функционала $f:E\to\mathbb{R}$ приводится к следующему: для некоторого разложения в прямую сумму

$$E = E_1 \oplus E_2$$
, $\operatorname{codim} E_1 = \dim E_2 < \infty$, $h = h_1 + h_2$,

верно

$$f(x+h_1+h_2)-f(x)=f'(x)(h_1+h_2)+o(||h_2||), h_2 \in E_2.$$

В частности $f(x+h_1)-f(x)=f'(x)h_1$, и, таким образом, нормальная дифференцируемость в E_{σ} строго сильнее дифференцируемости по Фреше в E. В то же время, ввиду слабой компактности единичного шара в E и ограниченности всех слабых компактов в E, K-дифференцируемость в E_{σ} совпадает с дифференцируемостью по Фреше в E. Следовательно, нормальная дифференцируемость в E_{σ} строго сильнее K-дифференцируемости. То же верно в случае отображений $g:E\to F^*$ при переходе к слабым топологиям в E и F.

Замечание 1.2. По аналогии с предыдущими определениями можно сформулировать определения нормальной дифференцируемости и K-дифференцируемости в случае отображений E в $(F_1, \ldots, F_n)^*$ и $(F_1, \ldots, F_n)^*_K$, значениями которых являются, соответственно, n-линейные непрерывные и n-линейные K-непрерывные формы на $F_1 \times \cdots \times F_n$.

Отметим также, что общая конструкция нормального дифференцирования для отображений из ЛВП в ЛВП рассмотрена в [8] и основана на разложении операторных пространств в индуктивные шкалы ЛВП. В случае функционалов возможно существенное упрощение конструкции, изложенное в данном разделе.

2. Положительно определенные и K-положительно определенные квадратичные формы в ЛВП

Результаты этого раздела послужат базой для получения достаточных условий экстремумов и K-экстремумов в терминах нормальных производных и K-производных (см. также [6–8]).

Определение 2.1. Пусть φ — непрерывная квадратичная форма в отделимом вещественном ЛВП E, порожденная билинейной непрерывной формой g в E^2 . Назовем форму φ невырожденной, если отображение

$$g_1: E \ni h \to g(h, \cdot) \in E^*$$

является изоморфизмом E в E^* относительно λ -топологии в E^* . Eсли φ невырожденна и $\varphi \geq 0$, то назовем φ положительно определенной формой: $\varphi \gg 0$.

Замечание 2.1. Отметим, что даже в банаховом случае определение 2.1 шире классического [10], поскольку речь идет лишь об изоморфном вложении $E \hookrightarrow E^*$, типичном в теории обобщенных функций.

Предложение 2.1. Пусть $\{\|\cdot\|_t\}_{t\in T}$ — определяющая система полунорм в E. Квадратичная форма φ в E положительно определена в том и только том случае, если для любого $t_1 \in T$ найдутся такие $t_2 \in T$ и C > 0, что при всех $h \in E$:

$$||h||_{t_1} \le C \cdot ||g(h,\cdot)||^{t_2}.$$
 (2.1)

Доказательство. Согласно теореме о каноническом изоморфизме между линейными и билинейными операторами в ЛВП [11], g можно рассматривать (с сохранением ко-норм) как непрерывный линейный оператор g_1 из E в E^* . Остается проверить непрерывность обратного оператора $g_1^{-1}: g_1^{-1}(E) \to E$.

Если условие (2.1) выполнено, то

$$(h \neq 0) \Rightarrow (\exists t_1 \in T : ||h||_{t_1} \neq 0) \Rightarrow (\exists t_2 \in T : ||g_1(h)||^{t_2} = ||g(h, \cdot)||^{t_2} > 0),$$

т.е. оператор g_1 инъективен. Полагая $f=g(h,\cdot)$ перепишем (2.1) в виде:

$$\forall t_1 \in T \ \exists t_2 \in T \ \exists C > 0 \ \forall f \in g_1(E) : \ \|g_1^{-1}(f)\|_{t_1} \le C\|f\|^{t_2}, \quad (2.2)$$

что в точности означает непрерывность оператора g_1^{-1} .

Обратно, если g_1^{-1} непрерывен, то подстановка в (2.2) $g(h,\cdot)=f$ приводит к условию (2.1).

Основным является следующий критерий.

