On 2-primal Ore extensions

Vijay K. Bhat
(Presented by I. V. Protasov)

Abstract

Let R be a ring, σ be an automorphism of R and δ be a σ-derivation of R . We define a δ property on R . We say that R is a δ-ring if $a \delta(a) \in P(R)$ implies $a \in P(R)$, where $\mathrm{P}(\mathrm{R})$ denotes the prime radical of R . We ultimately show the following.

Let R be a Noetherian δ-ring, which is also an algebra over Q, σ and δ be as usual such that $\sigma(\delta(a))=\delta(\sigma(a))$, for all $a \in R$ and $\sigma(P)=P$, P any minimal prime ideal of R . Then $R[x, \sigma, \delta]$ is a 2 -primal Noetherian ring.

2000 MSC. 16XX, 16N40, 16P40, 16W20, 16W25.
Key words and phrases. 2-primal, Minimal prime, prime radical, nil radical, automorphism, derivation.

1. Introduction

A ring R always means an associative ring. Q denotes the field of rational numbers. $\operatorname{Spec}(\mathrm{R})$ denotes the set of prime ideals of R. MinSpec(R) denotes the sets of minimal prime ideals of $R . P(R)$ and $N(R)$ denote the prime radical and the set of nilpotent elements of R respectively. Let I and J be any two ideals of a ring R . Then $I \subset J$ means that I is strictly contained in J.

This article concerns the study of ore extensions in terms of 2-primal rings. 2-primal rings have been studied in recent years and the 2-primal property is being studied for various types of rings. In [13], Greg Marks discusses the 2-primal property of $R[x, \sigma, \delta]$, where R is a local ring, σ is an automorphism of R and δ is a σ-derivation of R .

Recall that a σ-derivation of R is an additive map $\delta: R \rightarrow R$ such that $\delta(a b)=\delta(a) \sigma(b)+a \delta(b)$, for all $a, b \in R$. In case σ is the identity map, δ is called just a derivation of R . For example for any endomorphism τ of a ring R and for any $a \in R, \varrho: R \rightarrow R$ defined as $\varrho(r)=r a-a \tau(r)$

Received 14.11.2006

Sincere thanks to referee for some suggestions to give the manuscript a modified shape.
is a τ-derivation of R . Also let $\mathrm{R}=\mathrm{K}[\mathrm{x}]$, K a field. Then the formal derivative $d / d x$ is a derivation of R.

Minimal prime ideals of 2-primal rings have been discussed by Kim and Kwak in [10]. 2-primal near rings have been discussed by Argac and Groenewald in [2]. Recall that a ring R is 2-primal if and only if nil radical and prime radical of R are same if and only if the prime radical is a completely semiprime ideal. An ideal I of a ring R is called completely semiprime if $a^{2} \in I$ implies $a \in I$, where $a \in R$. We also note that a reduced is 2 -primal and a commutative ring is also 2 -primal. For further details on 2-primal rings, we refer the reader to $[7,9,10,14]$. Before proving the main result, we find a relation between the minimal prime ideals of R and those of the Ore extension $R[x, \sigma, \delta]$, where R is a Noetherian Q-algebra, σ is an automorphism of R and δ is a σ-derivation of R . This is proved in Theorem (2.1). Recall that $R[x, \sigma, \delta]$ is the usual polynomial ring with coefficients in R in which multiplication is subject to the relation $a x=x \sigma(a)+\delta(a)$ for all $a \in R$. We take any $f(x) \in R[x, \sigma, \delta]$ to be of the form $f(x)=\sum_{i=0}^{n} x^{i} a_{i}$. We denote $R[x, \sigma, \delta]$ by $\mathrm{O}(\mathrm{R})$.

Ore-extensions including skew-polynomial rings and differential operator rings have been of interest to many authors. See $[1,3,4,8,11,12]$. Recall that in [11], a ring R is called σ-rigid if there exists an endomorphism σ of R with the property that $a \sigma(a)=0$ implies $\mathrm{a}=0$ for $a \in R$. In [12], Kwak defines a $\sigma(*)$-ring R to be a ring if $a \sigma(a) \in P(R)$ implies $a \in P(R)$ for $a \in R$ and establishes a relation between a 2 -primal ring and a $\sigma(*)$-ring. The property is also extended to the skew-polynomial ring $R[x, \sigma]$.

