УДК 518.6+681.3

©2009. В.В. Скобелев

ТОЧНАЯ ФОРМУЛА ДЛЯ ЧИСЛА ОБРАТИМЫХ МАТРИЦ НАД КОНЕЧНЫМ КОЛЬЦОМ

Развит математический аппарат, на основе которого найдена формула для точного подсчета числа обратимых матриц над кольцом \mathbf{Z}_l ($l \in \mathbf{N}$).

Введение. Для широкого класса задач дискретной математики типичными являются объекты, определяемые таким набором $n \times n$ -матриц (A_1, \ldots, A_l) над кольцом $Z_m = (\mathbf{Z}_m, \oplus, \circ)$ (где $a \oplus b = (a+b) \pmod m$, $a \circ b = a \cdot b \pmod m$), что l_1 матриц являются обратимыми, l_2 матриц — необратимыми, а l_3 матриц — произвольными, где $l_1, l_2, l_3 \in \mathbf{Z}_+$ — такие фиксированные числа, что $l_1 + l_2 + l_3 = l$.

Именно в таких терминах в [1] охарактеризованы системы линейных уравнений, а также нетривиальные множества обратимых автоматов над кольцом Z_{p^k} (где p – простое число, $k \in \mathbf{Z}$). При этом для подсчета мощностей подмножеств автоматов использовалась следующая установленная в [2] оценка числа обратимых $n \times n$ -матриц над кольцом Z_{p^k}

$$n! \cdot (p-1)^n \cdot p^{-n^2} \cdot |\mathsf{M}_n(p,k)| \le |\mathsf{M}_n^{inv}(p,k)| \le (1-p^{-n})^n \cdot |\mathsf{M}_n(p,k)|, \tag{1}$$

где $M_n(p,k)$ и $M_n^{inv}(p,k)$ — множество, соответственно, всех и всех обратимых $n \times n$ -матриц над кольцом Z_{p^k} .

Недостаток оценки (1) состоит в том, что отношение верхней оценки к нижней оценке неограниченно возрастает с ростом числа n. Поэтому естественно возникает задача поиска обозримой точной формулы для числа обратимых матриц над произвольным кольцом Z_m . Решение этой задачи и является основной целью настоящей работы.

Структура работы следующая. В п.1 получена точная формула для числа обратимых $n \times n$ -матриц над кольцом Z_{p^k} . В п.2 решена задача подсчета мощности множества общих элементов для периодических структур. На основе этих результатов в п.3 получена точная формула для числа обратимых $n \times n$ -матриц над кольцом Z_m .

1. Число обратимых матриц над кольцом Z_{p^k} . Нам понадобится следующая Лемма 1. Для любого простого числа p истинно равенство

$$|\mathbf{M}_n^{inv}(p,1)| = p^{n^2} \cdot \prod_{i=1}^n (1-p^{-i}).$$
 (2)

Доказательство. Так как $Z_p = GF(p)$, то $A = [{\bf a}_1, \ldots, {\bf a}_n] \in {\tt M}_n^{inv}(p,1)$ – обратимая матрица тогда и только тогда, когда ${\bf a}_1 \in {\bf Z}_p^n$ – ненулевой вектор-столбец и

для всех $i=2,\ldots,n$ вектор-столбец $\mathbf{a}_i\in\mathbf{Z}_p^n$ не является линейной комбинацией вектор-столбцов $\mathbf{a}_1,\ldots,\mathbf{a}_{i-1}\in\mathbf{Z}_p^n$. А так как число линейных комбинаций векторов $\mathbf{a}_1,\ldots,\mathbf{a}_{i-1}\in\mathbf{Z}_p^n$ $(i=1,\ldots,n-1)$ равно p^i , то

$$|\mathbf{M}_n^{inv}(p,1)| = (p^n - 1) \cdot (p^n - p) \cdot \dots \cdot (p^n - p^{n-1}),$$

