УДК 539.3

©2010. Е.В. Алтухов, А.В. Винник

НАПРЯЖЕННОЕ СОСТОЯНИЕ АНИЗОТРОПНЫХ ПЛАСТИН С ТОРЦАМИ, ПОКРЫТЫМИ ДИАФРАГМОЙ

Рассмотрена трехмерная задача упругого равновесия анизотропной пластины, плоские грани которой покрыты диафрагмой. Для этого класса задач получены однородные решения. Проведены численные исследования напряженного состояния бесконечной пластины с эллиптической полостью, на боковой поверхности которой заданы постоянные по толщине внешние усилия.

Ключевые слова: трехмерные однородные решения, анизотропные пластины, слой с эллиптической полостью.

Введение. Развитию аналитических методов решения трехмерных задач теории упругости анизотропного тела и исследованию концентрации напряжений в элементах конструкций из композиционных материалов посвящены обзорные статьи [1 – 4]. Эффективным методом решения трехмерных задач статики упругих трансверсально-изотропных пластин является метод однородных решений [5, 6]. В работе [6] получены однородные решения уравнений трехмерной теории упругости для трансверсально-изотропных пластин, на плоских гранях которых нормальное напряжение и тангенциальные смещения равны нулю. На их основе получено точное решение задачи о напряженном состоянии слоя с цилиндрической полостью. В данной статье аналогичные исследования проведены для анизотропных пластин с одной плоскостью упругой симметрии.

Постановка задачи и построение однородных решений. Рассмотрим анизотропную пластину толщиной 2h, которая отнесена к прямоугольной системе координат $Ox_1x_2x_3$. Пластина имеет плоскость упругой симметрии, совпадающую со срединной плоскостью Ox_1x_2 . Для решения задачи о напряженном состоянии рассматриваемой пластины необходимо проинтегрировать уравнения равновесия в перемещениях [3], которые представляются таким образом:

$$(L_{11} + A_{55}\partial_3^2)u_1 + (L_{12} + A_{54}\partial_3^2)u_2 + L_{13}\partial_3 u_3 = 0,$$

$$(L_{21} + A_{45}\partial_3^2)u_1 + (L_{22} + A_{44}\partial_3^2)u_2 + L_{23}\partial_3 u_3 = 0,$$

$$L_{31}\partial_3 u_1 + L_{32}\partial_3 u_2 + (L_{33} + A_{33}\partial_3^2)u_3 = 0.$$
(1)

Здесь

$$\begin{split} L_{11} &= A_{11}\partial_1^2 + 2A_{16}\partial_1\partial_2 + A_{66}\partial_2^2, \ L_{12} &= A_{16}\partial_1^2 + (A_{12} + A_{66})\partial_1\partial_2 + A_{26}\partial_2^2, \\ L_{22} &= A_{66}\partial_1^2 + 2A_{26}\partial_1\partial_2 + A_{22}\partial_2^2, \ L_{13} &= \alpha_{13}\partial_1 + \alpha_{45}\partial_2, \\ L_{33} &= A_{55}\partial_1^2 + 2A_{45}\partial_1\partial_2 + A_{44}\partial_2^2, \ L_{23} &= \alpha_{45}\partial_1 + \alpha_{23}\partial_2, \\ L_{21} &= L_{12}, \ L_{31} &= L_{13}, \ L_{32} &= L_{23}, \ \alpha_{13} &= A_{13} + A_{55}, \ \alpha_{23} &= A_{23} + A_{44}, \\ \alpha_{45} &= A_{36} + A_{45}, \ \partial_i &= \partial/\partial x_i, A_{ij} - \text{модули упругости.} \end{split}$$

Вводя следующие обозначения для напряжений $\sigma_1 = \sigma_{11}$, $\sigma_2 = \sigma_{22}$, $\sigma_3 = \sigma_{33}$, $\sigma_4 = \sigma_{23}$, $\sigma_5 = \sigma_{13}$, $\sigma_6 = \sigma_{12}$, уравнения обобщенного закона Гука [7] запишем в следующей форме:

$$\sigma_{i} = (A_{i1}\partial_{1} + A_{i6}\partial_{2})u_{1} + (A_{i6}\partial_{1} + A_{i2}\partial_{2})u_{2} + A_{i3}\partial_{3}u_{3} \quad (i = 1, 2, 3, 6),$$

$$\sigma_{i} = A_{i5}\partial_{3}u_{1} + A_{i4}\partial_{3}u_{2} + (A_{i5}\partial_{1} + A_{i4}\partial_{2})u_{3} \quad (i = 4, 5).$$
(2)

Решение системы (1) необходимо осуществлять с учетом граничных условий смешанного типа на плоских гранях пластины [5]

$$\sigma_{33}(x_1, x_2, \pm h) = 0, \ u_i(x_1, x_2, \pm h) = 0 \ (i = 1, 2).$$
(3)

