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PERIODIC SOLITARY WAVES
IN ONE-DIMENSIONAL HYPERBOLIC STRUCTURES

Introduction. We shall search solitary waves in one-dimensional nonlinear systems
described by a scalar hyperbolic equation of the form

Uty = Ugy + f(u7 uz)a (1)

with particular concern for the existence of periodic ones.

The method we shall use consists in reducing the problem to ordinary differential
equations of second order, and then applying some known results from the theory of plane
dynamical systems. In particular, the existence of a periodic solution will be derived by
means of Liénard’s result on nonlinear oscillations.

The case of parabolic equations of a similar form to (1) has been treated by the same
method in a preceding paper of the author [1].

A recent pertinent reference for the concept of solitary wave is M. Remoissenet [6]. For
the applications this concept has generated we send the reader to the proceedings volume
of the Seventh Kyoto Summer Institute [3] (S. Takeno, Editor). Many other references are
indicated in those mentioned above.

V. Manosa [4] has recently dealt with periodic traveling waves in reaction-diffusion
equations, using the Hopf bifurcation technique.

1. The Differential Equation of Solitary Waves. Let us look for solitary waves
given by the single variable function

y=ylz+ct), (2)

where ¢ € R has to belong to certain intervals, to be determined below.
Substituting u = y(z + ct) in (1), one obtains the ordinary differential equation

(@ =1)y" = f(y,9), (3)

which represents a second order equation any time ¢ —1 # 0. The cases ¢ = %1 lead to a
first order implicit equation. We shall discuss later this situation, when the wave length of
the searched solitary wave is the same as in case of the classical equation uy = Uy, i.e.,

y=ylx+t). (4)

The equation (3), for ¢* —1# 0, is a second order autonomous differential equation. The
existence of periodic solutions has been amply discussed in the mathematical and applied
science literature. For classical results, including existence of limit cycles and related topics,
we send the reader to the monographs/treatises authored by E. A. Coddington and N.
Levinson [5], G. Sansome and R. Conti [6], G. Birkhoff and G. C. Rota [7], F. Brauer and
J. A. Nohel [8].
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A special case of (1), which is particularly interesting for us in this paper, corresponds
to the choice

fwy') =gy +h(y). (5)

Some regularity conditions on the functions g¢(y) and h(y) will be specified below, in
accordance with the requirements of the results to be applied in order to derive existence of
periodic solutions to the equations (3) orits special case (5).

It is important to point out the fact that, for (3), we need periodic solutions, if we
want the solitary waves like (2) to be periodic in time. Moreover, such solutions must be
continuous.

For instance, assuming c¢? # 1, and choosing f(y,y') = yy' product, one obtains
solutions to (3) of the form

Yy = tg (C’lx + CQ), (6)

with C; = [2(c* —1)]7!, and arbitrary Cy. These solutions are periodic, but not continuous
(of course, eliminating the constants as trivial solutions).

We shall make one more remark in the case ¢ —1 = 0. In this case, all it remains from
the equation (3) is the first order implicit equation

fly,y')=0. (7)

If (7) admits a C?— solution yo(z), defined on the whole real axis, then yo(z + ) represents
solitary waves for the system described by the equation (1). For instance, for f(y,y') =
y?> + (y')? — 1, the functions cos (z & t) and sin (z £ ¢) represent solitary waves for (1).

One can see from the above discussion that equations of the form (1) possess solutions
that generate solitary waves.

2. The Equation uy = Uge +g(u)u,+h(u). The above equation, which corresponds
to the choice of f(u,u,)given by (5), is quasilinear in w. It turns out to be an appropriate
example when equation (3) takes the form which allows us to use a Liénard’s type theorem
for the existence of a nontrivial periodic solution.

Let us write the equation (3), in case of the special choice for f given by (5):

(1= + 9wy + h(y) = 0. (8)

In order to formulate the conditions on ¢(y) and h(y), required by the use of Liénard’s
type theorem, we have to distinguish between the cases |c| < 1 and |¢| > 1. We shall deal
only with the case |c| < 1, leaving to the reader the task to formulate the corresponding
conditions in the case |c| > 1.

Before we formulate the conditions for equation (8), such that it will possess a periodic
solution, let us state here the auxiliary result of Liénard’s type we shall rely upon. We take
it from |8, Theorem 6.2].

