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FREQUENCY EQUATIONS OF SMALL OSCILLATIONS MIXED SYSTEMS
OF THE COUPLED DISCRETE AND CONTINUOUS SUBSYSTEMS

In this paper, by using examples of mixed systems of the coupled discrete subsystem of rigid bodies and
continuous subsystem, the method of obtaining of small oscillations frequency equations are presented.
Small oscillations frequency equations of coupled deformable body and holonomic conservative systems are
obtained. By using numerical experiment connections between own small oscillations circular frequencies of
the mixed system and subsystem of the rigid bodies and deformable body are studied and analyzed. By
using MathCAD program graphical presentations of a set of small oscillations circular frequencies of the
deformable body with "perturbations"caused on interaction of subsystem small oscillations of rigid bodies.
By using examples, analogy between frequency equations of some classes of these systems is identified. Special
cases of discretization and continualization of coupled subsystems with corresponding sets of proper circular
frequencies and frequency equations of small oscillations are analyzed.

Introduction. In many classical textbooks on Theory of Oscillations [1| we can find
many examples of classical tasks of frequency equations of discrete or continuous system
oscillations, which are excited with initial perturbations of natural equilibrium state. In the
long time period, as a professor of Elastodynamics and Theory of Oscillations at Faculty of
Mechanical Engineering, I wrote many original examine tasks and corresponding solutions
of these tasks. In the teaching process I must show to students rational explanations of
some solutions, and properties of oscillatory processes of system dynamics. By introducing
some of mine assistants to the teaching process I discuss possibilities for different solutions
of equations of oscillatory systems dynamics and small transformations of the examined
tasks definitions to compose new tasks but with same solution philosophy. Today, by using
computer tools as MathCad, Mathematica, MathLab, a new powerful possibilities for visuali-
zations of oscillatory processes in dynamical systems applied in engineering practice are
very useful for university teaching of oscillations theory as an accompanying tools to the
analytical method and pure mathematical explanations. By using these WEB and MathCad
informational tools some presentations of examine tasks of Elastodynamics and Theory
of Oscillations in the teaching process and study at Faculty of Mechanical Engineering is
presented at www. masfak.ni.ac.yu/Elastodynamika [2]. Some of these original tasks with
solutions were published in the three books [3-5].

Current research in theory of discrete dynamical system oscillations is directed to nonli-
near phenomena [6], as well as to nonstationary processes, and also to stochasticlake and
chaoticlake processes in purely deterministic dynamical systems and conditions. Nonlinear
phenomena in oscillation theory of continuous systems, damage and fracture structure of
dynamical systems are topics of premier journals and international scientific conferences
(Issues of Journals: Applied Mechanics Reviews; Refferativniy Zhurnal Mechanika Moscow;
Proceedings of conferences: ENOC (Copenhagen 1999, Moscow 2002); ICNM Shanghai 1998,
2002; Control Oscillations and Chaos COC 2000 Saint-Petersburg); [IUTAM Symposium,
Roma 2003. Pure elastic systems are now not in focus of researchers |7].

New materials such as new construction materials of structure in engineering systems are
inspirations of many researchers for new constitutive relations for discoveries in mathematical
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Frequency equations of small oscillations

sense and for investigations of dynamics of these constructions. In some author’s papers
dynamics of discrete systems of material particles which are constrained by standard heredi-
tary, rheological, or creep light elements [8-12| are investigated. These papers inspired by
papers of Goroshko O.A. and all [13].

In the monograph [14] of Goroshko O.A. and Hedrih (Stevanovi¢) K. analytical dynamics
of discrete hereditary systems and corresponding solutions are first presented as an integral
theory of these kind systems.

A new material used in structure of active systems is piezoceramics. In the papers [15]
and [16] piezoceramics behaviour in the vibrations regimes is presented as a results of the
analytical, numerical and experimental investigations of the vibrations frequency spectra.
These results are important for investigations of active structure oscillations and control of
oscillations.

In papers [17] and [18] longitudinal hereditary vibrations and creep vibrations of a
fractional derivative rheological rod with variable cross section are examined. Partial differen-
tial equation and particular solutions for the case of natural creep longitudinal vibrations of
the rod of creep material with a fractional derivative order is accomplished. For the case of
natural creep vibrations eigenfunction and time-function for different examples of boundary
conditions are determined. Different boundary conditions are analysed and series of eigenva-
lues and natural circular frequencies of longitudinal creep vibrations as well as tables of
these values are completed. By using MathCad a graphical presentation of the time-function
is present.

In the papers [19-21] and [22], the problem on transversal oscillations of bar which is
free or under the action of the length-wise random forces is considered.