Решения системы (1), удовлетворяющие граничным условиям (3), называются однородными [8]. В случае симметричной деформации пластины относительно срединной плоскости представим компоненты вектора перемещений в виде [5, 6]

$$u_{i} = \sum_{k=1}^{\infty} u_{ik}(x_{1}, x_{2}) \cos(\beta_{k} x_{3}) \quad (i = 1, 2),$$

$$u_{3} = \sum_{k=1}^{\infty} u_{3k}(x_{1}, x_{2}) \sin(\beta_{k} x_{3}), \quad \beta_{k} = (2k - 1)\pi/(2h).$$
(4)

Аналогично при кососимметричном нагружении пластины имеем

$$u_{i} = \sum_{k=1}^{\infty} u_{ik}(x_{1}, x_{2}) \sin(\delta_{k}x_{3}) \quad (i = 1, 2),$$

$$u_{3} = \sum_{k=0}^{\infty} u_{3k}(x_{1}, x_{2}) \cos(\delta_{k}x_{3}), \quad \delta_{k} = k\pi h^{-1}.$$
(5)

Тогда граничные условия (3) будут удовлетворены, а из уравнений равновесия (1) получим системы дифференциальных уравнений для определения неизвестных функций u_{ik} ($i = \overline{1,3}$). Например, используя разложения (5), будем иметь

$$L_{33}u_{30} = 0 \quad k = 0, \tag{6}$$

$$\sum_{n=1}^{3} D_{in}^{(k)} u_{nk} = 0 \quad (i = \overline{1,3}) \quad k \ge 1,$$
(7)

где

$$\begin{split} D_{11}^{(k)} &= A_{55} - \lambda_k^2 L_{11}, \quad D_{12}^{(k)} = A_{54} - \lambda_k^2 L_{12}, \quad D_{13}^{(k)} = \lambda_k L_{13}, \\ D_{21}^{(k)} &= A_{45} - \lambda_k^2 L_{21}, \quad D_{22}^{(k)} = A_{44} - \lambda_k^2 L_{22}, \quad D_{23}^{(k)} = \lambda_k L_{23}, \\ D_{31}^{(k)} &= \lambda_k L_{31}, \quad D_{32}^{(k)} = \lambda_k L_{32}, \quad D_{33}^{(k)} = \lambda_k^2 L_{33} - A_{33}, \quad \lambda_k = (\delta_k)^{-1} = h/(k\pi). \end{split}$$

Общее решение уравнения (6) представим так

$$u_{30} = 2Re\left[\varphi_3(z_3)/(A_{45} + A_{44}\mu_3)\right].$$
(8)

Здесь $\varphi_3(z_3)$ – произвольная аналитическая функция обобщенной комплексной переменной $z_3 = x_1 + \mu_3 x_2$; μ_3 – корень характеристического уравнения

$$A_{55} + 2A_{45}\mu + A_{44}\mu^2 = 0.$$

В результате, выражения для напряжений (2) становятся такими:

$$\sigma_{40} = 2Re\varphi'_3(z_3), \quad \sigma_{50} = -2Re\left[\mu_3\varphi'_3(z_3)\right], \quad \varphi'_3(z_3) = d\varphi_3/dz_3, \\ \sigma_{10} = \sigma_{20} = \sigma_{30} = \sigma_{60} = 0.$$
(9)

Соотношения (8) и (9) можно использовать при решении задач типа антиплоской деформации для пластин с полостями. Пусть пластина деформируется усилиями, приложенными к боковым поверхностям полостей, и внешними усилиями $\sigma_5^{\infty} = t_5$, $\sigma_4^{\infty} = t_4$, заданными на бесконечности. Тогда граничные условия для определения комплексной функции $\varphi_3(z_3)$ на поверхности *r*-той полости имеют вид

$$\sigma_{50}n_{1r} + \sigma_{40}n_{2r} = -n_{1r}t_5 - n_{2r}t_4 + N_r(s), \tag{10}$$

где $N_r(s)$ – касательная составляющая внешних усилий, приложенных к боковой поверхности; $n_{1r} = \cos(n_r, x_1)$, $n_{2r} = \cos(n_r, x_2)$, n_r – нормаль к контуру L_r .