Теорема 2.1. Квадратичная форма φ в отделимом вещественном ЛВП E положительно определена тогда и только тогда, если для любого $t \in T$ найдется такое $k_t > 0$, что при всех $h \in E$:

$$\varphi(h) \ge k_t \cdot ||h||_t^2. \tag{2.3}$$

Доказательство. Пусть $\varphi \gg 0$. Зафиксируем $h \in E, t \in T$, и выберем, в силу (2.1), такие $t' \in T$ и $h' \in E$, чтобы $\|h'\|_{t'} \le 1$ и

$$|g(h, h')| \ge \frac{1}{2} ||g(h, \cdot)||^{t'}.$$
 (2.4)

Из (2.4) и (2.1) следует:

$$||h||_t \le 2C \cdot |g(h, h')|.$$
 (2.5)

Из (2.5) и неравенства Шварца $g(x,y)^2 \le \varphi(x)\varphi(y)$ получаем:

$$||h||_t^2 \le 4C^2 \cdot \varphi(h)\varphi(h'). \tag{2.6}$$

Наконец, учитывая ограниченность $\varphi(h'), \, |\varphi(h')| \leq M,$ из (2.6) находим:

$$||h||_t^2 \le 4C^2 \cdot M \cdot \varphi(h),$$

откуда следует (2.3).

Обратно, если (2.3) выполнено, то при любых $h \in E, h' \in E$ и $t' \in T$:

$$|g(h,h')| \le ||g(h,\cdot)||^{t'} \cdot ||h'||_{t'},$$

в частности,

$$\varphi(h) \le \|g(h, \cdot)\|^{t'} \cdot \|h\|_{t'}. \tag{2.7}$$

Из (2.7) и (2.3) получаем:

$$||g(h,\cdot)||^{t'} \cdot ||h'||_{t'} \ge k_t \cdot ||h||_t^2. \tag{2.8}$$

Пусть $t' \leq t$, тогда $\|\cdot\|_{t'} \leq K \cdot \|\cdot\|_t$, и из (2.8) находим:

$$||h||_t \le \frac{K}{k_t} ||g(h,\cdot)||^{t'},$$

откуда, в силу предложения 2.3, следует положительная определенность φ .

Перейдем к K-положительно определенным формам.

Определение 2.2. Пусть φ — квадратичная форма в вещественном отделимом ЛВП E, порожденная билинейной формой g на E^2 . Назовем форму φ компактно-невырожденной (K-невырожденной), если для любого абсолютно выпуклого компакта C в E сужение $\varphi|_{E_C}$ — невырожденная квадратичная форма относительно $\|\cdot\|_C$, m.e., в соответствии c определением c 2.1, отображение

$$g_1^C: E_C \ni h \to g^C(h, \cdot) \in E_C^*$$

является изоморфизмом E_C в E_C^* (здесь g^C — сужение g на E_C^2).

Если φ K-невырождена и $\varphi \gg 0$, то назовем φ компактно положительно определенной (K-положительно определенной) формой:

$$\varphi \gg 0 \pmod{K}$$
.

Получим аналоги утверждений 2.3 и 2.4.

Предложение 2.2. Квадратичная форма φ в отделимом вещественном ЛВП E K-положительно определена в том и только том случае, если для любого абсолютно выпуклого компакта C в E найдется такое $M_C > 0$, что при всех $h \in E_C$:

$$||h||_C \leq M_C \cdot ||g^C(h,\cdot)||^C$$
.

Доказательство. Достаточно к каждому подпространству E_C и сужению $\varphi|_{E_C}$ применить предложение 2.1 (при этом λ -топология в E_C^* порождается ко-нормой $\|\cdot\|^C$).

Теорема 2.2. Квадратичная форма φ в отделимом вещественном ЛВП E K-положительно определена в том и только том случае, если для любого абсолютно выпуклого компакта C в E найдется такое $k_C > 0$, что при всех $h \in E_C$:

$$\varphi(h) \ge k_C \cdot ||h||_C^2.$$

Доказательство. Достаточно к каждому подпространству E_C и сужению $\varphi|_{E_C}$ применить предложение 2.1.

Установим, наконец, связь положительной определенности и K-положительной определенности.

Теорема 2.3. Если $\varphi \gg 0$, то $\varphi \gg 0 \pmod{K}$.

Доказательство. Пусть C — абсолютно выпуклый компакт в E, ∂C — граница C в E_C . Для каждого $h \in \partial C$ выберем такой индекс $t=t(h)\in T$, что $\|h\|_t>0$; тогда, по непрерывности, $\|\cdot\|_t>0$ в некоторой открытой окрестности U(h) в E_C . Выберем из покрытия $\{U_t(h)\}_{h\in\partial C}$ конечное: $\partial C\subset U_{t_1}(h_1)\cup\ldots\cup U_{t_n}(h_n)$ и индекс $t^0\in T$, такой, что $t_1,\ldots,t_n\preceq t^0$. Тогда $\|h\|_{t_0}>0$ при всех $h\in\partial C$, откуда, ввиду компактности ∂C , $\|h\|_{t_0}\geq m>0$ при всех $h\in\partial C$. Поскольку $\|h\|_C=1$ при $h\in\partial C$, то приходим к неравенству

$$||h||_{t_0} \ge m \cdot ||h||_C$$

при $h \in \partial C$, а значит, и при всех $h \in E_C$ (в частности, это означает, что нормы $\|\cdot\|_C$ и $\|\cdot\|_{t_0}$ в E_C эквивалентны). Отсюда и из неравенства (2.3) получаем:

$$\varphi(h) \ge k_{t_0} \cdot ||h||_{t_0}^2 \ge (k_{t_0} \cdot m^2) \cdot ||h||_C,$$

и остается применить теорему 2.2.

