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Abstract. A new approach to the approximate solution of Fredholm

integral equations of the first kind with finitely smoothing operators is

worked out. It is established that on wide classes of such equations this

approach allows to achieve the given level of accuracy at the minimal

expense of the discrete information.
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1. Introduction

In a real Hilbert space L2 = L2(0, 1) with the usual inner product

(f, g) =
∫ 1
0 f(t)g(t) dt and the norm ‖f‖ =

( ∫ 1
0 f2(t) dt

)1/2
we shall

consider a Fredholm integral equation of the first kind

Ax(t) :=

1
∫

0

h(t, τ)x(τ) dτ = f(t). (1.1)

We assume that at some fixed r = 1, 2, . . . the integral operators A and A∗

act from L2 into the Sobolev space W r
2 of r times differentiable functions,

where A∗ is the adjoint operator of A, and the norm in W r
2 is defined as

‖f‖W r
2

:= ‖f‖+
∑r

i=1 ‖d
if(t)/dti‖. Besides let the kernel h(t, τ) of A be

non-degenerate and for any ‖g‖ ≤ 1 it holds that

(

r
∑

j=0

∥

∥

∥

∥

∥

1
∫

0

∂jh(τ, t)

∂τ j
g(τ) dτ

∥

∥

∥

∥

∥

2

W r
2

)1/2

≤ γ.
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We denote the class of such operators A by Ar
γ . Take an arbitrary real

number ν1, where 2 < ν1 < ∞. Suppose that the interval [2, ν1] contains
such point ν (the value of ν is unknown) that

f ∈ AMν,ρ(A) := {g : g = Au, u ∈ Mν,ρ(A)} ,

where Mν,ρ(A) := {u : u = |A|νv, ‖v‖ ≤ ρ}, |A| = (A∗A)1/2, ρ > 0 is
known. Assume that instead of f we are given an approximation fδ ∈
L2,δ, where L2,δ is a sphere of radius δ in L2 with its centre at f . By
Ψδ

ν we denote the class of Eqs. (1.1) with the operators A ∈ Ar
γ , the

right-hand sides f ∈ AMν,ρ(A) and with the perturbations fδ filling the
sphere L2,δ.

We study a problem of optimal recovery of Eqs. (1.1) solutions from
the class

Ψδ =
⋃

ν∈[2,ν1]

Ψδ
ν .

In so doing we shall construct the approximations to the solutions x† of
(1.1) from Mν,ρ(A) at all ν ∈ [2, ν1]. Hereinafter, an optimal method for
solving (1.1) is called a method that retains the given level of accuracy
at minimal expenses of certain computational resources. By computa-
tional resources we shall understand a discrete information on (1.1) in
the form of values of the functionals of a special kind (see (2.2)). At
present similar studies are being intensively carried out in the framework
of the Information Based Complexity Theory (see [1]) for a wide range
of mathematical problems. In particular, for many classes of the 2-nd
kind Fredholm integral equations their complexity is found and the cor-
responding optimal methods are constructed (see, for example, [2]). As
to the 1-st kind Fredholm equations, the investigation of complexity of
such equations was initiated in [3] for f ∈ AMν,ρ(A) in a case, when the
value of ν is exactly known. The aim of the present article is to continue
the indicated research on the case of an unknown ν.

2. Statement of the problem

Let E = {e1, e2, . . . , em, . . .} be an arbitrary orthonormal basis of L2

and Pm an orthogonal projector on the linear span of e1, e2, . . . , em, i.e.

Pmg =
m
∑

i=1

(ei, g)ei.
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It is known that an arbitrary linear continuous operator A : L2 → L2 can
be presented by the following infinite matrix

Ag =
∞
∑

i,j=1

(ei, Aej)(ej , g)ei.

In the coordinate plane of E we take any bounded set Ω ⊂ [1,∞)×[1,∞).
Denote ω = {i : (i, j) ∈ Ω}. A projection discretization scheme (Ω, E) of
Eq. (1.1) is called the passage from the input data A and fδ of the initial
problem to the elements

AΩg =
∑

(i,j)∈Ω

(ei, Aej)(ej , g)ei,

Pωfδ =
∑

k∈ω

(ek, fδ)ek.

Obviously, with various sets Ω and bases E it is possible to construct any
possible projection discretization schemes (Ω, E), that use as a discrete
information the inner products

(ei, Aej), (ek, fδ), (i, j) ∈ Ω, k ∈ ω. (2.2)

The set of numbers (2.2) is referred to as Galerkin information on the
Eq. (1.1). As card(Ω) we denote the total number of inner products (2.2)
involved in the scheme (Ω, E).