Решение системы уравнений (7) будем находить в виде разложения по параметру $\lambda_k=h/(k\pi)$

$$u_{nk} = \varphi_{nk} + \sum_{p=0}^{\infty} \lambda_k^{p+1} u_{nkp}.$$
 (11)

Подставляя разложения (11) в уравнения равновесия (7), получим

$$A_{55}\varphi_{1k} + A_{54}\varphi_{2k} + \lambda_k (A_{55}u_{1k0} + A_{54}u_{2k0} + L_{13}\varphi_{3k}) + \lambda_k^2 [A_{55}u_{1k1} + A_{54}u_{2k1} - L_{11}\varphi_{1k} - L_{12}\varphi_{2k} + L_{13}u_{3k0}] + (12) + \sum_{p=2}^{\infty} \lambda_k^{p+1} [A_{55}u_{1kp} + A_{54}u_{2kp} - L_{11}u_{1k,p-2} - L_{12}u_{2k,p-2} + L_{13}u_{3k,p-1}] = 0;$$

$$A_{45}\varphi_{1k} + A_{44}\varphi_{2k} + \lambda_k (A_{45}u_{1k0} + A_{44}u_{2k0} + L_{23}\varphi_{3k}) + \lambda_k^2 [A_{45}u_{1k1} + A_{44}u_{2k1} - L_{21}\varphi_{1k} - L_{22}\varphi_{2k} + L_{23}u_{3k0}] + (13) + \sum_{p=2}^{\infty} \lambda_k^{p+1} [A_{45}u_{1kp} + A_{44}u_{2kp} - L_{21}u_{1k,p-2} - L_{22}u_{2k,p-2} + L_{23}u_{3k,p-1}] = 0;$$

$$A_{33}\varphi_{3k} + \lambda_k (A_{33}u_{3k0} - L_{31}\varphi_{1k} - L_{32}\varphi_{2k}) + \lambda_k^2 [A_{33}u_{3k1} - L_{31}u_{1k0} - L_{32}u_{2k0} - L_{33}\varphi_{3k}] + \sum_{p=2}^{\infty} \lambda_k^{p+1} [A_{33}u_{3kp} - L_{31}u_{1k,p-1} - L_{32}u_{2k,p-1} - L_{33}u_{3k,p-2}] = 0.$$

$$(14)$$

Для системы уравнений (12)-(14) рассмотрим два способа ее решения.

1. Введем функции φ_k так, чтобы $\varphi_{1k} = \partial_2 \varphi_k$, $\varphi_{2k} = -\partial_1 \varphi_k$, а функцию φ_{3k} положим равной нулю. Уравнения (12)-(14) в этом случае запишутся в форме:

$$u_{1k0} = u_{2k0} = u_{3k1} = 0, \quad u_{3k0} = A_{33}^{-1} (L_{31}\partial_2 - L_{32}\partial_1)\varphi_k;$$

$$(A_{55}\partial_2 - A_{54}\partial_1)\varphi_k + + \lambda_k^2 [A_{55}u_{1k1} + A_{54}u_{2k1} - (L_{11}\partial_2 - L_{12}\partial_1 - A_{33}^{-1}L_{13}(L_{31}\partial_2 - L_{32}\partial_1))\varphi_k] = 0;$$
⁽¹⁵⁾

$$(A_{45}\partial_2 - A_{44}\partial_1)\varphi_k + \lambda_k^2 [A_{45}u_{1k1} + A_{44}u_{2k1} - (L_{21}\partial_2 - L_{22}\partial_1 - A_{33}^{-1}L_{23}(L_{31}\partial_2 - L_{32}\partial_1))\varphi_k] = 0;$$
⁽¹⁶⁾

$$A_{55}u_{1kp} + A_{54}u_{2kp} = L_{11}u_{1k,p-2} + L_{12}u_{2k,p-2} - L_{13}u_{3k,p-1},$$

$$A_{45}u_{1kp} + A_{44}u_{2kp} = L_{21}u_{1k,p-2} + L_{22}u_{2k,p-2} - L_{23}u_{3k,p-1},$$

$$u_{3kp} = (L_{31}u_{1k,p-1} + L_{32}u_{2k,p-1} + L_{33}u_{3k,p-2})/A_{33} \quad p \ge 2.$$
(17)

Выражения в квадратных скобках уравнений (15) и (16) представим следующим образом:

$$A_{55}u_{1k1} + A_{54}u_{2k1} - (L_{11}\partial_2 - L_{12}\partial_1 - A_{33}^{-1}L_{13}(L_{31}\partial_2 - L_{32}\partial_1))\varphi_k = = -(A_{55}\partial_2 - A_{54}\partial_1)(a\partial_1^2 + b\partial_1\partial_2 + c\partial_2^2)\varphi_k;$$
(18)

$$A_{45}u_{1k1} + A_{44}u_{2k1} - (L_{21}\partial_2 - L_{22}\partial_1 - A_{33}^{-1}L_{23}(L_{31}\partial_2 - L_{32}\partial_1))\varphi_k = = -(A_{45}\partial_2 - A_{44}\partial_1)(a\partial_1^2 + b\partial_1\partial_2 + c\partial_2^2)\varphi_k.$$
(19)