Пример K-положительно определенной формы, которая не является положительно определенной, будет рассмотрен ниже.

3. Экстремумы и K-экстремумы в ЛВП

Приведем вначале полученные в [8] условия локального экстремума в ЛВП в терминах нормальных производных, обобщающие классические условия экстремума в банаховом пространстве.

Предложение 3.1. Пусть E- отделимое ЛВП. Если функционал $f: E \to \mathbb{R}$ имеет локальный экстремум в точке $x \in E$ и нормально дифференцируем в точке x, то f'(x) = 0. Если при этом f дважды нормально дифференцируем в точке x, то $f''(x) \ge 0$.

Предложение 3.2. Пусть E- отделимое ЛВП. Если функционал $f:E\to\mathbb{R}$ дважды нормально дифференцируем в точке $x\in E,$ f'(x)=0 и $f''(x)\gg 0$ ($f''(x)\ll 0$), то f имеет строгий минимум (максимум) в точке x.

Перейдем к компактным экстремумам.

Определение 3.1. Пусть E - ЛВП, $f : E \to \mathbb{R}$. Будем говорить, что f имеет компактный экстремум (K-экстремум) в точке $x \in E$, если для всякого абсолютного выпуклого компакта C в E сужение $f|_{x+E_C}$ имеет локальный экстремум в точке x относительно $\|\cdot\|_C$ (т.е. значение f в точке x — экстремальное на некотором множестве $x + \varepsilon C$, $\varepsilon > 0$).

Отметим, что экстремумы интегральных функционалов, как правило, разыскиваются на некотором компакте. Легко видеть, что K-экстремум — более слабое понятие, чем локальный экстремум.

Предложение 3.3. Если f имеет локальный экстремум g точке $g \in E$, то g имеет и g-экстремум g точке g.

Доказательство. Пусть $f(x') \geq f(x)$ в некоторой окрестности U(x) точки x, C – абсолютно выпуклый компакт в E. Так как C ограничено, то, при достаточно малых $\varepsilon > 0, x + \varepsilon C \subset U(x)$, откуда $f(x') \geq f(x)$ при $x' \in x + \varepsilon C$, т.е. f имеет K-минимум в точке x. \square

В частности, условия предложения 3.2 достаточны для K-экстремума. Приведем аналоги предложений 3.1–3.2 для K-экстремумов в терминах K-производных.

Предложение 3.4. Пусть E- отделимое ЛВП. Если функционал $f: E \to \mathbb{R}$ имеет K-экстремум в точке $x \in E$ и K-дифференцируем в точке x, то $f_K'(x) = 0$. Если при этом f дважды K-дифференцируем, то $f_K''(x) \ge 0$.

Доказательство. Достаточно к каждому сужению $f|_{x+E_C}$, где C — абсолютно выпуклый компакт в E, применить предложение 3.1. \square

Предложение 3.5. Пусть E- отделимое ЛВП. Если функционал $f:E\to\mathbb{R}$ дважды K-дифференцируем в точке $x\in E, f_K'(x)=0$ и $f_K''(x)\gg 0\pmod K$ ($f_K''(x)\ll 0\pmod K$), то f имеет строгий K-минимум (K-максимум) в точке x.

Доказательство. Поскольку для любого абсолютно выпуклого компакта C в E верно $f'_K(x) = (f|_{x+E_C})'(x)$ и $f''_K(x) = (f|_{x+E_C})''(x)$, то применяя к каждому сужению $f|_{x+E_C}$ предложение 3.2, приходим к требуемому результату.

Наиболее полезным в дальнейшем послужит следующее утверждение.

Теорема 3.1. Пусть E — отделимое ЛВП. Если функционал f: $E \to \mathbb{R}$ дважды K-дифференцируем в точке $x \in E$, $f_K'(x) = 0$ и $f_K''(x) \gg 0$ ($f_K''(x) \ll 0$), то f имеет строгий K-минимум (K-максимум) в точке x.

Доказательство. В силу теоремы 2.3, из условия $f_K''(x) \gg 0$ следует $f_K''(x) \gg 0 \pmod{K}$, что позволяет применить предложение 3.5.

В заключении этого раздела приведем простой пример K-экстремума, который не является локальным экстремумом.

