

Fuzzy strongly pre-irresolute functions

N. GOWRISANKAR, N. RAJESH

(Presented by V. V. Sharko)

Abstract. In this paper, we have introduced and studied a new class of fuzzy irresolute functions, called fuzzy strongly pre-irresolute functions by using fuzzy preopen sets.

2000 MSC. 54A40.

Key words and phrases. Fuzzy topology, fuzzy preopen sets, fuzzy pre-irresolute functions.

1. Introduction

The concept of fuzzy set was introduced by Zadeh [9]. Based on the concept of fuzzy sets, Chang [2] introduced and developed the concept of fuzzy topological spaces. Since then various important notions in the classical topology such as continuous functions [2] have been extended to fuzzy topological spaces. Fuzzy irresolutness is one of the main topics in fuzzy topology. In this paper, we have introduced and studied a new class of fuzzy irresolute functions, called fuzzy strongly pre-irresolute functions by using fuzzy preopen sets. This concept can be extended to Intuitionstic fuzzy topology and Ideal fuzzy topology.

2. Preliminaries

Now, we recall some basic notions and results that are used in the sequel.

Definition 2.1. A fuzzy topology on a nonempty set X is a family τ of fuzzy subsets of X which satisfies the following three conditions:

- (*i*) $0, 1 \in \tau$,
- (ii) If $g, h \in \delta$, their $g \wedge h \in \tau$,

Received 27.10.2008

(*iii*) If $f_i \in \tau$ for each $i \in I$, then $\forall_{i \in I} f_i \in \tau$.

The pair (X, τ) is called a fuzzy topological space [2].

Definition 2.2. Members of τ are called fuzzy open sets [2] and the complement of fuzzy open sets are called fuzzy closed sets [2], where the complement of a fuzzy set A, denoted by A^c , is 1 - A.

Definition 2.3 ([7]). The fuzzy subset x_a of a non-empty set X, with $x \in X$ and $0 < a \leq 1$ defined by

$$x_a(p) = \begin{cases} a & \text{if } p = x \\ 0 & \text{if } p \neq x \end{cases}$$

is called a fuzzy point in X with suppost x and value a. The fuzzy point x_1 is called crisp point.

Definition 2.4 ([7]). Let λ be fuzzy set in X and x_a a fuzzy point in X. We say that $x_a \in \lambda$ if and only if $x_a \leq \lambda$.

Definition 2.5. A fuzzy set B is a quasi neighbourhood [7] (q-neighbourhood, for short) of A if and only if there exists a fuzzy open set U such that $AqU \leq B$.

Definition 2.6. A fuzzy set λ is a pre-q-neighbourhood (for short, preq-nbd) of μ if and only if there exists a fuzzy preopen set γ such that $\lambda q \gamma$ and $\gamma \leq \mu$.

Definition 2.7. Let λ be any fuzzy set in the fuzzy topological space (X, τ) . Then we define the fuzzy preinterior [8] of $\lambda = p \operatorname{Int}(\lambda) = \lor \{\mu : \mu \text{ is fuzzy preopen and } \mu \leq \lambda \}$ and the fuzzy preclosure of $\lambda = p \operatorname{Cl}(\lambda) = \land \{\mu : \mu \text{ is fuzzy preclosed and } \mu \leq \lambda \}.$

Remark 2.1. For any fuzzy λ in a fuzzy topological space (X, τ) , $1 - p \operatorname{Cl}(\lambda) = p \operatorname{Int}(1 - \lambda)$ and $p \operatorname{Cl}(\lambda) = 1 - p \operatorname{Int}(\lambda)$.

Definition 2.8 ([2]). Let X and Y be two fuzzy topological spaces. Let $A \in I^X$, $B \in I^Y$. Then f(A) is a fuzzy subset of Y, defined by $f(A): Y \to [0, 1]$

$$f(A)(y) = \begin{cases} \sup_{x \in f^{-1}(\{y\})} A(x) & \text{if } f^{-1}(\{y\}) \neq \emptyset \\ 0 & \text{if } f^{-1}(\{y\}) = \emptyset \end{cases}$$

and $f^{-1}(B)$ is a fuzzy subset of X, defined by $f^{-1}(B)(x) = B(f(x))$.