Для определения неизвестных $a,\,b$ иcрассмотрим два случая. 1.1. Будем считать

$$a = a_1 = (A_{54}b_1 + A_{11} - \alpha_{12} - (\alpha_{13}^2 - \alpha_{13}\alpha_{23} - \alpha_{45}^2)/A_{33})/A_{55},$$

$$b = b_1 = (A_{54}c_1 + 2A_{16} - A_{26} - \alpha_{45}(2\alpha_{13} - \alpha_{23})/A_{33})/A_{55},$$

$$c = c_1 = (A_{66} - \alpha_{45}^2/A_{33})/A_{55}.$$

Тогда функции u_{1k1} и u_{2k1} определяются из уравнений

$$A_{55}u_{1k1} + A_{54}u_{2k1} = (A_{54}a_1 + \alpha_{13}\alpha_{45}/A_{33} - A_{16})\partial_1^3\varphi_k,$$

$$A_{45}u_{1k1} + A_{44}u_{2k1} = (\beta_1\partial_2^3 + \beta_2\partial_2^2\partial_1 + \beta_3\partial_2\partial_1^2 + \beta_4\partial_1^3)\varphi_k,$$
(20)

где

$$\beta_1 = A_{26} - \alpha_{23}\alpha_{45}/A_{33} - A_{45}c_1,$$

$$\beta_2 = \alpha_{12} - A_{22} - (\alpha_{13}\alpha_{23} + \alpha_{45}^2 - \alpha_{23}^2)/A_{33} - A_{45}b_1 + A_{44}c_1,$$

$$\beta_3 = A_{16} - 2A_{26} - \alpha_{45}(\alpha_{13} - 2\alpha_{23})/A_{33} - A_{45}a_1 + A_{44}b_1,$$

$$\beta_4 = \alpha_{45}^2/A_{33} - A_{66} + A_{44}a_1.$$

Из соотношений (15)
и (16) получим уравнения для функций $\psi_{1k} = \varphi_k$

$$\psi_{1k} - \lambda_k^2 (a_1 \partial_1^2 + b_1 \partial_1 \partial_2 + c_1 \partial_2^2) \psi_{1k} = 0.$$
(21)

1.2. Возьмем теперь

$$a = a_2 = (A_{66} - \alpha_{45}^2/A_{33})/A_{44},$$

$$b = b_2 = (A_{54}a_2 + 2A_{26} - A_{16} + \alpha_{45}(\alpha_{13} - 2\alpha_{23})/A_{33})/A_{44},$$

$$c = c_2 = (A_{54}b_2 + A_{22} - \alpha_{12} - (\alpha_{23}^2 - \alpha_{13}\alpha_{23} - \alpha_{45}^2)/A_{33})/A_{44}.$$

Функции u_{1k1} и u_{2k1} в этом случае определяются из уравнений:

$$A_{45}u_{1k1} + A_{44}u_{2k1} = -(A_{45}c_2 + \alpha_{23}\alpha_{45}/A_{33} - A_{26})\partial_2^3\varphi_k,$$

$$A_{55}u_{1k1} + A_{54}u_{2k1} = (\gamma_1\partial_2^3 + \gamma_2\partial_2^2\partial_1 + \gamma_3\partial_2\partial_1^2 + \gamma_4\partial_1^3)\varphi_k,$$
(22)

где

$$\gamma_1 = A_{66} - \alpha_{45}\alpha_{45}/A_{33} - A_{55}c_2,$$

$$\gamma_3 = A_{11} - \alpha_{12} - (\alpha_{13}^2 - \alpha_{13}\alpha_{23} - \alpha_{45}^2)/A_{33} - A_{55}a_2 + A_{54}b_2,$$

$$\gamma_2 = 2A_{16} - A_{26} - \alpha_{45}(2\alpha_{13} - \alpha_{23})/A_{33} - A_{55}b_2 + A_{54}c_2,$$

$$\gamma_4 = \alpha_{13}\alpha_{45}/A_{33} - A_{16} + A_{54}a_2.$$

Разрешающие для функций $\psi_{2k} = \varphi_k$ уравнения (15) и (16) примут вид

$$\psi_{2k} - \lambda_k^2 (a_2 \partial_1^2 + b_2 \partial_1 \partial_2 + c_2 \partial_2^2) \psi_{2k} = 0.$$
(23)