Пример 3.1. Пусть B — замкнутый единичный шар в рефлексивном банаховом пространстве E. Перейдем к слабой топологии $\sigma(E,E^*)$ в E; тогда множество B компактно в E_{σ} . При этом, поскольку [9] любой, и, в частности, абсолютно выпуклый компакт C в E_{σ} ограничен в E, то $B \supset \varepsilon C$ при достаточно малых $\varepsilon > 0$. Положим

$$f(x) = \begin{cases} ||x||, & x \in B; \\ 1 - ||x||, & x \notin B. \end{cases}$$

Тогда из определения 3.3 следует, что функционал f (непрерывный в E) имеет строгий K-минимум в нуле, поскольку сужения $f|_{\varepsilon C}>0$ при $x\neq 0$ для достаточно малых $\varepsilon>0$. Однако f не имеет локального экстремума в нуле (в E_{σ}), поскольку любая окрестность нуля в E_{σ} пересекается как с $B\setminus\{0\}$, так и с $E\setminus 2B$.

Отметим, что в рассматриваемой ситуации любой K-экстремум в E_{σ} является локальным экстремумом в E; при этом, как отмечалось в примере 1.1, K-дифференцируемость в E_{σ} является сильной дифференцируемостью в E; K-положительная определенность в E_{σ} также совпадает с положительной определенностью в E. Таким образом, в этом случае классическая теория экстремумов является частным случаем теории K-экстремумов.

4. Повторная *К*-дифференцируемость и *К*-экстремумы функционала Эйлера–Лагранжа

Как известно [1], уже в вещественном случае функционал Эйлера– Лагранжа

$$\Phi(y) = \int_{a}^{b} f(x, y(x), y'(x)) dx; \qquad y \in W_{2}^{1}([a, b], \mathbb{R})$$
 (4.1)

не является, за исключением вырожденного случая, дважды дифференцируемым по Фреше. Мы покажем, что (даже в случае отображений $y(\cdot)$ в ЛВП) функционал Ф дважды K-дифференцируем. Вначале обобщим понятие пространства Соболева W_2^1 на случай отображений со значениями в ЛВП.

Определение 4.1. Пусть E- полное вещественное ЛВП c определяющей системой полунорм $\{\|\cdot\|_t\}_{t\in T}$. Определим пространство

 $W^1_2([a,b],E)$ как пополнение пространства $C^1([a,b],E)$ относительно определяющей системы полунорм

$$\|y\|_t^{W_2^1} = \left(\int_a^b \|y(x)\|_t^2 dx + \int_a^b \|y'(x)\|_t^2 dx\right)^{\frac{1}{2}}, \quad t \in T_1$$

Замечание 4.1. Аналогичным образом можно ввести пространство $L_2([a,b],E)$ (с полунормами $\|y\|_t^{L_2}$); при этом, очевидно, сохраняется плотное вложение

$$W_2^1([a,b],E) \hookrightarrow L_2([a,b],E).$$

В [8] доказан следующий результат, обобщающий известное свойство однократной дифференцируемости по Фреше функционала Эйлера—Лагранжа.

Предложение 4.1. Пусть E — полное вещественное ЛВП. Если вещественная функция u = f(x, y, z) непрерывно дифференцируема на $[a;b] \times E \times E$, то функционал Эйлера-Лагранжа (4.1) непрерывно нормально дифференцируем на $W_2^1([a,b],E)$, причем

$$\Phi'(y)h = \int_{a}^{b} \left[\frac{\partial f}{\partial x}(x, y, y')h(x) + \frac{\partial f}{\partial z}(x, y, y')h'(x) \right] dx.$$

Следствие 4.1. В условиях предложения 4.1, равенство $\Phi'(y) = 0$ выполняется тогда и только тогда, когда экстремаль $y(\cdot)$ служит решением вариационного уравнения Эйлера-Лагранжа

$$\frac{\partial f}{\partial x}(x, y, y') - \frac{d}{dx} \left[\frac{\partial f}{\partial z}(x, y, y') \right] = 0. \tag{4.2}$$

Базой для доказательства повторной K-дифференцируемости функционала Эйлера—Лагранжа служит следующее утверждение [8].

Лемма 4.1. Пусть E и F — отделимые ЛВП c определяющими системами полунорм $\{\|\cdot\|_t\}_{t\in T}$ и $\{\|\cdot\|^s\}_{s\in S}$ соответственно. Если отображение $g: E \to F^*$ непрерывно дифференцируемо на выпуклом компакте $C \subset E$, то для всякого $s \in S$ найдется такой индекс $t \in T$, что $\sup_{x \in C} \|g(x+h) - g(x) - g'(x)h\|^s = o(\|h\|_t)$ при $h \to 0$ в E.