откуда и вытекает равенство (2). □

Теорема 1. Для любого натурального числа k и для любого простого числа p истинно равенство

$$|\mathbf{M}_{n}^{inv}(p,k)| = |\mathbf{M}_{n}(p,k)| \cdot \prod_{i=1}^{n} (1 - p^{-i}).$$
(3)

Доказательство. Каждая матрица $A \in M_n(p,k)$ может быть единственным образом представлена в виде A = B + C, где $B \in M_n(p,1)$, а $C \in M_n(p,k)$ – матрица, каждый элемент которой является необратимым элементом кольца Z_{p^k} . При этом $det(A) \pmod{p} = det(B) \pmod{p}$ и $B_1 + C_1 \neq B_1 + C_1$ для любых различных матриц $B_1, B_2 \in M_n(p,1)$ при любых матрицах $C_1, C_2 \in M_n(p,k)$, каждый элемент которых – необратимый элемент кольца Z_{p^k} . Следовательно, $|M_n^{inv}(p,k)|$ равно числу матриц B+C, где $B \in M_n^{inv}(p,1)$, а $C \in M_n(p,k)$ – матрица, каждый элемент которой является необратимым элементом кольца Z_{p^k} .

Ясно, что число матриц $C\in \mathsf{M}_n(p,k)$, у которых каждый элемент является необратимым элементом кольца Z_{p^k} , равно $p^{(k-1)\cdot n^2}$.

А так как в представлении B+C выбор матриц B и C осуществляется независимо, то с учетом леммы 1 получим

$$|\mathbf{M}_n^{inv}(p,k)| = p^{n^2} \cdot \prod_{i=1}^n (1-p^{-i}) \cdot p^{(k-1) \cdot n^2},$$

откуда и вытекает равенство (3). \square

2. Мощность множества общих элементов для периодических структур. Пусть S – непустое конечное множество, а $a_1, \ldots, a_m \in \mathbf{N}$ – взаимно простые числа. Положим

$$F_{a_i}(S) = \{f | f : S \to \mathbf{Z}_{a_i}\} \ (i = 1, \dots, m)$$

И

$$F(S) = \{ f | f : S \to \mathbf{Z} \prod_{i=1}^{n} a_i \}.$$

Определим отображение $f_{mod\ a_i}\ (f\in F(S); i=1,\ldots,m)$ равенством

$$f_{mod\ a_i}(s) = f(s)\ (mod\ a_i)\ (s \in S).$$

Зафиксируем подмножества $\widehat{F_{a_i}}(S)\subseteq F_{a_i}(S) \; (i=1,\ldots,m)$ и положим

$$\widetilde{F_{a_i}}(S) = \{ f \in F(S) | f_{mod \ a_i} \in \widehat{F_{a_i}}(S) \ (i = 1, \dots, m) \}.$$

Теорема 2. Для любого непустого множества S и для любых взаимно простых чисел $a_1, \ldots, a_m \in N$ ($a_1 < \cdots < a_m$) истинно равенство

$$\left|\bigcap_{i=1}^{m} \widetilde{F_{a_i}}(S)\right| = \prod_{i=1}^{m} \left|\widehat{F_{a_i}}(S)\right|. \tag{4}$$

Доказательство. Представим множество $\widetilde{F_{a_i}}(S)$ $(i=1,\ldots,m)$ в виде объединения попарно непересекающихся множеств

$$F(S, f_i) = \{ f \in F(S) | f_{mod \ a_i} = f_i \} \ (f_i \in \widehat{F}_{a_i}(S)).$$

