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Abstract. We have obtained the best possible conditions for removable

singularity at the point for solutions of quasilinear parabolic equations of

divergent form. Cases of interior singular point (x0, t0) ∈ QT ⊂ R
n+1 we

have established a removability result for a solution u(x, t) ∈ V
2,p

loc (QT )\

(x0, t0) under a condition u(x, t) = o([|x−x0|+ |t−t0|
1

p+n(p−2) ]−n). As a

particular case we have a precise removability condition for p-Laplacian

evolution equation. The proof is based on a new approach connected

with point-wise estimates of solutions in puncturated domains.
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1. Introduction

The paper is devoted to the study of conditions for removable isolated
singularities for solutions of quasilinear parabolic equations of divergent
form

∂u

∂t
−

n
∑

j=1

∂

∂xj
aj

(

x, t, u,
∂u

∂x

)

+ a0

(

x, t, u,
∂u

∂x

)

= 0 (1.1)

in QT \ (x0, t0) where QT = Ω× [0, T ], Ω is bounded open set in R
n, x0 ∈

Ω, t0 ∈ [0, T ]. It means that we study conditions for the behavior of
u(x, t) near singular point (x0, t0) which guarantees that the extension
ũ(x, t) of u(x, t) to QT satisfies the equation (1.1) in QT .

We will distinguish two cases: t0 = 0 or t0 > 0. In the first case we
assume additionally an initial condition

u(x, 0) = 0 for x ∈ Ω \ {x0}. (1.2)
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We consider the equation (1.1) with nonlinear growth of coefficients
aj(x, t, u, ξ),
j = 0, 1, . . . , n with respect to u, ξ. In particular a parabolicity condition
is formulated in the form

n
∑

j=1

aj(x, t, u, ξ)ξj ≥ ν1|ξ|
p − g1(x, t)|u|

p − f1(x, t) (1.3)

with p > 2, positive constant ν1 and some integrability conditions for
functions g1(x, t), f1(x, t). It means that p-Laplace evolution equation is
involved in our consideration.

We formulate the removability result for the problem (1.1), (1.2) in
the form of the behavior of the function

M(r) = sup{|u(x, t)| : (x, t) ∈ D(R0, x0) \ D(r, x0)} (1.4)

where

D(r, x0) =
{

(x, t) ∈ R
n × [0,∞) :

( |x− x0|

r

)p

+
t

rp+n(p−2)
≤ 1
}

and R0 is some fixed number.
We prove in the Theorem 2.2 that the singularity of the solution

u(x, t) of the problem (1.1), (1.2) is removable if

lim
r→0

M(r)rn = 0 (1.5)

and the function rn is best possible in (1.5) for removable singularity
condition.

This type result is well-known for heat equation. It is known for non-
negative solutions for linear parabolic equations with measurable coeffi-
cients that follows from the paper [1] of D. G. Aronson. For nonnegative
solutions of general quasilinear parabolic equations of the type (1.1) with
p = 2 in (1.2) an analogous result follows from the paper of D. G. Aronson
and J. Serrin [2] where it is proved an inequality

M(r)rn ≥ K (1.6)

with positive constant K for non-removable singularity.
Preciseness of our condition (1.5) confirms well known Barenblatt’s

singular solution [3]

u(x, t) = t
− n

p+n(p−2) max
p−1
p−2

{

K1 −K2

(

|x|

t
1

p+n(p−2)

)
p

p−1

, 0

}

(1.7)
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of the p-Laplacian evolution equation

∂u

∂t
− div(|∇u|p−2∇u) = 0.

In (1.7) K1 and K2 are some positive numbers. It is clear that for the
solution (1.7) an inequality 0 < C1 ≤M(r)rn ≤ C2 < +∞ is satisfied.

Remark that properties of solutions of the equation (1.1) for p > 2
essentially different from corresponding properties for p = 2. It is simple
to see by the analysis of the behavior of the solution u(x, t) given by the
formula (1.7).

Many authors studied problems of singularities of solutions of special
form parabolic equations with Laplace of p-Laplace operators in principle
part. Review of these results can be found in monograph of L. Veron [12].

The study is based on precise point-wise estimates of solutions in
puncturated domains. This method was developed by I. V Skrypnik
(see, for example, [11]) and it was applied in [8] for the proof of precise
removability condition for elliptic equations.

Our approach gives a possibility to prove a non-existence of singular
solution for quasilinear parabolic equations with absorption term. For
model p-Laplacian parabolic equations the results are in papers [5, 6].
Precise results for general quasilinear elliptic equations are published in
[10]. We are planning to publish these results and results on solutions
with singularities on smooth manifolds in forthcoming papers.

The paper is organized as follows. In Section 2 assumptions and main
results are formulated. The boundedness of a singular solution satisfying
an inequality

M(r) ≤ Krγ−n for 0 < r ≤ R0 (1.8)

with positive constants K, γ is proved in Section 3. This result is analo-
gous to known Serrin’s result [9] for elliptic case. Auxiliary integral esti-
mates for solutions with isolated singularity are established in Section 4.
We prove the fundamental point-wise estimate of singular solution in Sec-
tion 5. We establish in this section that the condition (1.5) implies the
inequality (1.8). The theorem on the removability of the singularity is
proved in Section 6.

2. Formulation of assumptions and main results

We assume that functions aj(x, t, u, ξ), j = 0, 1, . . . , n in the equation
(1.1) satisfy the following conditions:

a1) aj(x, t, u, ξ), j = 0, 1, . . . , n are defined for (x, t, u, ξ) ∈ Ω × (0, T ) ×
R

1 × R
n) and they are measurable functions of x, t for all (u, ξ) ∈
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R
1×R

n and continuous functions of u, ξ for almost all points x, t ∈
Ω × (0, T );

a2) there exist numbers p ∈ [2, n), ν1, ν2 > 0 such that for all values of
x, t, u, ξ inequalities (1.3) and

|aj(x, t, u, ξ)| ≤ ν2|ξ|
p−1 + g2(x, t)|u|

p−1 + f2(x, t), j = 1, . . . , n

|a0(x, t, u, ξ)| ≤ ν3(x, t)|ξ|
p−1 + g3(x, t)|u|

p−1 + f3(x, t)
(2.1)

hold with nonnegative functions ν3(x, t), g1(x, t), fi(x, t) and such
that

H(x, t) ∈ Lr0(0, T ;Lq0(Ω)),

p+ n(p− 2)

r0
+
n

q0
= p(1 − δ);

r0, q0 ≥ 1,

H(x, t) = 1 + ν
p
3(x, t) + f1(x, t) + [f2(x, t)]

p

p−1 + f3(x, t)

+ g1(x, t) + [g2(x, t)]
p

p−1 + g3(x, t).