Теорема 4.1. Пусть E — полное отделимое вещественное ЛВП. Если вещественная функция u = f(x, y, z) дважды непрерывно дифференцируема на $[a, b] \times E \times E$, то функционал Эйлера-Лагранжа (4.1) дважды непрерывно K-дифференцируем на $\mathrm{W}_2^1([a, b], E)$, причем

$$\Phi_{K}''(y)(h,k) = \int_{a}^{b} \left[\frac{\partial^{2} f}{\partial y^{2}}(x,y,y')(h,k) + \frac{\partial^{2} f}{\partial z^{2}}(x,y,y')((h',k) + (h,k')) + \frac{\partial^{2} f}{\partial z^{2}}(x,y,y')(h',k') \right] dx. \quad (4.3)$$

Доказательство. Непосредственное вычисление показывает:

$$(\Phi'(y+h) - \Phi'(y)) \cdot k = \int_{a}^{b} \left[\frac{\partial^{2} f}{\partial y^{2}}(x, y, y')(h(x), k(x)) + \frac{\partial^{2} f}{\partial y \partial z}(x, y, y')((h(x), k'(x)) + (h'(x), k(x))) + \frac{\partial^{2} f}{\partial z^{2}}(x, y, y')(h'(x), k'(x)) \right] dx + \int_{a}^{b} \left[r_{x}^{y}(h(x), h'(x)) \cdot k(x) + r_{x}^{z}(h(x), h'(x)) \cdot k'(x) \right] dx, \quad (4.4)$$

где r_x^y и r_x^z — остаточные члены приращений, соответственно, $\frac{\partial f}{\partial y}$ и $\frac{\partial f}{\partial z}$ в точке (x,y(x),y'(x)).

Пусть C — произвольный абсолютно выпуклый компакт в $F=\mathrm{W}^1_2([a,b],E).$ Тогда, очевидно, множества

$$K = \{ y \in y([a,b]) \mid y(\cdot) \in C \}$$
 if $K_1 = \{ z \in y'([a,b]) \mid y(\cdot) \in C \}$

абсолютно выпуклые компакты в E. Поскольку $\frac{\partial f}{\partial y} \in C^1$ и $\frac{\partial f}{\partial z} \in C^1$ на выпуклом компакте $[a,b] \times K \times K_1$, то применяя лемму 4.1 к r_x^y и r_x^z , получаем:

$$\frac{\|r_x^y(h(x),h'(x))\|^t}{\|h(x)\|_t + \|h'(x)\|_t} \rightrightarrows 0 \quad \mathbf{и} \quad \frac{\|r_x^z(h(x),h'(x))\|^t}{\|h(x)\|_t + \|h'(x)\|_t} \rightrightarrows 0$$

при $x \in [a,b]$, некотором $t \in T$, $(h(x),h'(x)) \to 0$ в E^2 . Учитывая оценки

$$|r_x^y(h(x), h'(x)) \cdot k(x)| \le ||r_x^y(h(x), h'(x))||^t \cdot ||k(x)||_t,$$

$$|r_x^z(h(x), h'(x)) \cdot k'(x)| \le ||r_x^z(h(x), h'(x))||^t \cdot ||k'(x)||_t.$$

и обозначая через $R_y(h)k$ общий остаточный член в (4.4), нетрудно получить

$$R_y(h)k = o(\|h\|^t \cdot \|k\|^t)$$

при $h,k\to 0$ в $\mathrm{W}^1_2([a,b],E)$. Отсюда, поскольку $\|\cdot\|^t\leq M\cdot\|\cdot\|_C$ в F_C , следует

$$R_y(h)k = o(\|h\|_C \cdot \|k\|_C),$$

т. е. $R_y(h)=o(\|h\|_C)$ и оператор $\Phi':F\to F^*$ K-дифференцируем в точке $y(\cdot)$. Непрерывность Φ''_K , очевидно, следует из равенства (4.3).

Предложение 4.2. Если, в условиях теоремы 4.1, в некоторой точке $y(\cdot) \in W^1_2([a,b],E)$ выполнено уравнение (4.2), и $\Phi_K''(y) \gg 0 \pmod{K}$, то функционал Эйлера–Лагранжа (4.1) имеет строгий K-минимум в точке $y(\cdot)$.

Доказательство. Так как, в силу следствия 4.1, $\Phi'_K(y) = \Phi'(y) = 0$, то остается применить предложение 3.5.

Теорема 4.2. Если, в условиях теоремы 4.1, в некоторой точке $y(\cdot) \in W_2^1([a,b],E)$ выполнено уравнение (4.2), и при любом фиксированном $x \in [a,b]$ квадратичная форма f''(x,y(x),y'(x)) положительно определена, то функционал Эйлера-Лагранжа (4.1) имеет K-минимум в точке $y(\cdot)$.