Let R be a ring, σ be an automorphism of R and δ be a σ-derivation of R . We introduce a property on R and say that R is a δ-ring if $a \delta(a) \in$ $P(R)$ implies $a \in P(R)$, where $\mathrm{P}(\mathrm{R})$ denotes the prime radical of R . We note that a ring with identity is not a δ-ring.

Now let R be a Noetherian δ-ring, which is also an algebra over Q such that $\sigma(\delta(a))=\delta(\sigma(a))$, for all $a \in R ; \sigma(P)=P$ for all $P \in \operatorname{MinSpec}(R)$ and $\delta(P(R)) \subseteq P(R)$. Then $R[x, \sigma, \delta]$ is 2-primal. This is proved in Theorem (2.4).

2. Ore extensions

We begin with the following definition:
Definition 2.1. Let R be a ring. Let σ be an automorphism of R and δ be a σ-derivation of R. We say that R is a δ-ring if a $\delta(a) \in P(R)$ implies $a \in P(R)$.

Recall that an ideal I of a ring R is called σ-invariant if $\sigma(I)=I$ and is called δ-invariant if $\delta(I) \subseteq I$. If an ideal I of R is σ-invariant and δ-invariant, then $I[x, \sigma, \delta]$ is an ideal of $R[x, \sigma, \delta]$. Also I is called completely prime if $a b \in I$ implies $a \in I$ or $b \in I$ for $a, b \in R$.

Gabriel proved in Lemma (3.4) of [5] that if R is a Noetherian Qalgebra and δ is a derivation of R , then $\delta(P) \subseteq P$, for all $P \in \operatorname{MinSpec}(R)$. We generalize this for σ-derivation δ of R and give a structure of minimal prime ideals of $\mathrm{O}(\mathrm{R})$ in the following Theorem.

Theorem 2.1. Let R be a Noetherian Q-algebra. Let σ be an automorphism of R and δ be a σ-derivation of R such that $\sigma(\delta(a))=\delta(\sigma(a))$, for $a \in R$. Then $P \in \operatorname{MinSpec}(O(R))$ such that $\sigma(P \cap R)=P \cap R$ implies $P \cap R \in \operatorname{MinSpec}(R)$ and $P_{1} \in \operatorname{MinSpec}(R)$ such that $\sigma\left(P_{1}\right)=P_{1}$ implies $O\left(P_{1}\right) \in \operatorname{MinSpec}(O(R))$.

Proof. Let $P_{1} \in \operatorname{MinSpec}(R)$ with $\sigma\left(P_{1}\right)=P_{1}$. Let $\mathrm{T}=R[[t, \sigma]]$, the skew power series ring. Now it can be seen that $e^{t \delta}$ is an automorphism of T and $P_{1} T \in \operatorname{MinSpec}(T)$. We also know that $\left(e^{t \delta}\right)^{k}\left(P_{1} T\right) \in$ $\operatorname{MinSpec}(T)$ for all integers $k \geq 1$. Now T is Noetherian by Exercise ($1 \mathrm{ZA}(\mathrm{c})$) of [6], and therefore Theorem (2.4) of [6] implies that $\operatorname{MinSpec}(\mathrm{T})$ is finite. So exists an integer an integer $n \geq 1$ such that $\left(e^{t \delta}\right)^{n}\left(P_{1} T\right)=P_{1} T$; i.e. $\quad\left(e^{n t \delta}\right)\left(P_{1} T\right)=P_{1} T$. But R is a Q-algebra, therefore, $e^{t \delta}\left(P_{1} T\right)=P_{1} T$. Now for any $a \in P_{1}, a \in P_{1} T$ also, and so $e^{t \delta}(a) \in P_{1} T$; i.e. $a+t \delta(a)+\left(t^{2} / 2!\right) \delta^{2}(a)+\cdots \in P_{1} T$, which implies that $\delta(a) \in P_{1}$. Therefore $\delta\left(P_{1}\right) \subseteq P_{1}$.

