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A functional model associated with a
generalized Nevanlinna pair

EvVGEN NEIMAN

(Presented by M. M. Malamud)

Abstract. Let £ be a Hilbert space and let H be a Pontryagin space.
For every selfadjoint linear relation A in H@® L the pair {IT+AP(A), ¥(A)},
where () is the compressed resolvent of ,ZL is a normalized generalized
Nevanlinna pair. Conversely, every normalized generalized Nevanlinna
pair is shown to be associated with some selfadjoint linear relation A in
the above sense. A functional model for this selfadjoint linear relation
A is constructed.
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Introduction

In 1946 M. G. Krein introduced in [12] the notion of the Q-function of
a symmetric operator A in a Hilbert space with finite deficiency indices
(m,m), which plays an important role in the description of generalized
resolvents of A. Later on M. G. Krein and H. Langer in [14] have gen-
eralized this notion to the case of a symmetric operator A with infinite
indices acting in a Pontryagin space. In that paper it was shown that
the Q-function uniquely determines a simple symmetric operator A up to
unitary equivalence. Moreover, in [14] a functional model for a symmetric
operator relied on e-construction was introduced and investigated. This
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model has allowed them to solve an inverse problem for the @-function,
that is to find a criterion for a generalized Nevanlinna operator valued
function to be the @-function of a m-Hermitian operator.

Functional models for symmetric operators in Hilbert spaces in terms
of the Q-function were constructed in [1,15]. Different functional mod-
els for symmetric operators have been used by V. A. Derkach and
M. M. Malamud in [10] (see also [16]) to solve the inverse problem for
the Weyl function. Namely, starting with a uniformly strict R-function
M(-) (i.e. R-function satisfying 0 € p(Im M (i)) ) the authors in [10]
constructed a model symmetric operator A and a boundary triplet for
A* such that the corresponding Weyl function coincides with M(-). This
result has also been extended to a wider class of strict R-functions (that
is R-functions with ker Im M (i) = {0}) in order to realize any such R-
function as the Weyl function corresponding to a generalized boundary
triplet (see [10]).

Later on a concept a generalized boundary triplet was generalized
in [7] where a notion of a boundary relation and the corresponding Weyl
family was introduced. Using this notion the authors of |7] have realized
arbitrary Nevanlinna pair {¢, 1} as the Weyl family of some symmetric
operator corresponding to a boundary relation (a realization theorem).
The proof in [7] was based on the Naimark dilation theorem and the so
called main transform. Later on another proof of the realization theorem
from |7] have been presented in [4,5] where more general models for
symmetric operators were introduced.

In the present paper given a generalized Nevanlinna pair {p, 9} we
construct a functional model for a selfadjoint linear relation A in Pon-
tryagin space such that ¢, ¢ are recovered from A via (2.4). To make
the paper clear for a wide audience we follow the scheme of [6] and use
the notion of the selfadjoint linear relation A rather then the notion of
the boundary relation I'. In fact, one can treat A as the main transform
of a boundary relation I" and then the main result can be reformulated
in terms of T

The paper is organized as follows. In Section 1 definitions of Ny-pairs
and normalized N-pairs are given. In Section 2 we consider a pair {¢, 1}
generated by a selfadjoint relation Ain a Pontryagin space and show
that it is a normalized Ny -pair. In Theorem 3.1 we prove the converse
result. Moreover, a functional model for the selfadjoint relation A is
constructed. In the rest of the paper properties of a generalized Fourier
transform, associated with this model are studied. We also proved the
unitary equivalence of an arbitrary £-minimal selfadjoint linear relation
A to the model relation A(p,1) in the reproducing kernel Pontryagin
space.
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1. Generalized Nevanlinna pairs

Let £ be a Hilbert space. By a kernel is meant a function K, () on
Q) x Q with values in the space of continuous operators on a Hilbert space
L (2 c C). We say that the kernel K, (\) has k negative squares and
write sq_K = k if for any choice set of points wq,...,w, in 2, vectors
Ui, ..., U, in £ and &; in space C" the quadratic form

Z (ij (wi)uyj, Ui)ﬁszi

t,j=1
has at most s negative eigenvalues, and for some choice of n, w;, u; such
matrix has exactly k negative squares (|2]).