Let us consider a solution u(x, t) of the equation (1.1) that has isolated
singularity at the point (0, 0) and satisfies the initial condition (1.2). By
a solution of the problem (1.1), (1.2) we mean a function u(x, t) satisfying
a including

u(x, t)ζ(x, t) ∈ V 2,p(QT ) = C(0, T ;L2(Ω)) ∩ Lp(0, T ;W 1,p(Ω))

and an integral identity

I(u, ϕ) ≡

∫

Ω

u(x, τ)ϕ(x, t) dx

+

r
∫

0

∫

Ω

{

−u
∂ϕ

∂t
+

n
∑

i=1

ai

(

x, t, u,
∂u

∂x

) ∂ϕ

∂xi
+a0

(

x, t, u,
∂u

∂x

)

ϕ

}

dx dt = 0,

(2.2)

with ϕ(x, t) = ψ(x, t)ζ(x, t) where ψ ∈ V 2,p(QT ) is an arbitrary function
such that ∂ψ

∂t
∈ L2(QT ). Here τ is a number satisfying an inequality

0 < τ ≤ T , ζ is a arbitrary function such that ζ(x, t) ∈ C∞(QT ) and
ζ(x, t) is equal to zero near (0, 0) ∪ {∂Ω × (0, T )}.
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We will say that the singularity at the point (0, 0) of the solution
u(x, t) of the problem (1.1), (1.2) is removable if the integral identity
(2.2) is satisfied for all functions ϕ = ψζ̄ and all τ ∈ (0, T ) where ψ
is the same function as above and ζ̄ is an arbitrary function such that
ζ̄ ∈ C∞(QT ) and ζ̄ us equal to zero near ∂Ω × (0, T ).

Introduce the Steklov averaging of w ∈ L1(QT )

[w(x, t)]h =
1

h

t+h
∫

t

w(x, s) ds t ∈ (0, T − h],

[w(x, t)]h = 0 for t > T − h.

(2.3)

Standard argument (see, for example, [7]) implies that the identity (2.2)
can be equivalently formulated as

t2
∫

t1

∫

Ω

{

∂[u]h
∂t

ϕ+

n
∑

i=1

[

ai

(

x, t, u,
∂u

∂x

)]

h

∂ϕ

∂xi

+
[

a0

(

x, t, u,
∂u

∂x

)]

h
ϕ

}

dx dt = 0 (2.4)

with ϕ = ψζ where ζ is the same function as in (2.1), h, t1, t2 are numbers
satisfying an inequality 0 < h < t1 < t2 < T − h, ψ ∈ Lp(0, T ;W 1,p(Ω))
is an arbitrary function.

Let R0 be some number satisfying a condition

D(R0) ⊂ Ω × [0, T ) (2.5)

where D(r) = D(r, 0) and D(r, 0) is the same as in (1.4) and let M(r) be
defined by the equality (1.4) with x0 = 0. It follows from [4] that u(x, t)
is Hölder function on D(R0)\D(r) and therefore M(r) is a finite number.
We omit R0 in the notation of M(r) since main results formulated below
do not depend on the choice of R0 and the number R0 will be fixed later.

We will understand numbers ν1, ν2, n, p, q0, r0, δ, R0, norm of the func-
tions H(x, t) in respective spaces as known parameters.

The first result on the behavior of the solution near isolated singularity
is the following theorem.

Theorem 2.1. Let conditions a1), a2) be satisfied and suppose that

u(x, t) is the solution of the equation (1.1) in QT satisfying the condition

(1.2) and the inequality

M(r) ≤
K1

rn−γ1
for 0 < r ≤ R0 (2.6)
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with some positive constants K1, γ1. Then there exists a constant M1

depending only on known parameters and K1, γ1 such that an inequality

|u(x, t)| ≤M1 for (x, t) ∈ D
(R0

2

)

(2.7)

holds.

We will see that the inequality (2.7) implies the removability of the
singularity at (0, 0) immediately.

This theorem is analogous to the well-known Serrin’s result on remov-
able singularity at the point for quasilinear elliptic equations [9].

Using Theorem 2.1 and precise analysis of the behavior of u(x, t) near
(0, 0) we establish the best condition on removable singularity.

We will formulate the following result in the form

lim
r→0

M(r)R(r) = 0 (2.8)

where R such positive function that R(r) → 0 as r → 0. We will say that
the function R is the best possible for the removability of the singularity
at the point (0, 0) if the assumption (2.8) implies the removability of the
singularity at (0, 0) an it is not possible to find another function R such
that the assumption

lim
r→0

M(r)R(r) = 0

guarantees the removability of the singularity at (0, 0) and limr→0
R(r)
R(r) =

0.

Theorem 2.2. Let conditions a1), a2) be satisfied and suppose that

u(x, t) is the solution of the equation (1.1) in QT satisfying the condition

(1.2) and the equality

lim
r→0

M(r)rn = 0. (2.9)

Then the singularity of u at the point (0, 0) is removable and the function

rn is the best possible for the removability of the singularity at the point

(0, 0).

This theorem is analogous to the precise result on removable singu-
larity at the point for quasilinear elliptic equations that was published by
authors in [8].

Our results on the removable singularity at the point (0, t0), t0 >

0, are analogous to Theorems 2.1, 2.2. By a solution of the equation
(1.1) with the singularity at the point (0, t0) we mean a function u(x, t)
satisfying an including uξ ∈ V 2,p(QT ) and an integral identity I(u, ϕ) = 0
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with ϕ = ψξ where I(u, ϕ) is defined by (2.2), ψ ∈ Lp(0, T ;W 1,p(Ω)) is
an arbitrary function such that ∂ψ

∂t
∈ L2(QT ), ξ is an arbitrary function

such that ξ ∈ C∞(QT ) and ζ is equal to zero near (0, t0)∪{∂Ω×(0, T )}∪
{Ω×{0}}. Removable singularity at (0, t0) is understood analogously as
for the point (0, 0).

Define for r > 0

D∗(r);
{

(x, t) ∈ R
n × R

1 :
( |x|

r

)p

+
|t− t0|

rp+n(p−2)
≤ 1
}

and let R∗
0 be some number satisfying a condition D∗(R

∗
0) ⊂ QT . Denote

for 0 < r < R∗
0

M∗(r) = sup{|u(x, t)| : (x, t) ∈ D∗(R
∗
0) \ D∗(r)}. (2.10)

Theorem 2.3. Let conditions a1), a2) be satisfied and suppose that

u(x, t) is the solution of the equation (1.1) in QT with the singularity

at (0, t0), t0 > 0. Assume that the inequality

M∗(r) ≤
K2

rn−γ2
for 0 < r ≤ R∗

0 (2.11)

is satisfied with some positive constants K2, γ2. Then there exists a con-

stant M2 depending only on known parameters and R∗
0,K2, γ2 such that

the estimate

|u(x, t)| ≤M2 for (x, t) ∈ D∗

(R∗
0

2

)

(2.12)

holds.

Theorem 2.4. Let conditions a1), a2) be satisfied and suppose that

u(x, t) is the solution of the equation (1.1) in QT with the singularity

at (0, t0). Assume that the condition

lim
r→0

M∗(r)r
n = 0 (2.13)

is satisfied. Then the singularity of u at the point (0, t0) is removable and

the function rn is the best possible for the removability of the singularity

at the point (0, t0).