By a projection method for solving (1.1) we mean an arbitrary opera-
tor ϕ that assigns to the Galerkin information (2.2) an element ϕ(Ω, E, A,
fδ) ∈ L2, which is taken as the approximate solution of (1.1). Further-
more, ϕ(Ω, E, A, fδ) is uniquely determinated by means of a finite number
of numerical parameters. By Φ(Ω, E) we understand a set of various pos-
sible projection methods ϕ, that apply the discretization scheme (Ω, E).
Then Φ =

⋃

Ω,E Φ(Ω, E) means a set of all projection methods for solving
(1.1). Here the union is executed over all orthonormal bases E in L2 and
bounded sets Ω of the corresponding coordinate planes.

The accuracy of the method ϕ ∈ Φ(Ω, E) on the class Ψδ
ν is charac-

terized by a maximal error

E(Ψδ
ν , ϕ, Ω, E) = sup

A∈Ar
γ

sup
f∈AMν,ρ(A)

sup
fδ:‖f−fδ‖≤δ

‖x† − ϕ(Ω, E, A, fδ)‖.
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It is known [4] that on a class of Eqs. (1.1) with solutions from Mν,ρ(A)
and perturbed right-hand sides filling the sphere L2,δ no approximate
method (not necessarily projection method) can at best guarantee the
accuracy of the recovery less than ρ1/(ν+1)δν/(ν+1). Therefore, the value
O(δν/(ν+1)) determines the optimal order of accuracy on the class Ψδ

ν .

Since the efficiency of an approximate method is characterized first
of all by its accuracy on the class of problems under investigation, it is
reasonable to separate from all sets of projection methods those, which
attain the best order of accuracy on the class Ψδ. In other words, we
shall study a subset Φopt(Ψ

δ) ⊂ Φ of such projection methods ϕ that at
any ν ∈ [2, ν1] it holds that

E(Ψδ
ν , ϕ, Ω, E) ≤ ξδν/(ν+1), (2.3)

where the constant ξ > 0 does not depend on δ. Suppose that ξ is selected
such that Φopt(Ψ

δ) is not empty.

By Φopt(Ψ
δ)N we denote a set of all projection methods from

Φopt(Ψ
δ), satisfying the condition card(Ω) ≤ N . By information com-

plexity of Eqs. (1.1) from Ψδ we understand the quantity

Card(Ψδ) = min
{

N : Φopt(Ψ
δ)N 6= ∅

}

.

This quantity determines the minimal volume of the discrete information
(2.2), through which an optimal order of accuracy on the class Ψδ may be
achieved. Our goal is to calculate exact orders of the quantity Card(Ψδ)
at any r = 1, 2, . . ..

The lower bound for Card(Ψδ) can be obtained from the previous
results. With this purpose we shall consider the minimal radius of the
Galerkin information (2.2) on the class Ψδ

ν , which is defined as

rN (Ψδ
ν) = inf

E
inf
Ω,

card(Ω)≤N

inf
ϕ∈Φ(Ω,E)

E(Ψδ
ν , ϕ, Ω, E).

The value of rN (Ψδ
ν) characterizes a minimal error of the approximate

solution of Eqs. (1.1) from Ψδ
ν , which can be guaranteed by using no

more than N of Galerkin functionals (2.2). It should be noted that the
quantity rN (Ψδ

ν) was first studied in [3] at the exactly known value of
ν = 2. The findings of the paper [3] were generalized in [5] on the case of
an arbitrary known parameter 1 < ν < ∞. From these results it follows

that at any ν1 > 2 and N = O(δ
−

ν1
(ν1+1)r ) the bound
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rN (Ψδ
ν1

) = O(N−r) = O(δν1/(ν1+1)) (2.4)

is valid. With the help of this estimation it is easy to obtain the lower
bound for the information complexity of the Eqs. (1.1). Namely, in the
definitions of Φopt(Ψ

δ), Φopt(Ψ
δ)N , Card(Ψδ) we insert the class Ψδ

ν1

instead of Ψδ. Thus, we obtain the quantity Card(Ψδ
ν1

) which is equal to
the minimal volume of the Galerkin functionals (2.2) needed to attain the
accuracy ξδν1/(ν1+1) on the class Ψδ

ν1
. Then by virtue of the definition of

quantities rN (Ψδ
ν), Card(Ψδ) and Card(Ψδ

ν1
) from (2.4) it follows that

O(δ
−

ν1
(ν1+1)r ) = Card(Ψδ

ν1
) ≤ Card(Ψδ). (2.5)

Thus, to obtain the exact order bound of Card(Ψδ) it is enough to
construct at least one method from Φopt(Ψ

δ) which supports (2.5) by
means of the corresponding upper estimation of its accuracy.