Now it can be easily seen that $O\left(P_{1}\right) \in \operatorname{Spec}(O(R))$. Suppose that $O\left(P_{1}\right) \notin \operatorname{MinSpec}(O(R))$, and $P_{2} \subset O\left(P_{1}\right)$ is a minimal prime ideal of $\mathrm{O}(\mathrm{R})$. Then we have $P_{2}=O\left(P_{2} \cap R\right) \subset O\left(P_{1}\right) \in \operatorname{MinSpec}(O(R))$. Therefore $P_{2} \cap R \subset P_{1}$, which is a contradiction as $P_{2} \cap R \in \operatorname{Spec}(R)$. Hence $O\left(P_{1}\right) \in \operatorname{MinSpec}(O(R))$.

Conversely let $P \in \operatorname{MinSpec}(O(R))$ with $\sigma(P \cap R)=P \cap R$. Then it can be easily seen that $P \cap R \in \operatorname{Spec}(R)$ and $O(P \cap R) \in \operatorname{Spec}(O(R))$. Therefore $O(P \cap R)=P$. We now show that $P \cap R \in \operatorname{MinSpec}(R)$. Suppose that $P_{3} \subset P \cap R$, and $P_{3} \in \operatorname{MinSpec}(R)$. Then $O\left(P_{3}\right) \subset$ $O(P \cap R)=P$. But $O\left(P_{3}\right) \in \operatorname{Spec}(O(R))$ and, $O\left(P_{3}\right) \subset P$, which is not possible. Thus we have $P \cap R \in \operatorname{MinSpec}(R)$.

Proposition 2.1. Let R be a 2-primal ring. Let σ and δ be as usual such that $\delta(P(R)) \subseteq P(R)$. If $P \in \operatorname{MinSpec}(R)$ is such that $\sigma(P)=P$, then $\delta(P) \subseteq P$.

Proof. Let $P \in \operatorname{MinSpec}(R)$. Now for any $a \in P$, there exists $b \notin P$ such that $a b \in P(R)$ by Corollary (1.10) of [14]. Now $\delta(P(R)) \subseteq P(R)$, and
therefore $\delta(a b) \in P(R)$; i.e. $\delta(a) \sigma(b)+a \delta(b) \in P(R) \subseteq P$. Now $a \delta(b) \in P$ implies that $\delta(a) \sigma(b) \in P$. Also $\sigma(P)=P$ and by Proposition (1.11) of [14], P is completely prime, we have $\delta(a) \in P$. Hence $\delta(P) \subseteq P$.

Theorem 2.2. Let R be a δ-ring. Let σ and δ be as above such that $\delta(P(R)) \subseteq P(R)$. Then R is 2-primal.

Proof. Define a map $\rho: R / P(R) \rightarrow R / P(R)$ by $\rho(a+P(R))=\delta(a)+$ $P(R)$ for $a \in R$ and $\tau: R / P(R) \rightarrow R / P(R)$ a map by $\tau(a+P(R))=$ $\sigma(a)+P(R)$ for $a \in R$, then it can be seen that τ is an automorphism of $\mathrm{R} / \mathrm{P}(\mathrm{R})$ and ρ is a τ-derivation of $\mathrm{R} / \mathrm{P}(\mathrm{R})$. Now $a \delta(a) \in P(R)$ if and only if $(a+P(R)) \rho(a+P(R))=P(R)$ in $\mathrm{R} / \mathrm{P}(\mathrm{R})$. Thus as in Proposition (5) of [8], R is a reduced ring and, therefore R is 2 -primal.

Proposition 2.2. Let R be a ring. Let σ and δ be as usual. Then:

1. For any completely prime ideal P of R with $\delta(P) \subseteq P, P[x, \sigma, \delta]$ is a completely prime ideal of $R[x, \sigma, \delta]$.
2. For any completely prime ideal U of $R[x, \sigma, \delta], U \cap R$ is a completely prime ideal of R.