Remark 2.1. For a fixed solution u(x, t) we have from the assumption
(2.9) the following estimate

|u(x, t)| ≤ K0{|x| + t
1

p+(p−2)n }−n (2.14)

for (x, t) ∈ D(R0) with some constant K0 dependent on u(x, t).
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Remark 2.2. Equations with more strong growth of coefficients
aj(x, t, u, ξ) can be considered as a special case of introduced above class
of equations. Let us suppose that conditions (1.3), (2.1) are replaced by
the following inequalities

n
∑

j=1

aj(x, t, u, ξ)ξj ≥ ν1|ξ|
p − ν2|u|

q − f1(x, t),

|aj(x, t, u, ξ)| ≤ ν2|ξ|
p−1 + ν2|u|

q p−1
p + f2(x, t),

|a0(x, t, u, ξ)| ≤ ν3(x, t)|ξ|
p−1 + ν2|u|

q−1 + f3(x, t)

(2.15)

with q < p+ p
n

and the same functions ν3(x, t), fi(x, t) as in (2.1).

We consider the removability of a isolated singularity for a fixed so-
lution satisfying the assumption (2.9). Denoting

g1(x, t) = g3(x, t) = ν2|u(x, t)|
q−p, g2(x, t) = ν2|u(x, t)|

( q

p
−1)(p−1)

and using the inequality (2.14) we check that such functions gi(x, t) sat-
isfy assumption a2). Thus the assertions of formulated above theorems
remain true for coefficients satisfying inequalities (2.15).

3. Proof of Theorem 2.1

We fix the notation ηr(x, t) for a function ω(( |x|
r

)p + t
rp+n(p−2) ), r > 0

where ω is a function of the space C∞(R1) satisfying conditions

ω(s) = 0 for s ≤ 1, ω(s) = 1 for s ≥ 2p,

0 ≤
dω(s)

ds
≤ 1, 0 ≤ ω(s) ≤ 1.

(3.1)

Define for k, l ≥ 0, u ∈ R
1

Fkl(u) = (1 + u2
k)
l[1 + u2]−αu (3.2)

where u2
k = min{u2, k2} and a number α is defined by the equality

α =
1

4
+

1

4
max

{n− 2γ1

n− γ1
,
2n− γ1p

2n− γ1

}

(3.3)

with the number γ1 from the condition (2.6).

We substitute in the integral identity (2.4) a test function

ϕ1(x, t) = Fkl([u(x, t)]h)ψ
m(x, t)ηmr (x, t)
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where u(x, t) is the solution of the problem (1.1), (1.2) satisfying con-
ditions of the Theorem 2.1, ψ(x, t) is a fixed function such that ψ ∈
C∞(QT ), 0 ≤ ψ(x, t) ≤ 1, ψ is equal to one on D(R0

2 ) and to zero outside
D(R0), m ≤ p, [u(x, t)]h is the Steklov average of u(x, t).

Evaluating the term of (2.4) with the derivative of [u]h on t and the
indicated choice of the test function we have for t1 = θ ≥ h, t2 = τ ≤
T − h

τ
∫

θ

∫

Ω

Fkl([u]h)ψ
mηmr

∂[u]h
∂t

dx dt = I1([u]h) +
4
∑

j=1

Ijθ([u]h) (3.4)

where

I1([u]h) =

∫

Ω

Gkl([u(x, τ)]h)ψ
m(x, τ)ηmr (x, τ) dx,

I2θ([u]h) = −

∫

Ω

Gkl([u(x, θ)]h)ψ
m(x, θ)ηmr (x, θ) dx,

I3θ([u]h) = −

τ
∫

θ

∫

Ω

Gkl([u]h)
∂ψm

∂t
ηmr dx dt,

I4θ([u]h) = −

τ
∫

θ

∫

Ω

Gkl([u]h)ψ
m∂η

m
r

∂t
dx dt.

(3.5)

The function Gkl(u) is defined by equalities

Gkl(u) =
1

2(l − α+ 1)
[1 + u2]l−α+1 for |u| ≤ k,

Gkl(u) = Gkl(k) +
(1 + k2)l

2(1 − α)
{(1 + u2)1−α − (1 + k2)1−α} for |u| > k

and satisfies the following estimate

Gkl(u) ≤ C1(1 + u2
k)(1 + u2)1−α ≤ C2(l + 1)Gkl(u). (3.6)

Here and further we denote by Cj , j = 1, 2, . . . positive constants de-
pending only on known parameters, γ1,K1.

Letting h→ 0 in (3.4) we obtain for an arbitrary θ > 0

lim
h→0

τ
∫

θ

∫

Ω

Fkl([u]h)ψ
mηmr

∂[u]h
∂t

dx dt = I1(u) +
4
∑

j=2

Ijθ(u) (3.7)
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and then passing to the limit θ → 0 we get

I1(u) +
4
∑

j=2

Ijθ(u) +
7
∑

j=5

Ij(u) = 0. (3.8)

where

I5(u) =
n
∑

i=1

τ
∫

0

∫

Ω

ai

(

x, t, u,
∂u

∂x

) ∂

∂xi
Fkl(u)ψ

mηmr dx dt,

I6(u) =
n
∑

i=1

τ
∫

0

∫

Ω

ai

(

x, t, u,
∂u

∂x

)

Fkl(u)
∂

∂xi
[ψmηmr ] dx dt,

I7(u) =

τ
∫

0

∫

Ω

a0

(

x, t, u,
∂u

∂x

)

Fkl(u)ψ
mηmr dx dt.

(3.9)

We estimate terms in (3.8) using inequalities (2.1), (3.6) and Young’s
inequality and we obtain

1

l + 1

∫

Ω

[1 + u2
k(x, τ)]

l[1 + u2(x, τ)]1−αψm(x, τ)ηmr (x, τ) dx

+

∫∫

Qr

[1 + u2
k]
l[1 + u3]−α

∣

∣

∣

∂u

∂x

∣

∣

∣

p

ψmηmr dx dt

≤ C3(l+m)p

{

1+

∫∫

Qr

[1+u2
k]
l[1+u2]

p

2
−αH(x, t)ψm−p(x, t)ηmr (x, t) dx dt

+

∫∫

Qr

[1 + u2
k]
l
(

[1 + u2]1−α
∣

∣

∣

∂ηr

∂t

∣

∣

∣
+ [1 + u2]

p

2
−α
∣

∣

∣

∂ηr

∂x

∣

∣

∣

p)

ψmηm−p
r dx dt

}

(3.10)

where Qr = Ω×(0, τ) and the function H(x, t) is defined by the condition
a2).

Direct calculations and conditions a2), (2.6), (3.3) imply that the
integral

∫∫

QT

[1 + u2]
p

2
−αH(x, t)ψm−p(x, t) dx dt

is finite and the integral
∫∫

QT

(

[1 + u2]1−α
∣

∣

∣

∂ηr

∂t

∣

∣

∣
+ [1 + u2]

p

2
−α
∣

∣

∣

∂ηr

∂x

∣

∣

∣

p)

dx dt
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tends to zero as r → 0. Then we may pass to the limit in (3.10) as r → 0
and we get an inequality

sup
0<τ<T

∫

Ω

[1 + u2
k(x, τ)]

l[1 + u2(x, τ)]1−αψm(x, τ) dx

+

∫∫

QT

[1 + u2
k(x, t)]

l[1 + u2(x, t)]−α
∣

∣

∣

∂u

∂x

∣

∣

∣

p

ψm(x, t) dx dt

≤ C3(l +m)p+1

{

1 +

∫∫

QT

[1 + u2
k(x, t)]

l[1 + u2(x, t)]
p

2
α

×H(x, t)ψm−p(x, t) dx dt

}

. (3.11)