2. Если положить $\varphi_{1k} = \varphi_{2k} = 0$, $\varphi_{3k} = \psi_{3k}$, $u_{1k0} = \partial_1 \psi_{3k}$, $u_{2k0} = \partial_2 \psi_{3k}$, то уравнения (12)-(14) становятся такими:

$$u_{1k1} = u_{2k1} = u_{3k0} = u_{3k1} = 0;$$

$$[(\alpha_{13} + A_{55})\partial_1 + (\alpha_{45} + A_{54})\partial_2]\psi_{3k} + \lambda_k^2 [A_{55}u_{1k2} + A_{54}u_{2k2} - (L_{11}\partial_1 + L_{12}\partial_2)\psi_{3k}] = 0;$$
(24)

$$[(\alpha_{45} + A_{45})\partial_1 + (\alpha_{23} + A_{44})\partial_2]\psi_{3k} + \lambda_k^2 [A_{45}u_{1k2} + A_{44}u_{2k2} - (L_{21}\partial_1 + L_{22}\partial_2)\psi_{3k}] = 0;$$
(25)

$$\psi_{3k} - \lambda_k^2 (a_3 \partial_1^2 + b_3 \partial_1 \partial_2 + c_3 \partial_2^2) \psi_{3k} = 0, \qquad (26)$$

где $a_3 = (\alpha_{13} + A_{55})/A_{33}, \quad b_3 = 2(\alpha_{45} + A_{45})/A_{33}, \quad c_3 = (\alpha_{23} + A_{44})/A_{33};$

$$A_{55}u_{1kp} + A_{54}u_{2kp} = L_{11}u_{1k,p-2} + L_{12}u_{2k,p-2} - L_{13}u_{3k,p-1},$$

$$A_{45}u_{1kp} + A_{44}u_{2kp} = L_{21}u_{1k,p-2} + L_{22}u_{2k,p-2} - L_{23}u_{3k,p-1} \quad p \ge 3,$$

$$u_{3kp} = (L_{31}u_{1k,p-1} + L_{32}u_{2k,p-1} + L_{33}u_{3k,p-2})/A_{33} \quad p \ge 2.$$

$$(27)$$

Система уравнений (24)-(25) приводится к уравнению (26), если функции u_{1k2} и u_{2k2} удовлетворяют уравнениям:

$$A_{55}u_{1k2} + A_{54}u_{2k2} = (\eta_1\partial_1^3 + \eta_2\partial_1^2\partial_2 + \eta_3\partial_1\partial_2^2 + \eta_4\partial_2^3)\psi_{3k},$$

$$A_{45}u_{1k2} + A_{44}u_{2k2} = (\delta_1\partial_1^3 + \delta_2\partial_1^2\partial_2 + \delta_3\partial_1\partial_2^2 + \delta_4\partial_2^3)\psi_{3k},$$
(28)

где $\eta_1 = A_{11} - (\alpha_{13} + A_{55})a_3, \quad \eta_3 = A_{66} + \alpha_{12} - (\alpha_{13} + A_{55})c_3 - (A_{45} + \alpha_{45})b_3,$ $\eta_2 = 3A_{16} - (\alpha_{13} + A_{55})b_3 - (A_{45} + \alpha_{45})a_3, \quad \eta_4 = A_{26} - (A_{54} + \alpha_{45})c_3;$ $\delta_1 = A_{16} - (\alpha_{45} + A_{45})a_3, \quad \delta_2 = A_{66} + \alpha_{12} - (\alpha_{23} + A_{44})a_3 - (A_{45} + \alpha_{45})b_3,$ $\delta_3 = 3A_{26} - (\alpha_{23} + A_{44})b_3 - (A_{45} + \alpha_{45})c_3, \quad \delta_4 = A_{22} - (A_{44} + \alpha_{23})c_3.$

Из полученных соотношений видно, что функции ψ_{1k} , ψ_{2k} , и ψ_{3k} находятся из решения обобщенных метагармонических уравнений (21), (23) и (26), которые имеют одинаковую структуру вида

$$\left[1 - \lambda_k^2 c_i \left(\partial_2^2 + b_i / c_i \partial_1 \partial_2 + a_i / c_i \partial_1^2\right)\right] \psi_{ik} = 0 \quad (i = \overline{1, 3}).$$
⁽²⁹⁾

Все остальные функции разложений (11) выражаются через ψ_{ik} при помощи введенных выше обозначений для ψ_{ik} , а также из формул (17) и (27).

Общее решение уравнения (29) представляется суперпозицией функций Бесселя мнимого аргумента

$$\psi_{ik}(z_i,\overline{z_i}) = \sum_{n=0}^{\infty} \left(\frac{z_i^n}{n!} + \frac{\overline{z}_i^n}{n!}\right) \rho_i^{-n/2} \left[C_{i1n}I_n(2q_{ik}\sqrt{\rho_i}) + C_{i2n}K_n(2q_{ik}\sqrt{\rho_i})\right],$$

где $z_i = x_1 + \mu_i x_2, \ \rho_i = z_i \overline{z_i}, \ q_{ik}^2 = 1 / \left[\lambda_k^2 c_i (\mu_i - \overline{\mu_i})^2\right], \ \mu_i = -\frac{b_i}{2c_i} + \frac{1}{2} \sqrt{\left((\frac{b_i}{c_i})^2 - 4\frac{a_i}{c_i}\right)}.$

Следует отметить, что после подстановки разложений (4) в уравнения (1) и проведения рассуждений, подобных приведенным выше, можно получить аналогичные разрешающие уравнения для случая симметричного нагружения пластины.