Доказательство. В соответствии с теоремой 2.1, для каждого $x \in [a,b]$ и $t \in T$ найдется такое k(t,x)>0, что

$$f''(x, y(x), y'(x)) \cdot ((h_1(x), h_2(x)), (h_1(x), h_2(x)))$$

$$= \frac{\partial^2 f}{\partial y^2}(h_1(x), h_1(x)) + 2\frac{\partial^2 f}{\partial y \partial z}(h_1(x), h_2(x)) + \frac{\partial^2 f}{\partial z^2}(h_2(x), h_2(x))$$

$$\geq k(t, x)(\|h_1(x)\|_t^2 + \|h_2(x)\|_t^2)$$

при всех $(h_1(x), h_2(x)) \in E^2$. Используя компактность [a; b], аналогично доказательству теоремы 2.3, можно выбрать в последней оценке $k_t > 0$, не зависящее от x. В частности,

$$\frac{\partial^2 f}{\partial y^2}(h(x), h(x)) + 2\frac{\partial^2 f}{\partial y \partial z}(h(x), h'(x)) + \frac{\partial^2 f}{\partial z^2}(h'(x), h'(x))$$
$$> k_t(\|h(x)\|_t^2 + \|h'(x)\|_t^2)$$

для всех $x \in [a,b]$ и $h(\cdot) \in \mathrm{W}_2^1([a,b],E)$. Отсюда, используя (4.3), получаем:

$$\Phi_K''(y)(h,h) \ge k_t \left[\int_a^b \|h(x)\|_t^2 dx + \int_a^b \|h'(x)\|_t^2 dx \right] = k_t \cdot \|h\|_t^2,$$

т. е., согласно теореме 2.1, $\Phi_K''(y) \gg 0$. Отсюда, в силу теоремы 3.1, Φ имеет строгий K-минимум в точке $y(\cdot)$.

В случае, когда E — ядерное ЛВП, в [7] получено достаточное условие K-экстремума функционала Эйлера—Лагранжа в терминах частных производных подинтегральной функции.

Теорема 4.3. Пусть E — полное вещественное ядерное ЛВП, функция u = f(x, y, z) дважды непрерывно нормально дифференцируема на $[a; b] \times E \times E$. Если в некоторой точке $y(\cdot) \in W_2^1([a, b], E)$ выполнено уравнение (4.2), u при любом фиксированном $x \in [a, b]$:

1)
$$\frac{\partial^2 f}{\partial y^2}(x, y(x), y'(x)) \gg 0$$
, и коммутирует с $\frac{\partial^2 f}{\partial y \partial z}(x, y(x), y'(x))$ и $\frac{\partial^2 f}{\partial z^2}(x, y(x), y'(x))$;

2)
$$\frac{\partial^2 f}{\partial y^2}(x, y(x), y'(x)) \cdot \frac{\partial^2 f}{\partial z^2}(x, y(x), y'(x)) - \left(\frac{\partial^2 f}{\partial y \partial z}(x, y(x), y'(x))\right)^2 \gg 0;$$

то функционал Эйлера-Лагранжа (4.1) имеет строгий K-минимум в точке $y(\cdot)$.

5. Пример K-экстремума функционала Эйлера-Лагранжа, не являющегося локальным экстремумом

1. Выберем сначала вещественную функцию $\varphi \in C^2[0;+\infty]$ так, чтобы $\varphi(t)=t$ при $0\leq t\leq 1-\delta,$ $\varphi(t)=2-t$ при $1+\delta\leq t<+\infty$ ($\delta>0$ достаточно мало). Положим $f(x,y,z)=\varphi(y^2+z^2)$ и рассмотрим функционал

$$\Phi(y) = \int_{0}^{1} f(x, y, y') dx = \int_{0}^{1} \varphi(y(x)^{2} + y'(x)^{2}) dx = \int_{0}^{1} \varphi(N(y)(x)) dx,$$

где
$$N(y)(x) = y(x)^2 + y'(x)^2, y(\cdot) \in W_2^1([a, b], \mathbb{R}) = F.$$

Поскольку $f\in C^2([0;1]\times\mathbb{R}^2)$, то $\Phi(y)$ непрерывно дифференцируем по Фреше в F. Вариационное уравнение Эйлера–Лагранжа (4.2) принимает вид:

$$\frac{d\varphi}{dt}(y - y'') - 2\frac{d^2\varphi}{dt^2}(y + y'')(y')^2 = 0.$$
 (5.1)

Таким образом, функция $y_0(x) \equiv 0$ удовлетворяет уравнению (5.1), т.е. является экстремалью; при этом $\Phi(y_0) = 0$.