Now we will show that the integral

I(l,m) =

∫∫

QT

[1 + u2(x, t)]l+
p

2
−αH(x, t)ψm−p(x, t) dx dt (3.12)

is finite for an arbitrary positive l with a suitable choice of m. This
assertion follows for

l0 =
1

12

{

1 − max
[n− 2γ1

n− γ1
,
2n− γ1p

2n− γ1

]}

, m0 = p (3.13)

by using the inequality (2.6), conditions a2), (3.3) and direct calculation.
Let assume that for some numbers l∗ ≥ l0, m∗ ≥ p the integral

I(l∗,m∗) is finite. Then from (3.11) and monotone convergence theorem
we have

sup
0<τ<T

∫

Ω

[1 + u2(x, τ)]l∗+1−αψm∗(x, τ) dx

+

∫

QT

[1 + u2(x, t)]l∗−α
∣

∣

∣

∂u

∂x

∣

∣

∣

p

ψm∗(x, t) dx dt

≤ C4[l∗ +m∗]
p+1{1 + I(l∗,m∗)}. (3.14)

Define

l∗ = (l∗ + 1 − α)
[ 1

q′0
−
n− p

n

1

r′0

]

+
(

l∗ +
p

2
− α

) 1

r′0
−
p

2
+ α,

m∗ = m∗

( 1

q′
+

p

nr′

)

+ p
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where q′0 = q0
q0−1 , r′0 = r0

r0−1 and numbers q,r0 were introduced in the
condition a2).

Using Hölder’s inequality and the embedding theorem we have

∫∫

QT

[1 + u2
k(x, t)]

l∗+ p

2
−αH(x, t)ψm

∗−p(x, t) dx dt

≤ C5

{ T
∫

0

{

∫

Ω

[1 + u2
k(x, t)]

(l∗+ p

2
−α)q′0ψ(m∗−p)q′0(x, t) dx

}

r′0
q′0

dt

}
1
r′0

≤ C5

{ T
∫

0

{

∫

Ω

[1 + u2
k(x, t)]

l∗+1−αψm∗(x, t) dx

}

r′0
q′0

−n−p

n

×

{

∫

Ω

[1 + u2
k(x, t)]

(l∗+ p

2
−α) n

n−pψm∗(x, t) dx

}
n−p

n

dt

}

≤ C6(l∗ +m∗)
p sup

t

{

∫

Ω

[1 + u2
k(x, t)]

l∗+1−αψm∗(x, t) dx

}
1

q′0
−n−p

n
1
r′0

×

{

∫∫

QT

{

[1 + u2
k(x, t)]

l∗−α
∣

∣

∣

∂u

∂x

∣

∣

∣

p

ψm∗(x, t)

+ [1 + u2
k(x, t)]

l∗+ p

2
−αψm∗−p(x, t)

}

dx dt

}
1
r′0

. (3.15)

Now the assumption on the finiteness of I(l∗,m∗) and the inequality
(3.14) imply that the right hand side of (3.15) is estimated by a con-
stant independent on k. Then using monotone convergence theorem we
conclude from (3.15) that the integral I(l∗,m∗) is finite and estimate

I(l∗,m∗) ≤ C7[l∗ +m∗]
2p+1{1 + I(l∗,m∗)}

1

q′0+
p
n

1
r′0 (3.16)

holds.

Remark that the assumption on q0, r0 implies the following equality

1

q′0
+
p

n

1

r′0
= 1 +

pδ

n
+
p− 2

r0
, l∗ +

p

2
− α =

(

l∗ +
p

2
− α

)

(1 + k) − β

where β = (p2 − 1)(pδ
n

+ p−1
r0

), k = pδ
n

+ p−2
r0

.
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Let us define sequences {lj}, {mj} by the equalities

lj +
p

2
− α−

β

k
=
(

l0 +
p

2
− α−

β

k

)

(1 + k)j ,

mj +
p

k
=
(

p+
p

k

)

(1 + k)j , j = 1, 2, . . .
(3.17)

It is simple to check that l0 + p
2 − α− β

k
> 0. The inequality (3.16) with

l∗ = lj−1, m∗ = mj−1 implies an estimate

I(lj ,mj) ≤ C8(1 + k)j(2p+1){1 + I(lj−1,mj−1)}
1+k. (3.18)

Starting from j = 1 and repeating the application of the inequality (3.18)
we obtain that I(lj ,mj) is finite for an arbitrary j. Now the Moser
iteration process gives us the boundedness of the function u(x, t) and the
estimate (2.7). This is the end of the proof of Theorem 2.1.

4. Integral estimates of the singular solution

We will assume further that

lim
r→0

M(r) = ∞. (4.1)

We fix some number R1 from the interval (0, R0) such that

M(R1) ≥ 1

and denote for r ∈ (0, R1]

M∗(r) =
1

rn
max{M(ρ)ρn : r ≤ ρ ≤ R1} + 1. (4.2)

Define the function uR(x, t) for R ∈ (0, R1) and the set E(R) by equalities

uR(x, t) = max{u(x, t) −M(R), 0} for (x, t) ∈ D(R),

uR(x, t) = 0 for (x, t) ∈ QT \ D(R),

E(R) = {(x, t) ∈ D(R) : u(x, t) > M(R)}.

(4.3)

Lemma 4.1. Assume that conditions of Theorem 2.2 are satisfied. Then

there exists a constant K3 depending only on known parameters such that

an estimate

sup
0<τ<T

∫

Ω

u2
R(x, τ)η2

r (x, τ) dx

+

∫∫

E(R)

∣

∣

∣

∂u

∂x

∣

∣

∣

p

ηpr (x, t) dx dt ≤ K3M(r)[M∗(r)rn]p−1 (4.4)

holds with 0 < r < R ≤ R1 and the same function ηr as in Section 3.
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Proof. We substitute in the identity (2.4) with t1 = θ > h, t2 = τ < T−h
a test function

ϕ2(x, t) = [[u(x, t)]h −M(R)]+η
p
r (x, t) with 0 < r < R < R1.

Here [[u(x, t)]h −M(R)]+ = max{[u(x, t)]h −M(R), 0}.
Evaluating the term of (2.4) with the derivative of [u]h on t and the

test function ϕ2 we have

τ
∫

θ

∫

Ω

∂[u]h
∂t

ϕ2(x, t) dx dt

=
1

2

∫

Ω

[[u(x, τ)]h −M(R)]2+η
p
r (x, τ) dx

−
1

2

∫

Ω

[[u(x, θ)]h −M(R)]2+η
p
r (x, θ) dx

−
p

2

τ
∫

θ

∫

Ω

[[u(x, τ)]h −M(R)]2+η
p−1
r

∂ηr

∂t
dx dt. (4.5)

Letting h→ 0 we obtain for all θ ∈ (0, τ), τ ∈ (0, T )

lim
h→0

τ
∫

θ

∫

Ω

∂[u]h
∂t

ϕ2(x, t) dx dt

=
1

2

∫

Ω

u2
R(x, τ)ηpr (x, τ) dx−

1

2

∫

Ω

u2
R(x, θ)ηpr (x, θ) dx

−
p

2

r
∫

θ

∫

Ω

u2
R(x, t)ηp−1

r (x, t)
∂ηr(x, t)

∂t
dx dt, (4.6)

using the inequalities (1.3) and (2.1) and Young’s inequality, we get

lim
h→0

τ
∫

θ

∫

Ω

{ n
∑

i=1

[

ai

(

x, t, u,
∂u

∂x

)]

h

∂ϕ2

∂xi
+
[

a0

(

x, t, u,
∂u

∂x

)]

h
ϕ2

}

dx dt

≥

τ
∫

θ

∫

Ω

{ν1

2

∣

∣

∣

∂u

∂x

∣

∣

∣
ηpr (x, t) − C9u

p(x, t)H(x, t)ηpr (x, t)

− C9u
p
r(x, t)

∣

∣

∣

∂ηr(x, t)

∂x

∣

∣

∣

p}

χ(E(R)) dx dt (4.7)
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where χ(E(R)) is a characteristic function of the set E(R) and the func-
tion H(x, t) was introduced in the condition a2).