Численные исследования. В качестве примера исследуем напряженное состояние бесконечной пластины произвольной толщины 2*h*. Пластина ослаблена эллиптической полостью, контур *L* которой задан уравнениями в параметрической форме

$$x_1 = a\cos\theta, \quad x_2 = b\sin\theta,$$

где a и b – полуоси эллипса; $0 \le \theta \le 2\pi$. К пластине приложены независимые от переменной x_3 внешние усилия, которые были описаны выше. При численной реализации будем использовать интегральную форму граничных условий (10) с учетом того, что при параметрическом задании контура

$$n_{1r} = dx_2/ds, \quad n_{2r} = -dx_1/ds, \quad ds = \sqrt{dx_1^2 + dx_2^2}.$$
 (30)

Тогда из выражений (9) и (10) с учетом (30) следует

$$2Re\varphi_3(z_3) = -\int_0^s N_r(s)ds + t_5x_2 - t_4x_1 + c_3.$$
(31)

Поскольку внешние усилия не зависят от переменной x_3 , то будем считать, что $N_r(s) = Pf(\theta)$. Подынтегральную функцию в (31) разложим на контуре L в ряд по степеням величины $\sigma = \exp(i\theta)$

$$F(\theta) = f(\theta)\sqrt{a^2 \sin^2(\theta) + b^2 \cos^2(\theta)} = a_0 + \sum_{k=1}^n (a_k \sigma^{-k} + \overline{a}_k \sigma^k),$$
$$a_0 = \frac{1}{N} \sum_{p=1}^N F(\theta_p), \quad a_k = \frac{1}{N} \sum_{p=1}^N F(\theta_p) \exp(i\theta_p k), \quad (N \ge 2n+1).$$

Узлы θ_p равномерно расположены на интервале $(0, 2\pi]$: $0 < \theta_1 < \theta_2 < ... < \theta_N = 2\pi$. Интеграл в правой части условий (31) примет вид

$$-\int_0^s N_r(s)ds = -P\int_0^\theta F(\theta)d\theta = -P\left[a_0\theta + i\sum_{k=1}^n \left(\frac{a_k}{k}\sigma^{-k} - \frac{\overline{a}_k}{k}\sigma^k\right)\right].$$

Функция $\varphi_3(z_3)$ определена в области S_3 , получаемой из заданной области S аффинными преобразованиями [8]

$$x_{13} = x_1 + \gamma_3 x_2, \quad x_{23} = \beta_3 x_2, \quad \mu_3 = \gamma_3 + i\beta_3,$$

Эллиптический контур L перейдет в области S_3 в эллиптический контур L_3 , уравнение которого запишется так

$$t_3 = x_1 + \mu_3 x_2 = R_3 \sigma + m_3 / \sigma,$$

где $R_3 = (a - i\mu_3 b)/2, m_3 = (a + i\mu_3 b)/2, \sigma = e^{i\theta} = \cos(\theta) + i\sin(\theta).$

Отобразим конформно внешность единичной окружност
и $|\zeta_3|\geq 1$ на внешность эллипса L_3 в област
и S_3

$$z_3 = R_3\zeta_3 + m_3/\zeta_3$$

Функцию $\varphi_3(z_3)$ представим в виде ряда

$$\varphi_3(z_3) = \alpha \ln \zeta_3 + \sum_{k=1}^{\infty} \alpha_k / \zeta_3^k.$$
(32)

Величины α , α_k определяются из граничного условия на поверхности полости.

Подставляя функцию (32) в граничные условия (31) и применяя метод рядов, получим систему алгебраических уравнений относительно коэффициентов α и α_k . Из этой системы следует

$$i\alpha - i\overline{\alpha} = -Pa_0, \quad \alpha_k = -Pia_k/k \quad (k \ge 1).$$
 (33)

Коэффициент α найдем из первого уравнения (33) и условия однозначности перемещений

$$\alpha/(A_{45} + A_{44}\mu_3) - \overline{\alpha}/(A_{45} + A_{44}\overline{\mu_3}) = 0.$$

Численные исследования были проведены для некоторой модельной ортотропной пластинки. Когда направления осей координат совпадают с главными направлениями упругости, комплексный параметр μ_3 возьмем равным 0.25*i*. При повороте осей координат Ox_1 и Ox_2 на угол φ вокруг оси Ox_3 получаем срезы, обладающие свойствами пластинки, имеющей плоскость упругой симметрии. Например, для $\varphi = 30^0$ получим $\mu_3 = 0.5302 + 0.3265i$, для $\varphi = 60^0$ будем иметь $\mu_3 = 1.3674 + 0.8421i$, а для $\varphi = 90^0 \ \mu_3 = 4i$.