Definition 1.1. A pair {®, U} of [£]-valued functions ®(-), ¥(-) mero-
morphic on C\ R with a common domain of homomorphy hay is said to
be a N,-pair (a generalized Nevanlinna pair) if:

(i) the kernel
NZ¥ () =

Y

T(N)*P(0) — P(N)*T(©)
A —

€l

has k negative square on hoy;
(i) TA)*®(\) — ®(A)*T(N\) =0 for all A € hgy;
(iii) for all A € hpy N C4 there is u € C4 such that
0€p(®(X) — p¥(N)) and 0 € p(®(X) — E¥(N)).

Two Ng-pairs {®, ¥} and {®;,¥;} are said to be equivalent, if
D1(N) = (N)x(N) and ¥i(N) = ¥(A)x(A) for some operator function
X(:) € [H], which is holomorphic and invertible on hpy. The set of all
equivalence classes of Ny-pairs in £ will be denoted by N,(£). We will
write, for short, {®, W} € N,(L) for the generalized Nevanlinna pair
{®, ¥},

If ®(\) = Iz where I is the identity operator in the space £ then the
Definition 1.1 means that U(\) is an N, (£)-function in the sense of [13].
Recall that the class N, (L) consists of meromorphic in C; UC_ operator

valued functions ¥(A) such that W(A) = ¥(A)*, and the kernel
UA) = ¥(w)*
A—w
has k negative squares on hy — the domain of holomorphic ¥. In this
case the condition (iii) is satisfied automatically. Clearly, if {®, ¥} is

Ny-pair such that 0 € p(q)()\)) A € hoy, then it is equivalent to the pair
{I-,¥(N\)®(N\)"'}, where ¥O~! € Ny (L).

NZ (V) =
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Definition 1.2. An Nj-pair {¢, v} is said to be a normalized Nj-pair
if:

(iii") @(X) = Ap(X) = I for all X € by
Clearly, every Ny-pair {®, ¥} such that 0 € p(®(\) — A¥(X)) for

A € hay is equivalent to a unique normalized Ny-pair {p, 1} given by

P(N) = BN (@) = AT(N) T () = B (@A) —AE() L (L)

2. N,.-pair corresponding to
a selfadjoint linear relation and a scale

Let $) be a vector space with a Hermitian form [, -]s : § x $ — C.
Two elements u and v of $) are said to be orthogonal if [u,v]g = 0.
Similarly, two subspaces of § are said to be orthogonal if every element
of the first is orthogonal to every element of the second. The linear space

(9,[,"]) is called a Pontryagin space if there exists a direct orthogonal
decomposition $ = 9 & H_, where H with the form [, ] is a Hilbert
space and $)_ with the form —[-,]g is a Hilbert space of finite dimension.

The space §) is called Pontryagin space with k negative squares (II,-space)
if the dimension of $_ is k < 0o ([2]).

We will use the notion of a linear relation in a space $). Recall, that a
subspace T of 92 is called the linear relation in $. For a linear relation T
in $ the symbols dom T, ker T, ran T, and mul 7" stand for the domain,
kernel, range, and the multivalued part, respectively. The adjoint T is
the closed linear relation in §) defined by (see [2])

T ={{hk} €9 [k fls =[hgls, {fro} €T} (22)
Recall that a linear relation 7" in ) is called symmetric (selfadjoint) if
T CTt (T =TT, respectively).

Let H be a Pontryagin space and £ be a Hilbert space.
Definition 2.1. A linear relation A = A* in H & £ is said to be £-
minimal if
Ho :=span {Pr(A—N)"'L: e p(A)} =H, (2.3)

where P is the orthogonal projection onto the Pontryagin space H.