Lemma 2.1 ([1]). Let $f : X \to Y$ be a function and $\lambda_{\alpha} \alpha \in I$ be a family of fuzzy sets of Y, then

- (i) $f^{-1}(\cup\lambda_{\alpha}) = \cup f^{-1}(\lambda_{\alpha})$ and
- (*ii*) $f^{-1}(\cap \lambda_{\alpha}) = \cap f^{-1}(\lambda_{\alpha}).$

Lemma 2.2 ([1]). For functions $f_i : X_i \to Y_i$ and fuzzy sets λ_i of Y_i , i = 1, 2, we have $(f_1 \times f_2)^{-1}(\lambda_1 \times \lambda_2) = f_1^{-1}(\lambda_1) \times f_2^{-1}(\lambda_2)$.

Lemma 2.3 ([1]). Let $g : X \to X \times Y$ be the graph of a function $f : X \to Y$. Then, if λ is a fuzzy set of X and μ is a fuzzy set of Y, $g^{-1}(\lambda \times \mu) = \lambda \wedge f^{-1}(\mu)$.

Definition 2.9. A fuzzy singleton x_{α} is said to be fuzzy pre- θ -cluster [5] point of a fuzzy subset A of X if the fuzzy preclosure if every fuzzy preq-nbd of x_{α} is q-coincident with A. The union of all fuzzy pre- θ -cluster points of A is called the pre- θ -closure [5] of A and is denoted by $p \operatorname{Cl}_{\theta}(A)$. A fuzzy set A of X is called fuzzy pre- θ -closed [5] if $A = p \operatorname{Cl}_{\theta}(A)$, and the complement of a fuzzy pre- θ -closed set is called fuzzy pre- θ -open [5]. The union of all fuzzy pre- θ -open sets of X contained in A is called the fuzzy pre- θ -interior of A and is denoted by $p \operatorname{Int}_{\theta}(A)$.

Remark 2.2. For a fuzzy set A of X, $A \leq p \operatorname{Cl}(A) \leq p \operatorname{Cl}_{\theta}(A)$ and hence each fuzzy pre- θ -closed set is fuzzy preclosed.

Lemma 2.4. For a fuzzy set A of X, we have that

- (i) $p \operatorname{Int}_{\theta}(1-A) = 1 p \operatorname{Cl}_{\theta}(A);$
- (*ii*) $p \operatorname{Cl}_{\theta}(1-A) = 1 p \operatorname{Int}_{\theta}(A).$

Definition 2.10. A function $f : X \to Y$ is said to be fuzzy pre-irresolute [3] if $f^{-1}(V) \in FPO(X)$ for each $V \in FPO(Y)$.

Definition 2.11. A function $f : X \to Y$ is said to be fuzzy weakly preirresolute [6] if for any fuzzy singleton x_{α} in X and each fuzzy preopen set V of Y containing $f(x_{\alpha})$, there exists a fuzzy preopen set U containing x_{α} such that $f(U) \leq p \operatorname{Cl}(V)$.

3. Fuzzy strongly pre-irresolute functions

Definition 3.1. A function $f : X \to Y$ is said to be fuzzy strongly preirresolute if for any fuzzy singleton x_{α} in X and each fuzzy preopen set V containing $f(x_{\alpha})$, there exists a fuzzy preopen set U containing x_{α} such that $f(p \operatorname{Cl}(U)) \leq V$. It is clear that , every fuzzy strongly pre-irresolute function is fuzzy pre-irresolute. But the converse is not true in general as it can be seen from the following example.

Example 3.1. Let (X, τ) as in Example 2.7 of [4] and $\tau = \{0, 1\}$. Define a function $f : X \to Y$ by f(x) = y and f(y) = x. Then f is fuzzy pre-irresolute but not fuzzy strongly pre-irresolute.