Letting θ → 0 we deduce from (4.6), (4.7)

sup
0<τ<T

∫

Ω

u2
R(x, τ)ηpr (x, τ) dx+

∫∫

E(R)

∣

∣

∣

∂u

∂x

∣

∣

∣

p

ηpr (x, t) dx dt

≤ C10

∫∫

E(R)

{

u2
R(x, t)

∣

∣

∣

∂ηr(x, t)

∂t

∣

∣

∣
+ up(x, t)H(x, t)ηpr (x, t)

+ u
p
R(x, t)

∣

∣

∣

∂ηr(x, t)

∂x

∣

∣

∣

p}

dx dt. (4.8)

Using the notation (4.2) and the condition a2) on the function H(x, t)
we obtain

∫∫

E(R)

up−1(x, t)H(x, t)ηpr (x, t) dx dt ≤ C11[M
∗(r)rn]p−1 (4.9)

with the constant C11 independent on r.
Now estimating u(x, t) by M(r) under the integral on the right-hand

side of (4.8) and using the inequality (4.9) we deduce the estimate (4.4)
and the proof of the lemma is completed.

We will assume further that numbers r, ρ,R satisfy conditions

0 < r < ρ < R ≤
R1

2
, M(ρ) > 2M(R) (4.10)

and introduce notations

ΦρR(u) = min{max[u−M(R), 0],M(ρ) −M(R)} for u ∈ R
1,

E(ρ,R) = {(x, t) ∈ QT : 0 < uR(x, t) < M(ρ) −M(R)},

F (ρ) = {(x, t) ∈ QT : u(x, t) > M(ρ)}.

(4.11)

It is clear from the definition of M(ρ) that F (ρ) ⊂ D(ρ).

Lemma 4.2. Assume that conditions of Theorem 2.2 are satisfied. Then

there exists a positive constant K4 depending only on known parameters

such that the estimate

sup
0<τ<T

∫

Ω

Φ2
ρR(u(x, τ))ηpr (x, τ) dx+

∫∫

E(ρ,R)

∣

∣

∣

∂u

∂x

∣

∣

∣

p

ηpr (x, t) dx dt

≤ K4[M(ρ) −M(R)]

{

[M(r)rn[M∗(r)rn]p−1]
p−1

p
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+ [M(ρ) −M(R)]−λ1 [M∗(r)rn]p−1+λ1

+

∫∫

F (ρ)

ν3(x, t)
∣

∣

∣

∂u

∂x

∣

∣

∣

p−1
ηpr (x, t) dx dt

}

(4.12)

holds with λ1 = nδ
2p , the same function ηr(x, t) as in (4.4) and numbers

r, ρ,R satisfying conditions (4.10).

Proof. We substitute in the integral identity (2.4) with t1 = θ > h, t3 =
τ < T − h a test function

ϕ3(x, t) = min{[[u(x, t)]h −M(R)]+,M(ρ) −M(R)}ηpr (x, t).

Evaluating the term of (2.4) with the derivative [u]h on t and ϕ = ϕ3

and letting h→ 0 we obtain for all θ ∈ (0, τ), τ ∈ (0, T )

lim
h→0

τ
∫

θ

∫

Ω

∂[u]h
∂t

ϕ3(x, t) dx dt

=

∫

Ω

Gρ,R(u(x, τ))ηpr (x, τ) dx−

∫

Ω

Gρ,R(u(x, θ))ηpr (x, θ) dx

− p

τ
∫

θ

∫

Ω

Gρ,R(u(x, t))ηp−1
r (x, t)

∂ηr(x, t)

∂t
dx dt (4.13)

with the function Gρ,R(u) defined by the equality

Gρ,R(u) =
1

2
min{u2

R, [M(ρ) −M(R)]2} + [M(ρ) −M(R)]uR. (4.14)

Using the inequalities (1.3), (2.1) and Young’s inequality we obtain

lim
h→0

τ
∫

θ

∫

Ω

{ n
∑

i=1

[

ai

(

x, t, u,
∂u

∂x

)]

h

∂ϕ3

∂xi
+
[

a0

(

x, t, u,
∂u

∂x

)]

h
ϕ3

}

dx dt

≥

τ
∫

θ

∫

Ω

{[ν1

2

∣

∣

∣

∂u

∂x

∣

∣

∣

p

ηpr (x, t) − C12H(x, t)up(x, t)ηpr (x, t)
]

χ(E(ρ,R))

− C12[M(ρ) −M(R)]
[∣

∣

∣

∂u

∂x

∣

∣

∣

p−1
+ [H(x, t)]

p−1
p up−1(x, t)

]

× ηp−1
r (x, t)

∣

∣

∣

∂ηr

∂x

∣

∣

∣
χ(E(R))

}

dx dt
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− C12[M(ρ) −M(R)]

τ
∫

θ

∫

Ω

[

ν3(x, t)
∣

∣

∣

∂u

∂x

∣

∣

∣

p−1
+H(x, t)up−1(x, t)

]

× ηpr (x, t)χ(F (ρ)) dx dt (4.15)

where χ(E(ρ,R)), χ(F (ρ)) are characteristic functions of sets E(ρ,R),
F (ρ) and H(x, t) is the function introduced in the condition a2).

Letting θ → 0 and estimating terms of (4.13) we obtain from (4.13),
(4.15)

sup
0<τ<T

∫

Ω

Φ2
ρR(u(x, τ))ηpr (x, τ) dx+

∫∫

E(ρ,R)

∣

∣

∣

∂u

∂x

∣

∣

∣

p

ηpr (x, t) dx dt

≤ C13

{

[M(ρ) −M(R)]

(

M(r)rn +

∫∫

F (ρ)

ν3(x, t)
∣

∣

∣

∂u

∂x

∣

∣

∣

p−1
ηpr (x, t) dx dt

+ I(1) + I(2)

)

+ I(3)

}

(4.16)

where

I(1) =

∫∫

E(R)

{
∣

∣

∣

∂u

∂x

∣

∣

∣

p−1
+ [H(x, t)]

p−1
p up−1(x, t)

}

ηp−1
r (x, t)

∣

∣

∣

∂ηr

∂x

∣

∣

∣
dx dt,

I(2) =

∫∫

F (ρ)

H(x, t)up−1(x, t)ηpr (x, t) dx dt,

I(3) =

∫∫

E(ρ,R)

H(x, t)up(x, t)ηpr (x, t) dx dt.