Proof. (1) Let P be a completely prime ideal of R . Now let $\mathrm{f}(\mathrm{x})=$ $\sum_{i=0}^{n} x^{i} a_{i} \in R[x, \sigma, \delta]$ and $\mathrm{g}(\mathrm{x})=\sum_{j=0}^{m} x^{j} b_{j} \in R[x, \sigma, \delta]$ be such that $f(x) g(x) \in P[x, \sigma, \delta]$. Suppose $f(x) \notin P[x, \sigma, \delta]$. We will show that $g(x) \in P[x, \sigma, \delta]$. We use induction on n and m . For $\mathrm{n}=\mathrm{m}=1$, the verification is easy. We check for $\mathrm{n}=2$ and $\mathrm{m}=1$. Let $\mathrm{f}(\mathrm{x})=x^{2} a+x b+c$ and $\mathrm{g}(\mathrm{x})=\mathrm{xu}+\mathrm{v}$. Now $f(x) g(x) \in P[x, \sigma, \delta]$ with $f(x) \notin P[x, \sigma, \delta]$. The possibilities are $a \notin P$ or $b \notin P$ or $c \notin P$ or any two out of these three do not belong to P or all of them do not belong to P . We verify case by case.

Let $a \notin P$. Since $x^{3} \sigma(a) u+x^{2}(\delta(a) u+\sigma(b) u+a v)+x(\delta(b) u+$ $\sigma(c) u+b v)+\delta(c) u+c v \in P[x, \sigma, \delta]$, we have $\sigma(a) u \in P$, and so $u \in P$. Now $\delta(a) u+\sigma(b) u+a v \in P$ implies $a v \in P$, and so $v \in P$. Therefore $g(x) \in P[x, \sigma, \delta]$.

Let $b \notin P$. Now $\sigma(a) u \in P$. Suppose $u \notin P$, then $\sigma(a) \in P$ and therefore a, $\delta(a) \in P$. Now $\delta(a) u+\sigma(b) u+a v \in P$ implies that $\sigma(b) u \in P$ which in turn implies that $b \in P$, which is not the case. Therefore we have $u \in P$. Now $\delta(b) u+\sigma(c) u+b v \in P$ implies that $b v \in P$ and therefore $v \in P$. Thus we have $g(x) \in P[x, \sigma, \delta]$.

Let $c \notin P$. Now $\sigma(a) u \in P$. Suppose $u \notin P$, then as above a, $\delta(a) \in P$. Now $\delta(a) u+\sigma(b) u+a v \in P$ implies that $\sigma(b) u \in P$. Now $u \notin P$ implies that $\sigma(b) \in P$; i.e. $b, \delta(b) \in P$. Also $\delta(b) u+\sigma(c) u+b v \in P$ implies $\sigma(c) u \in P$ and therefore $\sigma(c) \in P$ which is not the case. Thus
we have $u \in P$. Now $\delta(c) u+c v \in P$ implies $c v \in P$, and so $v \in P$. Therefore $g(x) \in P[x, \sigma, \delta]$.

Now suppose the result is true for $\mathrm{k}, n=k>2$ and $\mathrm{m}=1$. We will prove for $\mathrm{n}=\mathrm{k}+1$. Let $\mathrm{f}(\mathrm{x})=x^{k+1} a_{k+1}+x^{k} a_{k}+\cdots+x a_{1}+a_{0}$, and $\mathrm{g}(\mathrm{x})$ $=x b_{1}+b_{0}$ be such that $f(x) g(x) \in P[x, \sigma, \delta]$, but $f(x) \notin P[x, \sigma, \delta]$. We will show that $g(x) \in P[x, \sigma, \delta]$. If $a_{k+1} \notin P$, then equating coefficients of x^{k+2}, we get $\sigma\left(a_{k+1}\right) b_{1} \in P$, which implies that $b_{1} \in P$. Now equating coefficients of x^{k+1}, we get $\sigma\left(a_{k}\right) b_{1}+a_{k+1} b_{0} \in P$, which implies that $a_{k+1} b_{0} \in P$, and therefore $b_{0} \in P$. Hence $g(x) \in P[x, \sigma, \delta]$.