Theorem 3.1. For a function $f : X \to Y$, the following properties are equivalent:

- (i) f is fuzzy strongly pre-irresolute;
- (ii) for each fuzzy singleton x_{α} of X and each fuzzy preopen set V of Y containing $f(x_{\alpha})$, there exists a fuzzy regular preopen set U of X containing x_{α} such that $f(p \operatorname{Cl}_{\theta}(U)) \leq V$;
- (iii) for each fuzzy singleton x_{α} of X and each fuzzy preopen set V of Y containing $f(x_{\alpha})$, there exists a fuzzy regular preopen set U in X containing x_{α} such that $f(U) \leq U$;
- (iv) for each fuzzy singleton x_{α} of X and each fuzzy preopen set V of Y containing $f(x_{\alpha})$, there exists a fuzzy pre- θ -open set U in X containing x_{α} such that $f(U) \leq V$;
- (v) $f^{-1}(V)$ is fuzzy pre- θ -open in X for every $V \in FPO(Y)$;
- (vi) $f^{-1}(F)$ is fuzzy pre- θ -closed in X for every $F \in FPC(Y)$;

(vii) $f(p \operatorname{Cl}_{\theta}(A)) \leq p \operatorname{Cl}(f(A))$ for every fuzzy subset A of X;

(viii) $p \operatorname{Cl}_{\theta}(f^{-1}(B)) \leq f^{-1}(p \operatorname{Cl}(B))$ for every fuzzy subset B of Y.

Proof. The implications $(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (i)$ are obivious.

 $(iv) \Rightarrow (v)$: Let $V \in FPO(Y)$. Suppose that $x_{\alpha} \in f^{-1}(V)$. Therefore, $f(x) \in V$ and then there exists a fuzzy pre- θ -open set U in X containing x_{α} such that $f(U) \leq V$. Therefore, we have $x_{\alpha} \in U \leq f^{-1}(V)$. Since the union of fuzzy pre- θ -open sets is fuzzy pre- θ -open, $f^{-1}(V)$ is fuzzy pre- θ -open in X.

 $(v) \Rightarrow (vi)$: This is obvious.

 $(vi) \Rightarrow (vii)$: Let B be any fuzzy subset of Y. Since $p \operatorname{Cl}(A)$ is fuzzy preclosed in Y, by (vi), $f^{-1}(p \operatorname{Cl}(f(A)))$ is fuzzy pre- θ -closed in X and we have

$$p\operatorname{Cl}_{\theta}(A) \leq p\operatorname{Cl}_{\theta}(f^{-1}(f(A)))$$
$$\leq p\operatorname{Cl}_{\theta}(f^{-1}(p\operatorname{Cl}(f(A)))) = f^{-1}(p\operatorname{Cl}(f(A))).$$

Therefore, we obtain $f(p \operatorname{Cl}_{\theta}(A)) \leq p \operatorname{Cl}(f(A))$.

 $(vii) \Rightarrow (viii)$: Let B be any fuzzy subset of Y. By (vii), we obtain

$$f(p\operatorname{Cl}_{\theta}(f^{-1}(B))) \le p\operatorname{Cl}(f(f^{-1}(B))) \le p\operatorname{Cl}(B)$$

and hence

$$p\operatorname{Cl}_{\theta}(f^{-1}(B)) \le f^{-1}(p\operatorname{Cl}(B)).$$

 $(viii) \Rightarrow (i)$: Let x_{α} be a fuzzy singleton of X and V be a fuzzy preopen set of Y containing $f(x_{\alpha})$. Since $1 - V \in FPC(Y)$, we have

$$p \operatorname{Cl}_{\theta}(f^{-1}(1-V)) \le f^{-1}(p \operatorname{Cl}(1-V)) = f^{-1}(1-V).$$

Therefore, $f^{-1}(1-V)$ is fuzzy pre- θ -closed in X and $f^{-1}(V)$ is a fuzzy pre- θ -open set containing x_{α} . Then there exists a fuzzy preopen set U of X containing x_{α} such that $p \operatorname{Cl}(U) \leq f^{-1}(V)$; hence $f(p \operatorname{Cl}(U)) \leq V$. This shows that f is fuzzy strongly pre-irresolute.

Definition 3.2. A fuzzy space (X, τ) is said to be fuzzy pre-regular if for each fuzzy singleton x_{α} and each fuzzy preopen set A there exists a fuzzy preopen set B such that $x_{\alpha} \in B \leq p \operatorname{Cl}(B) \leq A$.