Next estimates follow form the condition a2), the notation (4.2) and
direct calculation

∫∫

D(R0)

H(x, t)up−1+λ1(x, t) dx dt ≤ C14[M
∗(r)rn]p−1+λ1 , (4.17)

∫∫

E(R)

[H(x, t)]
p−1

p

∣

∣

∣

∂ηr

∂x

∣

∣

∣
dx dt ≤ C14r

(n+δ)(p−1)+1 (4.18)

with the constant c14 independent on r and λ1 = nδ
2p . Using (4.17) we

have immediately

I(2) ≤ C15[M(ρ) −M(R)]−λ1 [M∗(r)rn]p−1+λ1 ,

I(3) ≤ C15[M(ρ) −M(R)]1−λ1 [M∗(r)rn]p−1+λ1 .
(4.19)
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The term I(1) can be estimated by using Hölder inequality together
with Lemma 4.1 and the inequalities (4.18). Thus

I(1) ≤

{

∫∫

E(R)

∣

∣

∣

∂u

∂x

∣

∣

∣

p

ηpr (x, t) dx dt

}
p−1

p
{

∫∫

E(R)

∣

∣

∣

∂ηr

∂x

∣

∣

∣

p

dx dt

}
1
p

+ C16M
p−1(r)r(n+δ)(p−1) ≤ C17{[M(r)rn][M∗(r)rn]p−1}

p−1
p . (4.20)

If the three previous estimates are inserted into the right-hand side
of (4.16) we have the inequality (4.12) an Lemma 4.2 is therefore proved.

Lemma 4.3. Assume that conditions of Theorem 2.2 are satisfied. Then

there exists a positive constant K5 depending only on known parameters

such that the estimate

∫∫

F (ρ)

u
−q
R (x, t)

∣

∣

∣

∂u

∂x

∣

∣

∣

p

ηpr (x, t) dx dt

≤ K5[M(ρ) −M(R)]−λ2
{

[M(r)rn[M∗(r)rn]p−1]
p−1

p

+ [M(ρ) −M(R)]−λ1 [M∗(r)rn]p−1+λ1
}

(4.21)

holds with q = 1 + λ2, λ2 = nδ
2p2

, the same function ηr(x, t) as in (4.4)

and numbers r, ρ,R satisfying conditions (4.10).

Proof. We substitute in the integral identity (2.4) with t1 = θ > h, t2 =
τ < Th a test function

ϕ4(x, t) = {[M(ρ) −M(R)]1−q − max{[[u(x, t)]h −M(R)]+,

M(ρ) −M(R)}1−q}ηpr (x, t).

Evaluating the term of (2.4) with the derivative of t and ϕ = ϕ4 and
letting h→ 0 we obtain for all θ ∈ (0, τ), τ ∈ (0, T )

lim
h→0

τ
∫

θ

∫

Ω

∂[u]h
∂t

ϕ4(x, t) dx dt ≥ −C18M(r)[M(ρ) −M(R)]1−qrn. (4.22)

The remaining terms of (2.4) with ϕ = ϕ4 are then estimated as follows

lim
h→0

τ
∫

θ

∫

Ω

{ n
∑

i=1

[

ai

(

x, t, u,
∂u

∂x

)]

h

∂ϕ4

∂xi
+
[

a0

(

x, t, u,
∂u

∂x

)]

h
ϕ4

}

dx dt
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≥

τ
∫

θ

∫

Ω

{[ν1

2
u
−q
R (x, t)

∣

∣

∣

∂u

∂x

∣

∣

∣

p

− C19u
p−q(x, t)H(x, t)

− C19[M(ρ) −M(R)]p−pquq(p−1)(x, t)H(x, t)
]

ηpr (x, t)

− C19[M(ρ) −M(R)]1−q
[
∣

∣

∣

∂u

∂x

∣

∣

∣

p−1

+ [H(x, t)]
p−1

p up−1(x, t)
]

ηp−1
r (x, t)

∣

∣

∣

∂ηr

∂x

∣

∣

∣

}

χ(F (ρ)) dx dt. (4.23)

It is simple to continue to estimation of terms on the right-hand side of
(4.23) by using inequalities (4.17), (4.18). In particular we have

∫∫

F (ρ)

uq(p−1)(x, t)H(x, t)ηpr (x, t) dx dt

=

∫∫

F (ρ)

up−1+λ1+λ2(x, t)H(x, t)ηpr (x, t) dx dt

≤ C14[M(ρ) −M(R)]−λ2 [M∗(r)rn]p−1+λ1 . (4.24)

Letting θ → 0 in (4.22), (4.23) and using inequalities (4.20), (4.24) we
obtain the estimate (4.21). This is the end of the proof of Lemma 4.3.

The main result of the integral estimate of the solution with isolated
singularity is given in the following theorem.

Theorem 4.1. Assume that conditions of Theorem 2.1 are satisfied.

Then there exist a positive constant K6, λ depending only on known

parameters such that the estimate

sup
0<τ<T

∫

Ω

Φ2
ρR(u(x, τ))ηpr (x, τ) dx+

∫∫

E(ρ,R)

∣

∣

∣

∂u

∂x

∣

∣

∣

p

ηpr (x, t) dx dt

≤ K6[M(ρ) −M(R)]
{

[M(r)rn[M∗(r)rn]p−1]
p−1

p

+ [M(ρ) −M(R)]−λ[M∗(r)rn]p−1+λ
}

(4.25)

holds with ΦρR(u), E(ρ,R) defined by (4.11), the same function η
x,t
r as

in (4.4) and r, ρ,R satisfying condition (4.10).

Proof. We estimate the integral on the right-hand side of (4.12) by using
Young’s inequality and inequalities (4.21), (4.24). We have with q =
1 + nδ

2p2
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∫∫

F (ρ)

ν3(x, t)
∣

∣

∣

∂u

∂x

∣

∣

∣

p−1
ηpr (x, t) dx dt

≤

∫∫

F (ρ)

{

[M(ρ) −M(R)]λ2u
−q
R (x, t)

∣

∣

∣

∂u

∂x

∣

∣

∣

p

+ [M(ρ) −M(R)]λ2−λ1H(x, t)u
q(p−1)
R (x, t)

}

ηpr (x, t) dx dt

≤ C20

{

[M(r)rn[M∗(r)rn]p−1]
p−1

p

+ [M(ρ)M(R)]−λ1 [M∗(r)rn]p−1+λ1
}

. (4.26)

Now the estimate (4.25) follows from inequalities (4.12), (4.26) and the
proof of Theorem 4.1 is completed.

Remark 4.1. Changing in the equation (1.1) the function u(x, t) on the
function v(x, t) = −u(x, t) we obtain immediately that all estimates of
this section are true for v(x, t) instead of u(x, t).

Corollary 4.1. Taking into account the condition (2.9) and Remark 2.1
we can pass to the limit in (4.25) as r → 0 and we get an estimate

sup
0<τ<T

∫

Ω

Φ2
ρR(u(x, τ)) dx+

∫∫

E(ρ,R)

∣

∣

∣

∂u

∂x

∣

∣

∣

p

dx dt ≤ K7[M(ρ) −M(R)]1−λ

(4.27)
with the same positive λ as in (4.25).