Исследования проводились для случая N(s) = P = const, $t_4 = t_5 = 0$ в зависимости от различных значений параметра φ и полуосей a, b эллиптической полости. Анализ значений напряжений $\sigma_{\theta x_3}/P = (\sigma_{40} \cos{(n, x_1)} - \sigma_{50} \cos{(n, x_2)})/P$ на контурах эллиптических и круговой полостей показали, что напряжения на контуре являются знакопеременными и для эллиптических полостей их значения существенно меняются в зависимости от угла φ (табл. 1). При этом для пластины с плоскостью упругой симметрии ($\varphi = 30^0$ и $\varphi = 60^0$) имеет место увеличение концентрации напряжений по сравнению с ортотропным случаем ($\varphi = 0^0$ и $\varphi = 90^0$). Для круговой полости максимальные по абсолютному значению напряжения остаются постоянными для любого среза, меняется лишь точка локализации этих значений.

Таблица 1.

	a=1, b=0.5				a=1, b=1				$a{=}0.5, b{=}1$			
θ	φ				φ				φ			
	0	30	60	90	0	30	60	90	0	30	60	90
0	0	-1.37	-0.53	0	0	-1.37	-0.53	0	0	-1.37	-0.53	0
15	1.19	-1.51	-1.51	-0.58	1.87	-1.87	-0.88	-0.25	1.91	-1.52	-0.65	-0.10
30	0.63	1.25	-2.72	-1.19	1.37	0	-1.37	-0.53	2.26	-1.41	-0.81	-0.21
45	0.37	1.02	-0.32	-1.81	0.88	1.87	-1.87	-0.88	1.81	0.32	-1.02	-0.37
60	0.21	0.81	1.41	-2.26	0.53	1.37	0	-1.37	1.19	2.72	-1.25	-0.63
75	0.10	0.65	1.52	-1.91	0.25	0.88	1.87	-1.87	0.58	1.51	1.51	-1.19
90	0	0.53	1.37	0	0	0.53	1.37	0	0	0.53	1.37	0
105	-0.10	0.41	1.17	1.91	-0.25	0.25	0.88	1.87	-0.58	-0.04	0.48	1.19
120	-0.21	0.29	0.95	2.26	-0.53	0	0.53	1.37	-1.19	-0.42	0.09	0.63
135	-0.37	0.13	0.71	1.81	-0.88	-0.25	0.25	0.88	-1.81	-0.71	-0.13	0.37
150	-0.63	-0.09	0.42	1.19	-1.37	-0.53	0	0.53	-2.26	-0.95	-0.29	0.21
165	-1.19	-0.48	0.04	0.58	-1.87	-0.88	-0.25	0.25	-1.91	-1.17	-0.41	0.10
180	0	-1.37	-0.53	0	0	-1.37	-0.53	0	0	-1.37	-0.57	0

В табл. 2 даны максимальные и минимальные значения напряжений $\sigma_{\theta x_3}/P$, возникающие на контурах различных эллиптических полостей. Вычисления проводились для пластин, обладающих разной степенью анизотропии. Исследованы три вида ортотропных материалов с чисто мнимыми параметрами μ_3 и для каждого из этих материалов рассмотрены срезы, соответствующие углу поворота $\varphi = 45^0$. В табл. 2 также приведены напряжения для изотропной пластины, у которой $\mu_3 = i$.

Таблица 1	2.
-----------	----

N≗	μ_3	a=1,	a=1,	a=1, b=1	a=0.5,	a=0.1,
		b=0.1	b=0.5		b=1	b=1
1	0.25i	0.950	1.570	1.875	2.288	4.013
		-0.950	-1.570	-1.875	-2.288	-4.013
	0.882 + 0.471i	0.954	1.318	1.875	2.607	4.836
		-4.836	-2.607	-1.875	-1.318	-0.954
2	0.5i	0.345	0.435	0.750	1.136	2.354
		-0.345	-0.435	-0.750	-1.136	-2.354
	0.600 + 0.800i	1.014	0.600	0.750	1.087	2.250
		-2.250	-1.087	-0.750	-0.600	-1.014
3	0.707i	0.723	0.037	0.354	0.720	1.730
		-0.723	-0.037	-0.354	-0.720	-1.730
	0.333 + 0.943i	1.070	0.414	0.354	0.601	1.551
		-1.551	-0.601	-0.354	-0.414	-1.070
4	i	1.195	0.348	0	0.348	1.195
		-1.195	-0.348	0	-0.348	-1.195