Theorem 3.2. A fuzzy pre-irresolute function $f : X \to Y$ is fuzzy strongly pre-irresolute if and only if X is fuzzy pre-regular.

Proof. Necessity: Let $f : X \to Y$ be the identity function. Then f is fuzzy pre-irresolute and fuzzy strongly fuzzy pre-irresolute by the hypothesis. For any $U \in FPO(X)$ and any fuzzy singleton x_{α} of U, we have $f(x_{\alpha}) = x_{\alpha} \in U$ and there exists a fuzzy preopen set G of X containing x_{α} such that $f(p \operatorname{Cl}(G)) \leq U$. Therefore, we have $x \in G \leq p \operatorname{Cl}(G) \leq U$. By definition, X is fuzzy pre-regular.

Corollary 3.1. Let X be a fuzzy pre-regular space. Then $f : X \to Y$ is fuzzy strongly pre-irresolute if and only if f is fuzzy pre-irresolute.

Proof. This follows immediately from Theorem 3.2.

Theorem 3.3. If $f : X \to Y$ is fuzzy weakly pre-irresolute and Y is fuzzy pre-regular, then f is fuzzy strongly pre-irresolute.

Proof. Let x_{α} be a fuzzy singleton of X and let V be a fuzzy preopen set containing $f(x_{\alpha})$. Then there exists a fuzzy preopen set G containing $f(x_{\alpha})$ such that $f(x_{\alpha}) \in G \leq p \operatorname{Cl}(G) \leq V$. By Theorem 3.1, there exists a fuzzy preopen set U containing x_{α} such that $f(p \operatorname{Cl}(U)) \leq p \operatorname{Cl}(G)$. Thus, $f(p \operatorname{Cl}(G)) \leq V$ and f is fuzzy strongly pre-irresolute.

Corollary 3.2. If $f : X \to Y$ is a function and Y is fuzzy pre-regular, then the following statements are equivalent:

- (i) f is fuzzy strongly pre-irresolute;
- (*ii*) f is fuzzy irresolute;
- (*iii*) f is fuzzy weakly pre-irresolute.

Theorem 3.4. Let $f : X \to Y$ be a function, where X is product related to Y, and $g : X \to X \times Y$, the graph function of g. If g is fuzzy strongly pre-irresolute, then f is so and X is fuzzy pre-regular.

Proof. Suppose that g is fuzzy strongly pre-irresolute. First, we show that f is fuzzy strongly pre-irresolute. Let x_{α} be a fuzzy singleton of Xand V be a fuzzy preopen set of Y containing $f(x_{\alpha})$. Then $1 \times V$ is a fuzzy preopen set of $X \times Y$ containing $g(x_{\alpha})$. Since g is fuzzy strongly pre-irresolute, there exists a fuzzy preopen set U of X containing x_{α} such that $g(p \operatorname{Cl}(U)) \leq 1 \times V$. Therefore, we obtain $f(p \operatorname{Cl}(U)) \leq V$. This shows that f is fuzzy strongly pre-irresolute. Next, we show that X is fuzzy pre-regular. Let U be a fuzzy preopen set of X containing x_{α} . Since $g(x) \in U \times 1$ and $U \times 1$ is fuzzy preopen in $X \times Y$, there exists a fuzzy preopen set G of X containing x_{α} such that $g(p \operatorname{Cl}(G)) < U \times 1$. Therefore, we obtain $x_{\alpha} \in G \leq p \operatorname{Cl}(G) \leq U$ and hence X is fuzzy pre-regular. \Box

Definition 3.3. A function $f : X \to Y$ is said to be fuzzy strongly preopen if $f(U) \in FPO(Y)$ for each $U \in FPO(X)$.

Lemma 3.1. If $f : X \to Y$ is fuzzy pre-irresolute and V is fuzzy pre- θ -open in Y, then $f^{-1}(V)$ is fuzzy pre- θ -open in X.