3. Proposed approach to solve equations from Ψ
δ

The present section will introduce a set of projection methods which
guarantee the attainment of the optimal order of accuracy on the class
Ψδ of the Eqs. (1.1).

By virtue of the given assumptions about the operator A, made in
Section 1, it is true that Range(A) 6= Range(A). It is known ( [4]) that in
this case the problem (1.1) is ill-posed and to ensure stable approxima-
tions it is required to apply special regularization methods (see [6]). In
view of the problem formulated above we restrict ourselves by the study
of such regularization methods with the help of which it is possible to
achieve the best accuracy of approximations on the class of equations
under investigation. Following [7], as a regularization method we use an
operator Rα = Rα(A) : L2 → L2 such that as an approximate solution of
(1.1) one takes the element Rα(A)fδ, where the number α > 0 is referred
to as regularization parameter and Rα is of the form

Rα(A) = gα(A∗A)A∗. (3.6)

Here gα(λ) is a Borel measurable function on [0,∞) which satisfies the
following conditions

sup
0≤λ<∞

λν |1 − λgα(λ)| ≤ χνα
ν , 0 ≤ ν ≤ ν∗, (3.7)

sup
0≤λ<∞

λ1/2|gα(λ)| ≤ χ∗α
−1/2, (3.8)
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where
ν1 ≤ 2ν∗ − 1 (3.9)

and ν∗ is called a qualification of the method Rα and χν , χ∗ are some
positive constants (χ0 = 1) independent of α. The qualification ν∗ char-
acterizes the greatest value of ν, at which the method Rα guarantees
attainment of the optimal order of accuracy. Note that many known
regularization methods satisfy (3.6)–(3.9) at various ν∗; for example, the
Showalter method and the nonstationary iterated Tikhonov method (with
any ν∗ < ∞), the iterative Landweber and Fakeev–Lardy methods (with
ν∗ = ∞), etc. The set of all methods Rα satisfying (3.6)–(3.9) is denoted
by R.

Let us pass to the description of a projection discretization scheme
that will be used in solving (1.1). As Ω we take a set of the coordinate
plane of the following form

Γn := {1} × [1, 22n]
n
⋃

k=1

(2k−1, 2k] × [1, 22n−ak],

where a = (3ν1 − 2)/(2ν1), 1 < a < 3/2. Then the proposed projection
discretization scheme consists in replacing the coefficients A ∈ Ar

γ and fδ

of the initial problem by their finite-dimensional analogues

An = AΓn :=
n
∑

k=1

(P2k − P2k−1)AP22n−ak + P1AP22n ,

P2nfδ =
2n
∑

k=1

(fδ, êk)êk,

(3.10)

where Ê = {ê1, ê2, . . . , êm, . . .} is an orthonormal basis of the space L2,
ensuring the order-optimal approximation to all functions from the space
W r

2 by their partial Fourier sums. By virtue of the definition of Ar
γ the

last condition on Ê means that at any m = 1, 2, . . . and some βr > 0 it
holds that

‖(I − Pm)A‖ ≤ βrm
−r, ‖A(I − Pm)‖ ≤ βrm

−r, (3.11)

where A ∈ Ar
γ . As an example of the basis satisfying (3.11) we can

recall the orthonormal system of Legendre’s polynomials considered on
the interval [0, 1]. If 2n − ak is not an integer, we will write P22n−ak but
mean P[22n−ak] where [g] is the integer part of g.

The proposed approach to solving (1.1) is as follows. In the framework
of a projection method ϕ we take an arbitrary regularization method
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Rα ∈ R and perform the discretization according to (3.10), (3.11), where
the parameter n is calculated in accordance with the condition

2−2(ν1+1)rn/ν1 ≤
δ

c1
< 2−2(ν1+1)r(n−1)/ν1 (3.12)

with c1 = γγ̄22ar+1

2(2a−1)r−1
β3

rρ, γ̄ = max{1, γν1}. By an approximate solution

ϕα = ϕα(Γn, Ê, A, fδ) we understand the element

ϕα = Rα(An)P2nfδ, (3.13)

where the regularization parameter α is chosen according to the discrep-
ancy principle [8], i.e. the computational procedure (3.13) terminates as
soon as is executed

b1δ ≤ ‖P2nfδ − Anϕα‖ ≤ b2δ, 2 < b1 ≤ b2. (3.14)

By Φ(R, Γn, Ê, b1, b2) we denote the set of all methods described above,
i.e. of all projection methods satisfying (3.6)–(3.14).