Let A be a selfadjoint linear relation in H @ £ and let P, be the
orthogonal projection onto the scale space L. Define the operator valued
functions

() =T+ APL(A= N1 Tz, 9N :=Pe(A=XN)"" e (A€ p(A)),
(2.4)
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Clearly,

eA)" =pA), A" =9(A) (A€ p(d)). (2.5)
Proposition 2.1. Let H be a II;-space, let £ be a Hilbert space and let
A be a selfadjoint linear relation in H @ £. The pair of operator valued
functions {¢, 1} associated with A via (2.4) is a normalized N,/-pair
where 0 < k' < k. If, additionally, the linear relation A is L-minimal
then k' = k.

Proof. In view of the properties (2.5) the kernel Nf¢( A) for the pair
{¢, 1} takes the form

Ny - PAE(E) — 6@ i

A A). 2.
N , Awep(4) (2.6)
It follows from Definition (2.4) that
A) —p(w)* .
ngen) = PO )
—w
Ry — R
= Pr———" lc ~PcR\PcRs Iz
-

= PrR\PHR; 2, (2.7)

where Ry = (ﬁ — )1 is aresolvent of lineal relation A. Let wj belongs to
p(A), u; belongs to space £ and &; belongs to space C" for j =1,...,n.
Then

n n
> (NS (wi)ug, ur) 1€ = Y ((PeRuwy PrRa, )ug, uk) & Ex
Ji:k=1 j,k=1
n _ n .
= Y [PyRa;uj, PuRourh &€ = > 95, gkl & (2.8)
J:k=1 j,k=1
where g; = Py Rguj. Since H is Ilg-space and u; (j = 1,...,n) are

arbitrary vectors in £ then the quadratic form (2.8) has k' negative
squares, where x’ < k. Thus property (i) of Definition 1.1 is proved.
The property (ii) is easily checked. Obviously ¢(A) — AY(A) = I for
all A € p(A) and, hence, the pair {¢, 1} is a normalized N/-pair.
If the relation A is £-minimal then the set

span{PHRwu Cwe p(ﬁ), u e ﬁ}
is dense in the space H. In this case the quadratic form (2.8) has exactly

k negative squares and hence the kernel N?;”’(/\) has x negative squares.
Thus the pair {¢, 1} is a normalized N-pair. O
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Definition 2.2. The pair of operator valued functions {¢, ¢} determined
by (2.4) will be called the N,-pair corresponding to the selfadjoint linear
relation A and the scale L.

Note that if the vector values functions ¢(A) and ¥ (\) are defined
by (2.4) then b,y = by = by

3. Functional model of a selfadjoint
linear relation

Consider the reproducing kernel Pontryagin space H(¢, ), which is
characterized by the properties:

(1) Nfﬁw(-)u € H(p,9) for all w € by and u € L;

(2) for every f € H(¢,1)) the following identity holds

(), N (u o = (f(w),u)z, wEbpy,ucl. (3.9

It follows from (3.9) that the evaluation operator

EN): f=f) (f €H(p,))

is a bounded operator from H(¢, ) to L£. Also note that the set of
functions {NJ¥()u: w € hoy, u € L} is total in H(p, ) (|2]).

In the next theorem we give functional model of a selfadjoint linear
relation A recovered from a Ny-pair.

Theorem 3.1. Let £ be a Hilbert space and let {¢, 1} be a normalized
Ny-pair. Then the linear relation

A(qb,w)—{{[ﬂ’ [H}

£ f e, 9), uu €L, (3.10)
') = AfA) = o(Nu = b (M, A € by '

is a selfadjoint linear relation in H(¢, ) @ £ and the normalized pair
{¢,9} is the Ny-pair corresponding to A(¢,) and L.

Proof. Step 1. Let us show that A(¢,1) contains vectors of the form

{F,v,Flv} = {{ ?i)) } [ ‘”q?'(:()‘l))” ]} vEL, we by, (3.11)
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where N (-) := Ngw(') and
A = span{{FwU,F:;U} rvel, we b‘w}

is a symmetric linear relation.
Indeed, it follows from (3.10) and the equality

(@ = MNu(N)v = d(A)* P (@)v = P(A)*p(@)v
that {F,v, FL v} € A(é,v).
For arbitrary w; € hyy, v; € £ (j = 1,2) one obtains
[@Nu, (o, Nm(.)vz}mw) = [NosOor,@aNes (o] -
+ <¢(@1)01,¢(@2)02)L - (Tﬂ(@l)m,(ﬁ(%)%)ﬁ
— ((Dl — w2) (Nwl (WQ)’Ul, 'UQ)L
- <(¢(@2)*¢(@1) - 1/}(@2)*¢(@1))U17U2)£ =0,

therefore, A’ is symmetric in H (e, ) & L.