5. Point-wise estimate of singular solution

In this section we prove the fundamental result on the behavior of the
solution of the equation (1.1) with the singularity at the point.

Theorem 5.1. Let conditions of the Theorem 2.2 be satisfied. Then there

exist a positive constants K8, γ depending only on known parameters such

that the estimates

|u(x, t)| ≤ K8{|x| + t
1

p+n(p−2) }−n+γ ,

sup
0<τ<T

∫

Ω

u2
R(x, τ) dx+

∫∫

E(R)

∣

∣

∣

∂u

∂x

∣

∣

∣

p

dx dt ≤ K8
(5.1)

holds for (x, t) ∈ D(R).
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Proof. Let r, ρ,R be numbers satisfying conditions (4.10). We can as-
sume additionally that ρ > 4r since the inequality (5.1) is trivial in the
opposite case.

We define numerical sequences {ρi}, {αi}

ρi =
ρ

2
(1 + 2−i), αi =

2−i−1

1 + 2−i

and a sequence of functions {ϕi(x, t)}

ϕi(x, t) = ωi

(( |x|

ρi

)p

+
t

ρ
p+n(p−2)
i

)

[1 − ηR(x, t)]. (5.2)

Here ηR is the function introduced in Section 3, the function ωi : R
1 → R

1

is defined by the equality ωi(s) = α
−p
i min{[s − (1 − αi)

p]+, 1}. Such
defined function ϕi has following properties: ϕi(x, t) = 0 for (x, t) ∈

D(ρ), ϕi(x, t) = 1 for (x, t) ∈ D(R)\D(ρi), |
∂ϕi

∂x
| ≤ C2ip

ρ
, |∂ϕi

∂t
| ≤ C2ip

ρp+n(p−2) .

We substitute in the identity (2.4) with t1 = θ > h, t2 = τ > T − h

a test function

ϕ5(x, t) =
{

[[u(x, t)]h −M(R)]2+ + 1
}l

[[u(x, t)]h −M(R)]+ϕ
m+p
i (x, t)

where l,m are arbitrary nonnegative numbers.
Evaluating the term of (2.4) with the derivative on t and ϕ = ϕ5 and

letting h→ 0 we obtain for 0 < θ < τ < T

lim
h→0

τ
∫

θ

∫

Ω

∂[u]h
∂t

ϕ5(x, t) dx dt

≥
1

2(l + 1)

∫

Ω

[u2
R(x, τ) + 1]l+1ϕ

m+p
i (x, τ) dx

−
1

2(l + 1)

∫

Ω

[u2
R(x, θ) + 1]l+1ϕ

m+p
i (x, θ) dx

− C21(m+ 1)

∫∫

QT

[u2
R(x, t) + 1]l+1ϕ

m+p−1
i (x, t)

∣

∣

∣

∂ϕi

∂t

∣

∣

∣
dx dt. (5.3)

Letting h→ 0 in the remaining terms of (2.4) with ϕ = ϕ5 and estimating
these terms we have

lim
h→0

τ
∫

θ

∫

Ω

{ n
∑

i=1

[

ai

(

x, t, u,
∂u

∂x

)]

h

∂ϕ5

∂xi
+
[

a0

(

x, t, u,
∂u

∂x

)]

h
ϕ5

}

dx dt



F. Nicolosi, I. I. Skrypnik, I. V. Skrypnik 229

≥
ν1

2

τ
∫

θ

∫

Ω

[u2
R(x, t) + 1]l

∣

∣

∣

∂u

∂x

∣

∣

∣

p

ϕ
m+p
i (x, t) dx dt

− C22(l + 1)p
∫∫

QT

[u2
R(x, t) + 1]l+

p

2

{
∣

∣

∣

∂ϕi

∂x

∣

∣

∣

p

+H(x, t)
}

ϕmi (x, t) dx dt.

(5.4)

Inserting estimates (5.3), (5.4) into (2.3) yields

sup
0<τ<T

∫

Ω

[u2
R(x, τ) + 1]l+1ϕ

m+p
i (x, τ) dx

+

∫∫

QT

[u2
R(x, t) + 1]l

∣

∣

∣

∂u

∂x

∣

∣

∣

p

ϕ
m+p
i (x, t) dx dt

≤ C23(l +m+ 1)p+1

∫∫

QT

{

[u2
R(x, t) + 1]l+1

∣

∣

∣

∂ϕi

∂t

∣

∣

∣

+ [u2
R(x, t) + 1]l+

p

2

(
∣

∣

∣

∂ϕi

∂x

∣

∣

∣

p

+H(x, t)
)}

ϕmi (x, t) dx dt. (5.5)

Now consider the term that appears in the right-hand side of (5.5).
Using Hölder inequality and the notation (4.2) we obtain

∫∫

QT

{

[u2
R(x, t) + 1]l+1

∣

∣

∣

∂ϕi

∂t

∣

∣

∣

+ [u2
R(x, t) + 1]l+

p

2

(∣

∣

∣

∂ϕi

∂x

∣

∣

∣

p

+H(x, t)
)}

ϕmi (x, t) dx dt

≤ C242
ip2
[

M∗
(p

2

)]p−2
ρ−δp

{ T
∫

0

[

∫

Ω

([u2
R(x, t) + 1]l+1

× ϕmi (x, t))q
′

0 dx

]

r′0
q′0

dt

}
1
r′0

(5.6)

with numbers δ, q0, r0 given by the condition a2).

We denote

Ii(l,m) =

{ T
∫

0

[

∫

Ω

([u2
R(x, t) + 1]l+1ϕmi (x, t))q

′

0 dx

]

r′0
q′0

dx

}
1
r′0

(5.7)
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and estimate the last integral by using embedding theorem and Hölder
inequality. Define

k1 =
(

pδ +
n(p− 1)

r0

)[

n+ pδ +
n(p− 2)

r0

]−1
=
(r′0
q′0

−
n− p

n

)(r′0
q′0

+
p

n

)−1
,

l1 = (l + 1)k1 −
p− 2

2r′0
k1, l2 = (l + 1)(1 − k1) +

p− 2

2r′0
k1,

p1 =
p2

p2 − 1
, p2 =

nr′0
q′0(n− p)

, m1 = mk1, m2 = m(1 − k1).

Then we have

Ii(l,m) ≤ C252
ip2

r′0 (l +m+ 1)
p

r′0

× sup
0<τ<T

{

∫

Ω

{[u2
R(x, t) + 1]l1ϕm1

i (x, t)}p1q
′

0 dx

}
1

p1q′0

×

{

∫∫

QT

{

[u2
R(x, t) + 1]l2r

′

0−
p

2

∣

∣

∣

∂u

∂x

∣

∣

∣

p

ϕ
m2r

′

0
i (x, t)

+
1

ρp
[u2
R(x, t) + 1]l2r

′

0ϕ
m2r

′

0−p
i (x, t)

}

dx dt

}
1
r′0

. (5.8)

Estimating the two last integrals by virtue of inequalities (5.5), (5.6) we
get

Ii(l,m) ≤ Ci26(l +m+ 1)p3

×
{[

M∗
(ρ

2

)]p−2 1

ρδp
Ii(l1p1q

′
0 − 1,m1p1q

′
0 − p)

}
1

p1q′0
+ 1

r′0 (5.9)

with p3 = p
r′0

+ (p+ 1)[ 1
p1q

′

0
+ 1

r′0
].