4. Information complexity

In what follows we shall need some approximate properties of the
operator An.

Lemma 4.1. Let A ∈ Ar
γ , x† ∈ Mν,ρ(A), ν ∈ [2, ν1]. If the discretization

parameter n is chosen according to (3.12), then

‖Anx† − P2nfδ‖ ≤ 2δ,

‖A∗A − A∗
nAn‖ ≤ c22

−2rn ≤ c3δ
ν1/(ν1+1),

where c2 = γ2
(

β2
r + β3

r22r+1

1−2(a−2)r

)

, c3 = c2/c
ν1/(ν1+1)
1 .

Proof. Using Lemma 2 [9] and the relation (3.12), we obtain

‖Anx† − P2nfδ‖

≤ ‖Anx† − P2nf‖ + ‖P2n(f − fδ)‖

≤ c12
−2(ν1+1)rn/ν1 + δ ≤ 2δ.

The bound of the norm of A∗A − A∗
nAn is given by Lemma 1 [9].

Theorem 4.1. Within the framework of any method from Φ(R, Γn, Ê,
b1, b2) the optimal order of the accuracy O(δν/(ν+1)) is achieved on the

class Ψδ.
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Proof. To establish the present statement we use the technique applied
earlier in the proof of Theorem 3.3 [10] and Theorem 4.1 [11]. One
can write a representation for the error of the arbitrary method ϕ ∈
Φ(R, Γn, Ê, b1, b2) as

x† − ϕα = Rα,n(Anx† − P2nfδ) + Sα,nx†,

where Rα,n = gα(A∗
nAn)A∗

n, Sα,n = I − gα(A∗
nAn)A∗

nAn. From (3.8) one
obtains

‖Rα,n‖ = ‖gα(A∗
nAn)An‖ ≤ χ∗α

−1/2.

Then follows the error estimation

‖x† − ϕα‖ ≤ ‖Sα,nx†‖ + 2χ∗α
−1/2δ. (4.15)

Consider the following element

AnSα,nx† = (An − AnRα,nAn)x† = Anx† − AnRα,nAnx†

= (P2nfδ − Anϕα) + (I − AnRα,n)(Anx† − P2nfδ). (4.16)

Using (3.7), we find

‖ I − AnRα,n‖ = ‖I − gα(AnA∗
n)AnA∗

n‖ ≤ sup
0≤λ<∞

|1 − λgα(λ)| ≤ 1.

Hence with the help of (3.14) and (4.16) we have

b1δ − ‖Anx† − P2nfδ‖ ≤ ‖AnSα,nx†‖ ≤ b2δ + ‖Anx† − P2nfδ‖. (4.17)

By virtue of Lemma 4.1 it follows from the left-hand side of (4.17)

b1δ − 2δ ≤ ‖AnSα,nx†‖,

α−1/2δ ≤ α−1/2(b1 − 2)−1‖AnSα,nx†‖.
(4.18)

To estimate the norm of AnSα,n we apply the polar decomposition An =
U(A∗

nAn)1/2, ‖U‖ = 1, then

AnSα,n = U(I − |An|gα(|An|
2)|An|)|An| = USα,n|An|.

Further,

α−1/2‖AnSα,nx†‖ = α−1/2‖AnSα,n|A|νv‖

≤ ρα−1/2‖AnSα,n|An|
ν‖ + ‖AnSα,n(|A|ν − |An|

ν)‖

≤ ρα−1/2‖USα,n|An|
ν+1‖ + ‖Sα,n|An| ‖‖(A

∗A)ν/2 − (A∗
nAn)ν/2‖.
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The application of Lemmas 4.1 [10], 4.1 and (3.7) gives us

α−1/2‖AnSα,nx†‖

≤ ρα−1/2‖Sα,n|An|
ν+1‖ + z(ν)‖Sα,n|An| ‖‖A

∗A − A∗
nAn‖

≤ ρχ ν+1
2

αν/2 + ρχ1/2c3z(ν)δν/(ν+1), (4.19)

where z(ν) is a function bounded on (0,∞).