Step 2. Let us show that ran(A’ — A) is dense in H(¢, ) EB L for X €
By Choose the vector {F,v, F,v} with w = A. Since ¢(\) —Ap(X\) = I
then

{Fyv, Fjv — AFyv} = { [ Tb(g));)

Hence 0 @ £ C ran(A’ — \). Taking {F,v, F/v} with w # X one obtains

from (3.11)
e | [ 2 e

and, hence, {Nwé')”} € ran(A’—)\) for allw # A. Due to the properties (1)
and (2) of H(¢, 1) one obtains the statement. Thus A’ is an essentially
selfadjoint lineal relation and hence (A’)" is a selfadjoint lineal relation
in H(p,¢) & L.

Step 3. Let us show that A(¢,v) = (A’)T. Indeed, for every vector

ot ={[ 0] 70} s

u
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where f, f' € H(¢,v) and u,u’ € L and arbitrary w € by, v € L it
follows from (3.10) that

[F/’ FwU]H(qﬁ,w)@ﬁ - [F’ FLU}H(@@ZJ)@E
= [fly Nw(-)v]H(@w) - [fﬂDNw(')U}H(qg ¥)
+ (u/, 1/)(@)1))[: — (u, (;S(Gj)v)c
= (f'(w) —wfw) + (@) — d(@) u,v) , = 0.
Hence F € (A')" and A(¢,) C (A')T. Conversely, if
[flv Nw()v] H(pp) [fv @Nw()v] H(p, ) + (ul7 w(@)v)ﬁ - (U, d)(u_‘))v)ﬁ =0
for some f, f' € H(p,9), u,u’ € L and all w € b, , v € L, then
flw) —wf(w) = (pw)u — P(w)u') =0

and, hence, Fe A(¢,1)). This proves that (A')" C A(¢,1), and, hence,
(ANt = A(¢,1)). Therefore, A(p,7) is a selfadjoint lineal relation.

Step 4. Finally, we show that {¢,9} is a pair corresponding to the
selfadjoint linear relation A and the scale £. Indeed, it follows from
(3.12) and Definition 1.2 (iii’) that

Pe(A(g, ) = A) " Te=9(N),

= -1
I+ AP (A(@,0) = A) 7 2= @(N).
Therefore, the pair {¢, ¥} is a normalized N,-pair corresponding to the
linear relation A(¢, ) and the scale L. O

Remark 3.1. It follows from (3.12) that the linear relation A(p, ) given
by (3.10) is £L-minimal.

Remark 3.2. For every normalized Ny, pair {¢, ¢} and h € H(p, ) the
following identity holds

Pl ) -0 o = h0 e eas)

Indeed, it follows from (3.12) that for every v € £ one obtains

(e [} ).
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= [h, N,\(-)U]H(%w) = (h(X),v) ..

Therefore, E(X) = Pz (A(p, ¢) — )\)71 [H(e,p) 18 the evaluation operator
in H(ep, ).

We define the lineal space ‘flw via the formula
N, = {Ng/’(-)u, ue L} . (3.14)
Proposition 3.1. Let {y, %} be a normalized Ny-pair in the space L.
Then

(i) the space Nz is a positive subspace in H(g, ) if and only if NZY (w)
is a strictly positive operator in L.

(ii) if additionally ), ker N£Y(A) = {0} then the space Nz is a de-
generate subspace in H(p, ) if and only if 0 is an eigenvalue of
NEY (w).

Proof. Denote Ny (-) := NZ¥(-). Let us prove the first statement. Since
[No (), Noo ()] 3y gy = (No(@)uyu) - (u € L)

then a conditions Ng(w) > 0 is equivalent to the inequality
(N (), Nw(-)u)Hw 4 > 0 which holds for all (0 #)u € L.