2. Покажем, что $\Phi(y)$ не имеет локального экстремума в точке $y_0(\cdot)$. Действительно, для любого $\varepsilon \in (0; \delta)$ при $y_1(x) \equiv \varepsilon$ имеем:

$$||y_1||^{W_2^1} = \varepsilon;$$
 $\Phi(y_1) = \int_0^1 \varphi(\varepsilon^2) dx = \varepsilon^2 > 0.$

С другой стороны, полагая

$$y_2(x) = \begin{cases} 2x, & 0 \le x \le \frac{\varepsilon}{2}; \\ 0, & \frac{\varepsilon}{2} < x \le 1; \end{cases}$$

легко подсчитать, что

$$||y_2||^{W_2^1} = \sqrt{2\varepsilon + \frac{\varepsilon^3}{6}}; \qquad \Phi(y_2) = \int_0^{\frac{\varepsilon}{2}} [2 - 4(x^2 + 1)] dx = -\varepsilon - \frac{\varepsilon^3}{6} < 0.$$

Таким образом, в произвольно малой окрестности y_0 (в F) $\Phi(y)$ принимает значения разного знака.

3. Проверим непосредственно, что $\Phi(y)$ имеет K-экстремум в нуле. Пусть $y \in F, y \neq 0$. Не ограничивая общности, можно считать, что

$$K = \int_{\{x \mid y(x) \le 1 - \delta\}} N(y)(x) \, dx > 0; \tag{5.2}$$

(иначе мы заменим y на $\lambda_0 y$ при достаточно малом $\lambda_0 > 0$). Выберем теперь $\lambda > 0$ так, чтобы:

$$\lambda < \frac{1-\delta}{1+\delta}; \tag{5.3}$$

$$\int_{\{x|N(y)(x)\geq \frac{1-\delta}{\lambda}\}} N(y)(x) dx < \frac{K}{2}.$$
 (5.4)

Из (5.2), (5.3) и (5.4) находим:

$$\begin{split} \Phi(\lambda y) &= \int\limits_0^1 \varphi(\lambda \cdot N(y)(x)) \, dx \\ &= \int\limits_{\{x|N(y)(x) \leq \frac{1-\delta}{\lambda}\}} \varphi(\lambda \cdot N(y)(x)) \, dx + \int\limits_{\{x|N(y)(x) \geq \frac{1-\delta}{\lambda}\}} \varphi(\lambda \cdot N(y)(x)) \, dx \\ &= \lambda \int\limits_{\{x|N(y)x \leq \frac{1-\delta}{\lambda}\}} N(y)(x) \, dx + \int\limits_{\{x|N(y)x \geq \frac{1-\delta}{\lambda}\}} [2 - \lambda N(y)(x)] \, dx \end{split}$$

$$\geq \lambda \int_{\{x|N(y)(x)\leq 1-\delta\}} N(y)(x) dx + 2 \operatorname{mes}\left\{x|N(y)(x)\geq \frac{1-\delta}{\lambda}\right\}$$
$$-\lambda \int_{\{x|N(y)(x)\geq \frac{1-\delta}{\lambda}\}} N(y)(x) dx \geq \lambda \cdot K - \lambda \cdot \frac{K}{2} = \lambda \cdot \frac{K}{2} > 0.$$

Таким образом, для всякого $y\in F,\ y\neq 0$, найдется такое $\lambda=\lambda(y)>0$, что $\Phi(\lambda y)>0$.

Пусть C — произвольный абсолютно выпуклый компакт в F. Для любого $y(\cdot) \in C$ выберем $\lambda = \lambda(y) > 0$ такое, что $\Phi(\lambda y) > 0$. В силу непрерывности Φ , последнее неравенство сохраняется и в некоторой окрестности U(y) данной точки. Выбрав из покрытия $\{U(y)|y\in C\}$, ввиду компактности C, конечное покрытие

$$C \subset U_1(y_1) \cup \ldots \cup U_n(y_n),$$

где $\Phi(\lambda_i y) > 0$ при $y \in U_i(y_i)$ $(i = \overline{1,n})$,, положим $\lambda = \min\{\lambda_1, \dots, \lambda_n\}$. Тогда $\Phi(\lambda y) > 0$ при всех $y \in C$. Таким образом, при некотором $\lambda = \lambda(C) > 0$, сужение $\Phi|_{\lambda C}$ имеет строгий минимум в нуле, т. е., согласно определению 3.1, Φ имеет строгий K-минимум.