Theorem 1. Consider the equation

y" +a(y)y’ +by) =0, (9)

under the following assumptions:
(i) a(y) and b(y) are continuously differentiable maps from R into R;
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(i) yb(y) >0 for y#0;
(iii) If we denote

y
Aty = [ alw)du, y< R (10)
0
then
lim [A(y)| = +o0, as [y| — oo
(iv) There exist positive numbers «, 3, such that
A(ly) <0 for y< —a or 0<y<f,
and
Aly) >0 for —a<y<0 or y>pf.

Then, the equation (9) has a nontrivial periodic solution.

Remark. The conditions i) —iv) do not assure the uniqueness of the periodic solution
to (9). Under extra assumptions, among them the symmetry of a(y), i.e., a(y) = a(—y),
and the anti-symmetry of b(y), i.e., b(—y) = —b(y), it can be shown that the nontrivial
periodic solution of equation (9) is unique.

Returning to the equation (8), which provides the solitary waves for (1), with f(y,y’) given
by (5), we notice that it is of the form (9), where

aly) = (1= c)7'g(y), bly) = (1= )" h(y). (11)
We have chosen to deal in detail with the case |¢| < 1, which means (1 —¢?)~! > 0.
It is obvious that conditions i)—iv) of the theorem stated above will be verified by the
functions a(y) and b(y) given by (11), if g(y) and h(y) satisfy the following assumptions:
1) g(y) and h(y) are continuously differentiable maps from R into R;

2) yh(y) # 0 for y # 0;
3) If we denote

Gly) = /Oyg(U)du, y€R, (12)
then

lim |G(y)| = +o0 as |y| — oo.

4) There exist positive numbers «, 3, such that

G(y) <0 for y<—a or 0 <y<p,

and

Gy) >0 for —a<y<0 or y> 0.

Consequently, on behalf of the auxiliary theorem stated above, we can formulate the
following result in regard to the equation
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which is the special case of (1), with f chosen by (5):

Consider the equation (13), with g(u)and h(u) satisfying the conditions 1)—4) stated
above.

Then, there exist periodic solitary waves corresponding to (13), of the form wu(¢,x) =
= y(z £ ct) where the function y is a periodic solution of the nonlinear Liénard’s equation
(8).

Remark 1. If y(x) is a periodic solution of the equation (8), say of period w > 0, then
the period of the solution y(x + ct), with respect to ¢,is w/|c|. In the case |c| < 1, all the
periods are larger than w, and there are solutions of arbitrary large period. Estimates for
the period w are difficult to obtain in the general case.

Remark 2. Besides the periodic solution, equation (8) admits also asymptotically periodic
solutions that generates asymptotically periodic waves. It is also possible to get solution for
(8) which tend asymptotically to the origin (0,0) of the phase plane when ¢ — +oo or
t — —oo. All these situations are elementary consequences of the properties of the limit
cycles for plane autonomous systems. See, for instance, [5-7].

3. Another Special Case of Equation (1). We shall consider now the case when
f(y,y') is independent of ', which means that the wave equation (1) reduces to

Ut = Ugg + f(U), (14)

while the ordinary differential equation for the solitary waves becomes

(1—=c*y" + fly) =0. (15)

This is an equation of the pendulum type and it possesses periodic solutions under
adequate conditions on f(y).

Let us assume that |c¢|] < 1 again, the case |c| > 1 leading to similar assumptions
for f(y). This time we will have a family of periodic solutions, depending on a single real
parameter. More precisely, in the phase plane, the origin will possess a neighborhood which
is filled up with periodic solutions.

Let us take again, as reference, a result from [7, Theorem 6.1|. Formulating directly our
hypotheses on f(y), the following result can be stated in regard to the equation (14):

Theorem 2. Consider the equation (14) in which f(u) is continuously differentiable
from R into R, such that

uf(u) >0 for u#0, f(u)=—f(—u). (16)

Then, there exists a family of periodic solitary waves solutions to (14), depending of a
real parameter r, r < ro,with rq > 0 sufficiently small.

Each periodic solitary wave is of the form y = y(z &+ ¢t), with y(z) a periodic solution
of the equation (14).

The proof of Theorem 2 is the immediate consequence of applying to the equation (15)
the result mentioned above from [7].

Remark. In the phase space (y, 3/), the trajectories of periodic solution to (15) are
symmetric with respect to the origin. The real parameter r can be taken equal to the
abscissa of the intersection of the trajectory with the y-axis.

In concluding this paper, we notice the fact that a simple hyperbolic structure described
by equation (1) can generate, under adequate assumptions, a variety of solitary waves,
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including the periodic ones.
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