Now we prove the second statement. Let at first the space ()Vtw is a
degenerate subspace. Then exist (0 #)ug € £ such that

0= [Nu(-)uo, Nw(')U]H(%w) = (Nw(w)uo,v)ﬁ

which holds for all v € £. Therefore N, (w)up = 0 and hence 0 is an
eigenvalue of N, (w).
Conversely, let N, (w)ug = 0 where (0 #)ug € L. Then

0= (Nw(w)“mv)ﬁ = [No,(-)uo, Nw(‘)”]msa,w

therefore N, (-)ug is orthogonal to the space ‘)~"(% Since Ny, (-)ug # 0 then
it is a nontrivial isotropic vector in the space I,,,. ]

Proposition 3.2. Let Abe a selfadjoint linear relation in H & £ and
let {p,1} be the normalized Nevanlinna pair given by (2.4). Let the
operator valued function y(\) : £ — H be defined by

YO = Pr(A= Nz (A€ p(A)). (3.15)
Then the following identity holds
NEY(A) = 7 (A) (@) (3.16)



206 A FUNCTIONAL MODEL...

Proof. Indeed, it follows from (2.7) that the kernel NZQW(/\) takes the form
NEY(N) = (PeRAPH)(PrRalc) = 7(X) (@)
O

Proposition 3.3. Let {¢,9} be a normalized N,-pair in the space L.
Then N, is a closed space if and only if N, (w) is normally solvable.

Proof. Denote B := wa (w) and consider its spectral decomposition

B =By ®B_® By (3.17)
and the corresponding decomposition of the Hilbert space £

L=LL DL DLy (3.18)

where By > 0, B_ <0, and By = Og,. It follows from (3.12) and (3.15)
that
Y(w)v=NEY (v Vo € L.

Since M, = ~v(w)L then M, can be decomposed as
Ny = NG [+ [+

w

(3.19)

where Mt = y(w) Ly and MY = v(w)Ly. This decomposition is orthogo-
nal since N, (w) = Ng(@). For instance, if vy € L4, v— € L_ then

h(w)u, fy(w)v,]H(%w) = [Nw(.)v+, Nw(.)v,]ﬂ(%w)
= (Nz(@)vy, U—)L = (Nw(w)mr,v_)ﬁ =0.

Let B = N&¥(w) be normally solvable ran B is closed in £. Since £_
and Ly are finite-dimensional subspaces in £ then ran B is closed and
by Banach Theorem there is ¢ > 0 such that

(Byv, v)e > ]2 (ve Lh). (3.20)
Due to Proposition 3.2 it can be rewritten as
@), @],y = EllE (e L), (3.21)

Thus N} = v(w)Ly is closed. Since dimN; < x and dimNY, < « this
implies that I, is closed.

Conversely, if M, is closed, then 9} is also closed. Since v(w) [,
is invertible, then there is ¢ > 0 such that (3.21) holds. In view of
Proposition 3.2 this implies that ran By is closed in £. Since B_ is
finite-dimensional then ran B is closed. This proves the statement. [J
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Remark 3.3. If m is a function from the class N, (L) such that 7—Am(\)
is invertible for all A € C\R then the pair {Iz, m(\)} is equivalent to
the normalized Ny -pair

(o, 0} = {(Ic = xm(V) ", m() (I — Am(3) '}

and the corresponding model operator can be rewritten as

R | v

(3.22)

Considering the projection of this model to the space H(y, ), one

obtains the model for a symmetric operator S with the abstract Weyl

function m(A), given in [10] in the Hilbert space case and in [8] in the

Pontryagin space case. In particular, a model for a selfadjoint extension
Ap of S can be derived from (3.22) in the form

Ao ={{f, '} e H(¢,%)* : f'(A\) = Af(A) = u for some u € L}. (3.23)

This reproducing kernel space model appeared originally in [1].