Define k̄ = r′0(1 − k1) = n

n+pδ+
(p−2)n

r0

and sequences {lj}, {mj} by

equalities

lj =
[

l0 + 1 +
p− 2

2r′0

k̄

1 − k̄

]

k̄−j −
p− 2

2r′0

k̄

1 − k̄
− 1,

l0 =
p

2
− 1 +

pδ

n
+
p− 2

2r0
,

mj =
[

m0 +
p

1 − k̄

]

k̄−j −
p

1 − k̄
,

m0 = p+
p2δ

n
+
p(p− 2)

r0
.
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Then we rewrite the inequality (5.9) with l = lj , m = mj as follows

Ii(lj ,mj) ≤ Ci27C
j
28

{[

M∗
(ρ

2

)]p−2 1

ρδp
Ii(lj−1,mj−1)

}k̄

. (5.10)

The iteration by j of the last inequality yields the estimate

[M(ρi) −M(R)]
2(l0+1+ p−2

2r′0

k̄

1−k̄
)
≤ Ci29

{[

M∗
(ρ

2

)]p−2 1

ρδp

}
1

1−k̄
Ii(l0,m0).

(5.11)
Now we estimate Ii(l0,m0) by using Hölder inequality, embedding theo-
rem and the inequality (4.27). We have for

vi+1(x, t) = min{uR(x, t),M(ρi+1) −M(R)}

the following estimate

Ii(l0,m0)

=

{ T
∫

0

[

∫

Ω

[

(v2
i+1 + 1)

p

2
+ p

n
δ+ p−2

2r0 ϕ
p+ p2

n
δ+

p(p−2)
r0

i

]q′0 dx

]

r′0
q′0

dt

}
1
r′0

≤ sup
t

{

∫

Ω

[v2
i+1(x, t) + 1]ϕpi (x, t) dx

}
1
q′0

−n−p

nr′0

×

{

∫∫

QT

[
∣

∣

∣

∂vi+1

∂x

∣

∣

∣

p

ϕ
p
i + (1 + vi+1)

p
∣

∣

∣

∂ϕi

∂x

∣

∣

∣

p]

dx dt

}
1
r′0

≤ C302
ip2

r′0 [M(ρi+1) −M(R)]
(1−λ)( 1

q′0
+ p

nr′0
)
. (5.12)

Inequalities (5.11), (5.12) and Remark 2.1 imply

[M(ρi) −M(R)]
2(l0+1+ p−2

2r′0

k̄

1−k̄
)

≤ C31ρ
−

n(p−2)+δp

1−k̄ [M(ρi+1) −M(R)]
(1−λ)( 1

q′0
+ p

nr′0
)
. (5.13)

Rewrite this inequality in the form

M(ρi) −M(R) ≤ Ci32ρ
−a1 [M(ρi+1) −M(R)]a2 (5.14)

with

a1 =
[n(p− 2) + δp]r′0

2(l0 + 1)r′0(1 − k̄) + (p− 2)k̄
,
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a2 =
1 − λ

2

( 1

q′0
+

p

nr′0

)(

l0 + 1 +
p− 2

2r′0

k̄

1 − k̄

)−1
.

Direct calculations show that

l0 + 1 +
p− 2

2r′0

k̄

1 − k̄
= 1 +

pδ

n
+
p− 2

r0
+
p− 2

2r′0

1

1 − k̄
,

1

q′0
+

p

nr′0
= 1 +

pδ

n
+
p− 2

r0

(5.15)

and therefore a2 < 1. Iterating the inequality (5.14) by i and using
bondedness of the sequence {M(ρi) −M(R)} we obtain from (5.14)

M(ρ1) −M(R) ≤ C33ρ
−

a1
1−a2 . (5.16)

Denote ∆ = pδ
n

+ p−2
r0

and calculate a1(1−λ)
1−λ−a2

. Using equalities (5.15)
we get

a1(1 − λ)

1 − λ− a2
=
n(∆ + p−2

r′0
)(1 + ∆)

∆[1∆ + p−2
r′0

1+∆
δ

]
= n. (5.17)

It means that
a1

1 − a2
≤ n− γ (5.18)

with the constant γ depending only on known parameters, Now inequal-
ities (5.16), (5.18) imply the first estimate in (5.1).

The second inequality in (5.1) follows now from the proof of Theo-
rem 2.1. The inequality (5.1) implies that the condition (2.6) is satisfied.
Then the second inequality in (5.1) follows from the estimate (3.14) that
is true for an arbitrary positive l∗. Therefore the proof of Theorem 5.1
is completed.

6. Proof of Theorem 2.2

The inequality (5.1) and Theorem 2.1 implies the boundedness un
D(R0

2 ) of the solution u(x, t) satisfying the conditions of Theorem 2.2.

We need to establish an equality (2.2) for an arbitrary function ϕ(x, t)
= ϕ(x, t) = ψ(x, t)ζ(x, t) where ψ ∈ Lp(0, T ;W 1,p(Ω)) is such function
that ∂ψ

∂t
∈ L2(QT ) and ζ ∈ C∞(QT ) and ζ is equal to zero near ∂Ω ×

(0, T ).

Let us substitute in (2.2) ϕ(x, t) = ϕ(x, t)ηr(x, t) where ηr is the
function defined at the beginning of Section 3. We obtain
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∫

Ω

u(x, τ)ϕ(x, τ)ηr(x, τ) dx

+

τ
∫

0

∫

Ω

{

− u
∂ϕ

∂t
+

n
∑

i=1

ai

(

x, t, u,
∂u

∂x

) ∂ϕ

∂xi
+ a0

(

x, t, u,
∂u

∂x

)

ϕ

}

ηr dx dt

=

τ
∫

0

∫

Ω

{

u
∂ηr

∂t
−

n
∑

i=1

ai

(

x, t, u,
∂u

∂x

)∂ηr

∂xi

}

ϕ(x, t) dx dt. (6.1)

Taking into account estimates (5.1) we can estimate the integral on the
right of (6.1) as follows

∣

∣

∣

∣

∣

τ
∫

0

∫

Ω

{

u
∂ηr

∂t
−

n
∑

i=1

ai

(

x, t, u,
∂u

∂x

)∂ηr

∂xi

}

ϕ(x, t) dx dt

∣

∣

∣

∣

∣

≤ C34

∫∫

QT

{
∣

∣

∣

∂ηr

∂t

∣

∣

∣
|ϕ(x, t)| +

∣

∣

∣

∂ηr

∂x

∣

∣

∣

p

|ϕ(x, t)|p
}

dx dt. (6.2)

Let us assume at first that ψ ∈ L∞(QT ). Applying direct calculation we
have

lim
r→0

∫∫

QT

{∣

∣

∣

∂ηr

∂t

∣

∣

∣
+
∣

∣

∣

∂ηr

∂x

∣

∣

∣

p}

dx dt = 0

and therefore the right-hand side of (6.1) tends to zero as r → 0 for
founded function ψ. Approximating the function ψ(x, t) by the sequence
of bounded functions we end the proof of Theorem 2.2.
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