Similarly we estimate

‖Sα,nx†‖ = ‖Sα,n|A|νv‖

≤ ρ‖Sα,n|An|
ν‖ + ρ‖Sα,n‖ ‖|A|ν − |An|

ν‖

≤ ρχν/2α
ν/2 + ρz(ν)c3δ

ν/(ν+1). (4.20)

Substituting (4.19) into (4.18) we find

α−1/2δ ≤ (b1 − 2)−1(ρχ ν+1
2

αν/2 + ρχ1/2c3z(ν)δν/(ν+1)).

Using (4.15) and the above bounds for values α−1/2δ and ‖Sα,nx†‖, we
obtain

‖x† − ϕα‖ ≤ ρ(χν/2α
ν/2 + z(ν)c3δ

ν/(ν+1)

+ 2(b1 − 2)−1χ∗(χ ν+1
2

αν/2 + χ1/2c3z(ν)δν/(ν+1))

= c4α
ν/2 + c5δ

ν/(ν+1),

where c4 = ρ(χν/2+2χ∗χ ν+1
2

(b1−2)−1), c5 = ρz(ν)c3(2χ∗χ1/2(b1−2)−1+

1). Obviously, at α ≤ δ2/(ν+1) it is true that

‖x† − ϕα‖ ≤ (c4 + c5)δ
ν/(ν+1).

Thus in this case Theorem 4.1 is proved.

For arbitrary α1 > 0 we take any function gα satisfying (3.7)–(3.9).
It is known (see Lemma 3.2 [10]) that there is a constant c∗ > 0 such
that for all 0 ≤ λ < ∞ and α ≥ α1

(1 − λgα(λ))2 ≤ c∗(1 − λgα1(λ))2 + α−1
1 (λ(1 − λgα(λ)))2.

Then

‖Sα,nx†‖2 ≤ c∗(‖Sα1,nx†‖2 + α−1
1 ‖AnSα,nx†‖2). (4.21)
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Suppose α1 = δ2/(ν+1). Keeping in mind Lemma 4.1, from the right-hand
side of (4.17) we get

α−1
1 ‖AnSα,nx†‖2 ≤ (b2 + 2)2δ2ν/(ν+1).

From (4.20) we obtain

‖Sα1,nx†‖2 ≤ (ρχν/2δ
ν/(ν+1) + ρz(ν)c3δ

ν/(ν+1))2

= δ2ν/(ν+1)(ρχν/2 + ρz(ν)c3)
2.

Substituting the above bounds for values α−1
1 ‖AnSα,nx†‖2 and ‖Sα1,nx†‖2

into (4.21) we find

‖Sα,nx†‖2 ≤ c∗
(

(ρχν/2 + ρz(ν)c3)
2δ2ν/(ν+1)+

+(b2 + 2)2δ2ν/(ν+1)
)

= c∗
(

(ρχν/2 + ρz(ν)c3)
2 + (b2 + 2)2

)

δ2ν/(ν+1).

By virtue of α ≥ α1 = δ2/(ν+1) it is easy to see that

α−1/2δ ≤ α
−1/2
1 δ = δν/(ν+1).

Then, we substitute into (4.15) the bounds for values α−1/2δ and
‖Sα,nx†‖

‖x† − ϕα‖ ≤ c6δ
ν/(ν+1),

where c6 =
(

c∗(ρχν/2 + ρz(ν)c3)
2 + (b2 + 2)2

)1/2
+ 2χ∗.

We finally obtain that generally the following holds

‖x† − ϕα‖ ≤ c7δ
ν/(ν+1)

with c7 = max{c6, c4 + c5}. Thus, Theorem 4.1 is proved.

Theorem 4.2. At any r = 1, 2, . . .

Card(Ψδ) ≤ O(δ
−

ν1
(ν1+1)r ).

The exact order of Card(Ψδ) is retained within any method from the set

Φ(R, Γn, Ê, b1, b2).

Proof. We calculate the volume of Galerkin information (2.2) involved
by the projection scheme (Γn, Ê). Thus,

card(Γn) = 2n + 22n

(

1 +
1

2

n
∑

k=1

[

2k(1−a)
]

)

= O(22n).
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Having chosen the parameter n (3.12) we get

card(Γn) = O(22n) = O(δ
−

ν1
(ν1+1)r ). (4.22)

Since at c7 ≤ ξ any method from the set ϕ ∈ Φ(R, Γn, Ê, b1, b2) satisfies
(2.3), then Φ(R, Γn, Ê, b1, b2) ⊂ Φopt(Ψ

δ)N at N = O(22n) and

Card(Ψδ) ≤ card(Γn).

The last inequality together with (4.22) gives us the upper bound for the
quantity Card(Ψδ). The corresponding lower bound is established by the
relation (2.5).
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