4. Покажем, что в нуле выполнено достаточное условие K-экстремума 4.3. Непосредственный подсчет показывает, что :

$$\begin{split} \frac{\partial^2 f}{\partial y^2} &= 4\frac{d^2\varphi}{dt^2} + 2\frac{d\varphi}{dt};\\ \frac{\partial^2 f}{\partial y^2} \cdot \frac{\partial^2 f}{\partial z^2} - \left(\frac{\partial^2 f}{\partial u \partial z}\right)^2 &= 8\frac{d\varphi}{dt} \cdot \frac{d^2\varphi}{dt^2}(y^2 + z^2) + 4\left(\frac{d\varphi}{dt}\right)^2, \end{split}$$

откуда на экстремали $y_0 \equiv 0$:

$$\frac{\partial^2 f}{\partial u^2} = 2 > 0; \qquad \frac{\partial^2 f}{\partial u^2} \cdot \frac{\partial^2 f}{\partial z^2} - \left(\frac{\partial^2 f}{\partial u \partial z}\right)^2 = 4 > 0.$$

Отметим, что простота построенного примера позволяет предположить, что именно компактные экстремумы (а не локальные) являются типичными для функционала Эйлера—Лагранжа.

6. Заключение

Обсудим общие принципы предложенного подхода. Вводя K-дифференцируемость и K-экстремумы, мы, по существу, построили разложение ЛВП E в индуктивную шкалу банаховых пространств

$$\overrightarrow{E}_K := \{ (E_C, \| \cdot \|_C) \}, \tag{6.1}$$

где C — всевозможные абсолютно выпуклые компакты в E, $\|\cdot\|_C$ — их функционалы Минковского в E_C = span (C), порождающие в E_C топологию сильнее исходной.

При этом K-дифференцируемость в точке $x \in E$ есть сильная дифференцируемость всех сужений на $(x+E_C)$, K-экстремум в точке $x \in E$ есть локальный экстремум всех сужений на $(x+E_C)$. Такая конструкция оказалась хорошо приспособленной к интегральным функционалам.

Обобщая изложенный выше подход, рассмотрим произвольную систему $\beta = \{B\}$ замкнутых ограниченных абсолютно выпуклых подмножеств ЛВП E, направленную по включению (т. е. $(B_1, B_2 \in \beta) \Rightarrow (B_1, B_2 \subset B_3 \in \beta)$), и введем аналогичное (6.1) разложение E в индуктивную шкалу банаховых пространств

$$\overrightarrow{E}_{\beta} := \{ (E_B, \| \cdot \|_B) \}_{B \in \beta}.$$

Здесь также $\|\cdot\|_B$ порождает в E_B топологию сильнее исходной. Вводя β -дифференцируемость и β -экстремумы в точке $x\in E$ как сильную дифференцируемость и локальные экстремумы всех сужений на $(x+E_B)$, нетрудно построить теорию β -экстремумов по аналогии с теорией K-экстремумов. При этом прослеживается и обратная связь: при переходе к слабой топологии в полурефлексивном ЛВП E K-экстремумы совпадают с β -экстремумами, где β — система ϵcex абсолютно выпуклых замкнутых ограниченных подмножеств E.

По-видимому, различным классам функционалов отвечают различные β -экстремумы (и повторная β -дифференцируемость). Перспектива описания таких классов представляется весьма интересной.

Литература

- [1] И. В. Скрыпник, *Нелинейные эллиптические уравнения высшего порядка*. Наукова думка, Киев, 1973, 219 с.
- [2] М. З. Згуровский, В. С. Мельник, Нелинейный анализ и управление бесконечномерными системами. Наукова думка, Киев, 1999, 630 с.
- [3] А. В. Угланов, Вариационное исчисление в банаховых пространствах // Математический сборник, **191** (2000), N 10, 105–118.
- [4] М. М. Вайнберг, Вариационные методы исследования нелинейных операторов. Гостехиздат, Москва, 1956.
- [5] В. С. Мельник, ОТ-дифференцируемых функционалах // Доклады Академии Наук (Россия), 324 (1992), N 5, 928–932.
- [6] І. В. Орлов, *К-диференційовність функціоналу Ейлера-Лагранжа* // Доповіді НАН України, N 9, (2003), 29–33.
- [7] I. V. Orlov, Extreme Problems and Scales of the Operator Spaces // Proceedings Lviv S. Banach Conference on Functional Analysis, 2002, in North-Holland Math. Studies, to appear.

- [8] И. В. Орлов, Нормальная дифференцируемость и экстремумы функционалов в локально выпуклом пространстве // Кибернетика и системный анализ, (2002), N 4, 23–34.
- [9] Р. Эдвардс, Функциональный анализ. Теория и приложения. Мир, Москва, 1969, 1071 с.
- [10] А. Картан, Дифференциальное исчисление. Дифференциальные формы. Мир, Москва, 1971, 392 с.
- [11] И. В. Орлов, Нормальные разложения операторных пространств над локально выпуклыми пространствами // Функциональный анализ и его приложения, 36 (2002), N 4, 78–80.

Сведения об авторах

Игорь Владимирович Орлов Таврический национальний университет им. В. И. Вернадского, ул. Ялтинская 4,

95007, Симферополь, Крым

Украина

E-Mail: old@tnu.crimea.ua