4. Generalized Fourier transform

In this section we show that every £-minimal selfadjoint linear relation
A is unitarily equivalent to its functional model A(p, 1)), constructed in
Theorem 3.1. The operator F : H — H(p, 1) given by the formula

hi— (FR)YA) = y(A)*h = Pr(A—=X)"'h  (heH) (4.24)

is called the generalized Fourier transform associated with A and the scale

L.

Theorem 4.1. Let A be a selfadjoint linear relation in ‘H & £ and let
{¢, 1} be the corresponding N,-pair given by (2.4). Then:

1) The generalized Fourier transform F maps isometrically the sub-
space Hy onto H(¢, 1) and F is identically equal to 0 on H & Ho;

2) For every { [f ] , [ﬁ :} } € A the following identity holds

u

EONF( — M) = [N —p(O)] m S @2)

u
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Proof. 1) For every vector h = y(w)v (w € p(A), v € L) it follows from
Proposition 3.2 that

(FR)A) = v(N)y(@)v = NZ¥(A)v.

Therefore, F maps the linear space span{y(w)L : w € p(A)} which is

dense in Hy onto the linear space span{N£¥(-)L : w € p(A)} which is
dense in H(p, ). Moreover, this mapping is isometric, since

[Fh, Fhlyo) = INGY (v, NEY (0]p(.0)
= (NEY(@)v,0)z = [h, . (4.26)
This proves the first statement. It is clear from (4.24) that Fh = 0 for
h € HoeH.

2) Let h = v(@)v = Py(A—o) v, v € L. It follows from (2.4), (3.15)
that

This implies

V@) (f' = of) = p(wu — P, w € p(A). (4.27)
This proves the identity (4.25). O

Corollary 4.1. In the case, when the linear relation A is L-minimal it
is unitary equivalent to the linear relation A(¢p,) via the formula

i T R

The operator F & I, establishes this unitary equivalence.

Corollary 4.2. It follows from (3.13) that the Fourier transform F as-
sociated with the operator A(ep,1)) is identical, since

(Fh)(N) = Pr(A(p, ) —A) ! [g] = h(\) for every h € H(p, ).
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Lemma 4.1. Let A be a selfadjoint linear relation in H® L, let {p, 1} be
the normalized Ny-pair given by (2.4). Then the following implications
hold

(i) kergp(A) = {0} for some X € p(A) = P; dom A is dense in L;
(i) ker p(A) = {0} for some A € p(A) = P ran A is dense in L.

If, in addition, the relation A is £-minimal, and N5¥(w) > 0 for some

w € p(A) then
ker p(w) = {0}, kerey(w) ={0}.

Proof. Let us prove the first statement. The set P, dom A consists of
the vectors v € L such that

{|:f:| ) |:1fj;:|} S AV for some f7 f’ c H’ u cL.

u

If there is a vector v € L such that v L u for all u € P, dom A then

] L] =

and then ¢ (\)v = 0, due to (2.4). But ker¢)(A) = {0} therefore v = 0.
The proof of the second statement is similar.
Assume now that N&¥ (w) > 0 for some w € p(A) and that ¢ (w)v = 0.
Then in view of (2.4) ¢(w)v = v and

This implies v = 0. U

Criterions for the right parts in (i) and (ii) to be true are given in the
following lemma.

Lemma 4.2. Let A be a £-minimal selfadjoint linear relation in H @ L,
let {¢, 1} be the normalized N,-pair given by (2.4). Then

(i) ﬂ/\ep(;{) ker 1h(\) = {0} if and only if P ran A is dense in £;

(i) ﬂAep(ﬁ) ker ¢(\) = {0} if and only if P, ran A is dense in L.
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Proof. The necessity of (i) and (ii) follows from Lemma 4.1. To prove
the sufficiency let us consider the linear relation A(p, ) given by (3.10).
By Corollary 4.1 A(p,) is unitary equivalent to the linear relation A
and, hence, we may prove the statement for the linear relation A(p, ).

Assume that ¢(A)v = 0 for some v € £ and for all A € p(A(p,v)).

Then in view of (2.4) ¢(\)v = v and

for all A, w € p(A(p,v)). Now it follows from (3.11) that

(- Ll AP 0 e

and, hence, v L P, dom A. O
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