Proof. Let V be a fuzzy pre- θ -open set of Y and $x_{\alpha} \in f^{-1}(V)$. Then there exists $W \in FPO(Y)$ such that $f(x_{\alpha}) \in W \leq p \operatorname{Cl}(W) \leq V$. Since f is fuzzy pre-irresolute, we have $f^{-1}(W) \in FPO(X)$ and $p \operatorname{Cl}(f^{-1}(W)) \leq$ $f^{-1}(p \operatorname{Cl}(W))$. Therefore, we have $x_{\alpha} \in f^{-1}(W) \leq p \operatorname{Cl}(f^{-1}(W)) \leq$ $f^{-1}(V)$ and $f^{-1}(V)$ is fuzzy pre- θ -open in X. \Box

Theorem 3.5. Let $f : X \to Y$ and $g : Y \to Z$ be functions. Then the following properties hold:

- (i) If f is fuzzy strongly pre-irresolute and g is fuzzy pre-irresolute, then $g \circ f : X \to Z$ is fuzzy strongly pre-irresolute;
- (ii) If f is fuzzy pre-irresolute and g is fuzzy strongly pre-irresolute, then $g \circ f : X \to Z$ is fuzzy strongly pre-irresolute;

- (iii) If f is fuzzy strongly pre-irresolute and g is fuzzy weakly pre-irresolute, then $g \circ f : X \to Z$ is fuzzy weakly pre-irresolute;
- (iv) If f is fuzzy strongly preopen bijection and $g \circ f : X \to Z$ is fuzzy strongly pre-irresolute, then g is fuzzy strongly pre-irresolute.

Proof. (i): This is obvious.

(*ii*): This follows immediately from Theorem 3.1 and Lemma 3.1.

(*iii*): Let $W \in FPO(Z)$. Since $g \circ f$ is fuzzy strongly pre-irresolute, $(g \circ f)^{-1}(W)$ is fuzzy pre- θ -open in X. Since f is fuzzy strongly preopen and bijective, f^{-1} is fuzzy pre-irresolute and by Lemma 3.1, we have $g^{-1}(W) = f((g \circ f)^{-1}(W))$ us fuzzy pre- θ -open in Y. Therefore, Hence by Theorem 3.1, g is fuzzy strongly pre-irresolute.

(*iv*): Let x_{α} be a fuzzy singleton of X and $y_{\beta} = f(x_{\alpha})$. Let V be a fuzzy regular preopen in Z containing $g(y_{\beta}) = g(f(x_{\alpha}))$. Since g is fuzzy weakly pre-irresolute, there exists a fuzzy regular preopen set U containing y_{β} such that $f(p \operatorname{Cl}(G)) \leq U$. Hence

$$(g \circ f)(p\operatorname{Cl}(G)) = g(f(p\operatorname{Cl}(G))) \le g(U) \le V.$$

Therefore, $g \circ f$ is fuzzy weakly pre-irresolute.

References

- K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity // J. Math. Anal. Appl., 82 (1981), 297–305.
- [2] C. L. Chang, *Fuzzy topological spaces* // J. Math. Anal. Appl., **24** (1968), 182–190.
- [3] M. A. Fath Alla, On fuzzy topological spaces, Ph. D Thesis, Assuit University (Egypt), 1984.
- [4] M. Ganstar, D. M. Georgion, S. Jafari and S. P. Moshokoa, On some applications of fuzzy points // Appl. Gen. Topology, 6(2) (2005), 119–133.
- [5] N. Gowrisankar and N. Rajesh, Fuzzy regular preopen sets, (submitted).
- [6] N. Gowrisankar and N. Rajesh, Fuzzy weakly pre-irresolute functions, (submitted).
- [7] P. Pao-Ming and L. Ying-Ming, Fuzzy topology I Neighbourhood structure of a fuzzy point and Moore-Smith Convergence // J. Math. Anal. Appl., 76 (1980), 571–599.
- [8] M. K. Singal and N. Prakash, Fuzzy preopen sets and fuzzy preseparation axioms // Fuzzy sets and Systems, 44 (1991), 273–281.
- [9] L. A. Zadeh, *Fuzzy sets* // Information and Control, 8 (1965), 338–353.

CONTACT INFORMATION

N. Gowrisankar 249, Second Floor, S. G. Palaiya,

C. V. Raman Nagar Bangalore 560093, India

N. Rajesh

Department of Mathematics Rajah Serfoji Govt. College Thanjavur-613005 Tamilnadu, India *E-Mail:* nrajesh_topology@yahoo.co.in