If $a_{j} \notin P, 0 \leq j \leq k$, then using induction hypothesis, we get that $g(x) \in P[x, \sigma, \delta]$. Therefore the statement is true for all n . Now using the same process, it can be easily seen that the statement is true for all m also. The details are left to the reader.
(2) Let U be a completely prime ideal of $R[x, \sigma, \delta]$. Suppose $a, b \in R$ are such that $a b \in U \cap R$ with $a \notin U \cap R$. This means that $a \notin U$ as $a \in R$. Thus we have $a b \in U \cap R \subseteq U$, with $a \notin U$. Therefore we have $b \in U$, and thus $b \in U \cap R$.

Corollary 2.1. Let R be a δ-ring, where σ and δ as usual such that $\delta(P(R)) \subseteq P(R)$. Let $P \in \operatorname{MinSpec}(R)$ be such that $\sigma(P)=P$. Then $P[x, \sigma, \delta]$ is a completely prime ideal of $R[x, \sigma, \delta]$.

Proof. R is 2-primal by Theorem (2.2), and so by Proposition (2.1) $\delta(P) \subseteq P$. Further more P is a completely prime ideal of R by Proposition (1.11) of [10]. Now use Proposition (2.2).

We now prove the following Theorem, which is crucial in proving Theorem 2.4.

Theorem 2.3. Let R be a δ-ring, where σ and δ as usual such that $\delta(P(R)) \subseteq P(R)$ and $\sigma(P)=P$ for all $P \in \operatorname{MinSpec}(R)$. Then $R[x, \sigma, \delta]$ is 2-primal if and only if $P(R)[x, \sigma, \delta]=P(R[x, \sigma, \delta])$.

Proof. Let $R[x, \sigma, \delta]$ be 2-primal. Now by Corollary (2.1) $P(R[x, \sigma, \delta]) \subseteq$ $P(R)[x, \sigma, \delta]$. Let $f(x)=\sum_{j=0}^{n} x^{j} a_{j} \in P(R)[x, \sigma, \delta]$. Now R is a $2-$ primal subring of $R[x, \sigma, \delta]$ by Theorem (2.2), which implies that a_{j} is nilpotent and thus $a_{j} \in N(R[x, \sigma, \delta])=P(R[x, \sigma, \delta])$, and so we have $x^{j} a_{j} \in P(R[x, \sigma, \delta])$ for each $\mathrm{j}, 0 \leq j \leq n$, which implies that $f(x) \in$ $P(R[x, \sigma, \delta])$. Hence $P(R)[x, \sigma, \delta]=P(R[x, \sigma, \delta])$.

Conversely suppose $P(R)[x, \sigma, \delta]=P(R[x, \sigma, \delta])$. We will show that $R[x, \sigma, \delta]$ is 2-primal. Let $g(x)=\sum_{i=0}^{n} x^{i} b_{i} \in R[x, \sigma, \delta], b_{n} \neq 0$, be such that $(g(x))^{2} \in P(R[x, \sigma, \delta])=P(R)[x, \sigma, \delta]$. We will show that $g(x) \in$ $P(R[x, \sigma, \delta])$. Now leading coefficient $\sigma^{2 n-1}\left(a_{n}\right) a_{n} \in P(R) \subseteq P$, for all
$P \in \operatorname{MinSpec}(R)$. Now $\sigma(P)=P$ and P is completely prime by Proposition (1.11) of [10]. Therefore we have $a_{n} \in P$, for all $P \in \operatorname{MinSpec}(R)$; i.e. $a_{n} \in P(R)$. Now since $\delta(P(R)) \subseteq P(R)$ and $\sigma(P)=P$ for all $P \in \operatorname{MinSpec}(R)$, we get $\left(\sum_{i=0}^{n-1} x^{i} b_{i}\right)^{2} \in P(R[x, \sigma, \delta])=P(R)[x, \sigma, \delta]$ and as above we get $a_{n-1} \in P(R)$. With the same process in a finite number of steps we get $a_{i} \in P(R)$ for all i, $0 \leq i \leq n$. Thus we have $g(x) \in P(R)[x, \sigma, \delta]$; i.e. $g(x) \in P(R[x, \sigma, \delta])$. Therefore $P(R[x, \sigma, \delta])$ is completely semiprime. Hence $R[x, \sigma, \delta]$ is 2-primal.