Из данных табл. 2 следует также, что расположение эллиптической полости относительно направлений упругости существенно влияет на величину напряжений. Так, при $\mu_3 = 0.25i$ максимальные напряжения меняются от значения 0.950 до 4.013, а при $\varphi = 45^0$ - от 0.954 до 4.836. Когда параметр μ_3 приближается к мнимой единице (ослабление анизотропии), т. е. свойства анизотропного материала стремятся к свойствам изотропного материала, различие между максимальными значениями напряжений при различном расположении полостей уменьшаются.

На рисунке линии со стрелками у контура эллипса показывают зоны сжимающих напряжений, а со стрелками у линий напряжений — зоны растягивающих напряжений. Как видно из рисунка, наличие в материале более общего вида анизотропии приводит к существенному перераспределению напряжений вблизи

Рис. 1. Распределение напряжений $\sigma_{\theta x_3}/P$ около эллиптической полости в зависимости от параметра μ_3 . Сплошная кривая – $\mu_3 = 0.25i$; штриховая – $\mu_3 = 0.882 + 0.471i$; полуоси эллипса – a = 1, b = 0.5.

контура.

Выводы. Получены однородные решения уравнений трехмерной теории упругости для анизотропных пластин, на плоских гранях которых нормальное напряжение и тангенциальные перемещения равны нулю. Предложены способы интегрирования разрешающих уравнений. Найдено явное аналитическое решение задачи типа антиплоской деформации для пластины с эллиптической полостью в случае действия постоянной по толщине нагрузки. Проведенные исследования напряженного состояния пластины позволяют сделать выводы о том, что расположение полости относительно направлений упругости существенно влияет на места возникновения концентрации напряжений на контуре и на величину напряжения в этих местах, а усиление анизотропии, как правило, приводит к увеличению максимальных по абсолютному значению напряжений.

- 1. Космодамианский А.С. Концентрация внутренней энергии в многосвязных телах // Прикл. механика. 2002. 38, №4. С. 21–48.
- 2. Космодамианский А.С. Постранственные задачи теории упругости для многосвязных пластин: Обзор // Прикл. механика. 1983. 19, №12. С. 3–21.
- 3. *Немиш Ю.Н.* Развитие аналитических методов в трехмерных задачах статики анизотропных тел (обзор) // Прикл. механика. 2000. 36, №2. С. 3–38.
- Подильчук Ю.Н. Точные аналитические решения пространственных граничных задач статики трансверсально – изотропного тела в канонической форме (обзор) // Прикл. механика. — 1997. -- 33, №10. -- С. 3–30.
- Алтухов Е.В. Статические трехмерные задачи для трансверсально изотропных пластин // Механика композитов: В 12 т; Т 7: Концентрация напряжений / Под ред. А.Н. Гузя, А.С. Космодамианского, В.П. Шевченко. — К.: А.С.К., 1998. — С. 114–137.
- Алтухов Е.В. Напряженное состояние транстропных пластин с торцами, покрытыми диафрагмой // Теорет. и прикл. механика. — 1996. — Вып. 26. — С. 3–12.
- 7. Лехницкий С.Г. Теория упругости анизотропного тела. -- М.: Наука, 1977. -- 415 с.
- 8. Лурье А.И. Пространственные задачи теории упругости. -- М.: Гостехиздат, 1955. -- 491 с.

E.V. Altukhov, A.V. Vinnik

Anisotropic plates' stressed state in case the flat edges are covered with a diaphragm.

The three-dimensional problem of an elastic equilibrium of an anisotropic plate which flat edges are covered with a diaphragm is considered. For this class of problems homogeneous solutions are obtained. Numerical researches of a stress state of an infinite plate with an elliptic cavity on which lateral surface exterior efforts are set fixed on width carried out.

Keywords: three-dimensional homogeneous solutions, anisotropic plates, layer with an elliptic cavity.

Є.В. Алтухов, А.В. Вінник

Напружений стан анізотропних пластин з торцями, що покриті діафрагмою.

Розглянуто тривимірну задачу пружньої рівноваги анізотропної пластини, плоскі грані якої покриті діафрагмою. Для цього класу задач одержано однорідні розв'язки. Проведено чисельні дослідження напруженого стану нескінченної пластини з еліптичною порожниною, на бічній поверхні якої завдано постійні по товщині зовнішні зусилля.

Ключові слова: тривимірні однорідні розв'язки, анізотропні пластини, шар з еліптичною порожниною.

Донецкий национальный ун-т

Получено 16.11.2009