Очевидно, что для любых $i=1,\dots,m-1$ и $j=i+1,\dots,m$ любой элемент $\widetilde{f}_i\in F(S,f_i)$ единственным образом представим в виде

$$\widetilde{f}_i(s) = f_i(s) + a_i \cdot g_j(s),$$

где $g_j \in F_{a_j}(S)$. Отсюда вытекает, что для каждого $i=1,\ldots,m-1$ существует такое единственное отображение $g_j \in F_{a_j}(S)$ (j>i), что при всех $s \in S$ имеет место равенство

$$(f_i(s) + a_i \cdot g_i(s)) \pmod{a_j} = f_j(s).$$

Следовательно,

$$|\bigcap_{i=1}^{m} F(S, f_i)| = 1$$

для любых множеств $F(S, f_1), \dots F(S, f_m)$. А это и означает, что

$$|\bigcap_{i=1}^{m} \widetilde{F_a}(S)| = |\widehat{F_{a_1}}(S) \times \cdots \times \widehat{F_{a_m}}(S)| = |\prod_{i=1}^{m} \widehat{F_{a_i}}(S)|,$$

что и требовалось показать. 🗆

3. Число обратимых матриц над кольцом Z_l . Пусть $l=p_1^{\alpha_1}\cdot\dots\cdot p_m^{\alpha_m}$, где p_1,\dots,p_m – простые числа. Обозначим через $\mathtt{M}_n(l)$ и $\mathtt{M}_n^{inv}(l)$ – множество всех и всех обратимых $n\times n$ -матриц над кольцом Z_l .

Теорема 3. Для любого числа $l=p_1^{\alpha_1}\cdot\dots\cdot p_m^{\alpha_m}\in {\pmb N}$ при всех $n\in {\pmb N}$ истинно равенство

$$|\mathbf{M}_{n}^{inv}(l)| = (\prod_{i=1}^{m} |\mathbf{M}_{n}(p_{i}, \alpha_{i})|) \cdot \prod_{j=1}^{m} \prod_{i=1}^{n} (1 - p_{j}^{-i}).$$
 (5)

Доказательство. Пусть множество S содержит n^2 элементов. Ясно, что множество $F_{p_i^{\alpha_i}}(S)$ $(i=1,\ldots,m)$ может быть отождествлено с множеством $\mathtt{M}_n(p_i,\alpha_i)$. Выберем в качестве множества $\widehat{F_{p_i^{\alpha_i}}}(S)$ $(i=1,\ldots,m)$ множество $\mathtt{M}_n^{inv}(p_i,\alpha_i)$. Тогда

множество $\widetilde{F_{p_i^{\alpha_i}}}(S)$ представляет собой множество всех таких матриц $A\in \mathtt{M}_n(l),$ определитель которых не сравним с нулем по $mod\ p_i.$ Следовательно, истинно равенство

$$\mathbf{M}_{n}^{inv}(l) = \bigcap_{i=1}^{m} \widetilde{F_{p_{i}^{\alpha_{i}}}}(S). \tag{6}$$

Из (3), (4) и (6) вытекает (5), что и требовалось доказать. \square

Заключение. Формула (3) дает возможность найти точные оценки мощностей нетривиальных классов автоматов над кольцом Z_{p^k} , что существенно улучшает некоторые оценки, установленные в [1, 2]. Формула (5) дает возможность существенно обобщить ряд результатов, представленных в [1, 2]. Значение теоремы 2 не исчерпывается ее применением к выводу формулы числа обратимых матриц над конечным кольцом. О широких ее возможностях можно судить хотя бы по тому, что китайская теорема об остатках и формула Эйлера для количества чисел, взаимно-простых с данным числом являются следствиями из этой теоремы. Можно показать, что теорема 2 может быть обобщена на случай отображений в кольцо многочленов над произвольным полем [3].

- 1. Скобелев В.В., Скобелев В.Г. Анализ шифрсистем. Донецк: ИПММ НАНУ, 2009. 479с.
- 2. *Скобелев В.В.* Об обратимых матрицах над кольцом Z_{p^k} // Труды ИПММ НАНУ. 2006. Т.13. С.185-192.
- 3. *Харин Ю.С. и др.* Математические и компьютерные основы криптологии. Минск: Новое знание, 2003. –382с.

 $\mathit{И}$ н-т прикл. математики и механики HAH $\mathit{У}$ краины, Донецк $\mathit{vv_skobelev@iamm.ac.donetsk.ua}$

Получено 19.03.09