Theorem 2.4. Let R be a Noetherian δ-ring, which is also an algebra over Q such that $\sigma(\delta(a))=\delta(\sigma(a))$, for all $a \in R ; \sigma(P)=P$ for all $P \in \operatorname{MinSpec}(R)$ and $\delta(P(R)) \subseteq P(R)$, where σ and δ are as usual. Then $R[x, \sigma, \delta]$ is 2-primal.

Proof. We use Theorem (2.1) to get that $P(R)[x, \sigma, \delta]=P(R[x, \sigma, \delta])$, and now the result is obvious by using Theorem (2.3).

Corollary 2.2. Let R be a commutative Noetherian δ-ring, which is also an algebra over Q such that $\sigma(\delta(a))=\delta(\sigma(a))$, for all $a \in R ; \sigma(P)=P$ for all $P \in \operatorname{MinSpec}(R)$, where σ and δ are as usual. Then $R[x, \sigma, \delta]$ is 2-primal.

Proof. Using Theorem (1) of [15] we get $\delta(P(R)) \subseteq P(R)$. Now rest is obvious.

The above gives rise to the following questions:
If R is a Noetherian Q -algebra (even commutative), σ is an automorphism of R and δ is a σ-derivation of R . Is $R[x, \sigma, \delta] 2$-primal? The main problem is to get Theorem (2.3) satisfied.

References

[1] S. Annin, Associated primes over skew polynomial rings // Communications in Algebra 30 (2002), 2511-2528.
[2] N. Argac and N. J. Groenewald, A generalization of 2-primal near rings // Questiones Mathematicae, 27 (2004), N 4, 397-413.
[3] V. K. Bhat, A note on Krull dimension of skew polynomial rings // Lobachevskii J. Math, 22 (2006), 3-6.
[4] W. D. Blair and L. W. Small, Embedding differential and skew-polynomial rings into artinain rings // Proc. Amer, Math. Soc. 109(4) (1990), 881-886.
[5] P. Gabriel, Representations des Algebres de Lie Resoulubles (D Apres J. Dixmier. In Seminaire Bourbaki, 1968-69, pp. 1-22, Lecture Notes in Math. No 179, Berlin 1971, Springer-Verlag.
[6] K. R. Goodearl and R. B. Warfield Jr., An introduction to non-commutative Noetherian rings, Cambridge Uni. Press, 1989.
[7] C. Y. Hong and T. K. Kwak, On minimal strongly prime ideals // Comm. Algebra 28(10) (2000), 4868-4878.
[8] C. Y. Hong, N. K. Kim and T. K. Kwak, Ore-extensions of baer and p.p.-rings // J. Pure and Applied Algebra 151(3) (2000), 215-226.
[9] C. Y. Hong, N. K. Kim, T. K. Kwak and Y. Lee, On weak-regularity of rings whose prime ideals are maximal // J. Pure and Applied Algebra 146 (2000), 35-44.
[10] N. K. Kim and T. K. Kwak, Minimal prime ideals in 2-primal rings // Math. Japonica 50(3) (1999), 415-420.
[11] J. Krempa, Some examples of reduced rings // Algebra Colloq. 3: 4 (1996), 289-300.
[12] T. K. Kwak, Prime radicals of skew-polynomial rings Int. J. of Mathematical Sciences 2(2) (2003), 219-227.
[13] G. Marks, On 2-primal ore extensions // Comm. Algebra, 29 (2001), N 5, 21132123.
[14] G. Y. Shin, Prime ideals and sheaf representations of a pseudo symmetric ring // Trans. Amer. Math. Soc. 184 (1973), 43-60.
[15] A. Seidenberg, Differential ideals in rings of finitely generated type // Amer. J. Math. 89 (1967), 22-42.

Contact information

Vijay Kumar Bhat School of Applied Physics and Mathematics, SMVD University, P/o Kakryal, Udhampur, J and K, India 182121 E-Mail: vijaykumarbhat2000@yahoo.com