In the paper [22], the problem on transversal oscillations of two layer straight bar, which
is under the action of the length-wise random forces is considered. The excitation processes
is a bounded noise excitation. It is assumed, that the layers of the bar were made of creep
continuously non homogenous material and the corresponding modulus of elasticity and
creep fractional derivative order constitutive relation of each layer are continuous function of
length coordinate and thickness coordinates. The equation of the transversal creep vibrations
of a fractional derivative order constitutive relation beam are examined. Partial fractional-
differential equation and particular solutions for the case of natural creep vibrations of the
beam of creep material of a fractional derivative order constitutive relation in the case of the
influence of rotation inertia is derived. For the case of natural creep vibrations, eigenfunction
and time-function, for different examples of boundary conditions are determined.

The paper [23| presents the discrete continuum method on examples of homogenous
discrete systems with limited number of degrees of motion freedom dynamics. These systems
are in the form of homogenous chains and nets in space and plain. Material points of these
nets and chains are tied by elastic, standard hereditary or creep elements. By introducing
the trigonometric method for studying properties and equations of dynamics of discrete
homogenous continuums author sets up the discrete continuum method for the study of
dynamics of chain systems with hereditary or creeping connections. These systems dynamics
is described by a system of integro-differential equations or differential equations with fracti-
onal derivatives. A light standard creep element is defined by a constitutive relation of
stress-strain state, for the creation of which fractional order derivatives were used.

In this paper we use keywords: Discrete continuum, discrete hereditary system, discrete
homogenous chain, discrete homogenous material net, elastic element, standard hereditary
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light element, standard creep light element, integro-differential relation, fractional derivatives
order, Jules-Lissajous figure, trigonometric method, small vibrations. We can see interaction
between notions of words discrete continuum and continuous of disrete systems. It was
inspiration for me to turn my attention to the mixed systems of the coupled discrete
subsystem of rigid bodies and continuous subsystem and to compose characteristic — frequency
equations of the small oscillations of these systems.

Papers [24] and [25] are also directed to examinations of the classical knowledge on
continuous and discrete systems to make some new conclusions. Visualization of oscillatory
processes and new presentation of their properties in classical oscillatory models of real
systems are given in [26, 27].

This work is one new addition to the knowledge of the mixed systems of the coupled
discrete subsystem of rigid bodies and continuous subsystem to compose characteristic —
frequency equations of the small oscillations.

We can conclude that new computer tools with power possibilities directed philosophy
of considerations of real systems dynamics by using discretization of continuum as the way
and method for solutions of problems, and by using many iterations continualizations of
solutions. Discretizations and continualizations in the process of solutions and analysis of
dynamical processes are opposite directions and good method for proving calculations and
conclusions.

In accordance with close specializations of researchers we can find a few examples of
mixed systems which consists from coupled discrete and continuous systems. And not very
often there are some analytical results. In the epoque of the large numerical experiments over
the dynamical systems I think that is very important to make some new classical examples
of frequency equations useful for teaching process in Theory of Vibrations.

1. Model of Mixed Systems of Coupled Discrete Subsystem of Rigid Bodies
and Continuous Subsystem. We consider two subsystems: one elastic and two rigid rods.
The elastic rod has the straight axis and represents a continuous system — solid deformable
body with the following parameters: F,p, ¢, A. Two rigid rods have weights at free ends
with masses m, and mg (see Fig. 1). This system is constrained by spring with rigidity co
and coupled with discrete systems with n degree of freedom. For example, such discrete
subsystem is chain system of the n material particles with masses m;, ¢ = 1,2,3,...,n,
translator movable along line parallel to the rod axis ; these masses are connected by springs
with rigidities ¢;, ¢ = 1,2, 3, ...,n. We consider connections between longitudinal vibrations of
the elastic rod and free oscillations of the chain material particles system. Let us to determine
frequency equations of the defined mixed system of the coupled discrete subsystem of rigid
bodies and continuous subsystem.

1.1. Differential Equation of the Longitudinal Oscillations of the Elastic Rod
and Boundary Conditions. In accordance with notations (see Fig. 1), we can see that
u(z,t) longitudinal displacement of the rod cross section at the distance x measured from
left rod end in the axis direction at the time ¢ Partial differential equation of the longitudinal
oscillations is

Pu(x,t)  ,0%u(z,t)

“r — G gm (1)

where ¢ = —.
p

176



Frequency equations of small oscillations

Solution of equation (1) is in the following form:
u(z,t) = X(x)T(), (2)
where are
X(z) = C cos A\x + Cysin Az, T(t) = Acoswt + B sinwt.

By using boundary conditions of the subsystem of the longitudinal rod oscillations [1] as
well as compatibility conditions of the displacements and forces as ineractions of the coupled
subsystems we can write:

e, = A5
[mp%} = [_EA%] L HE, u(l,t) = zo(t).

Let us to introduce the following notations:

_me _ Mo _ 2 pE_€E_ 5o :_ B
dX(r)  dX(€)  €dX(€) EA ¢ mgw?
=\ = ) Ce = ) K= Uo = .
dx d& ¢ dg l Ce Co

By introducing the proposed solutions (2) into boundary conditions and conditions of
the compatibility displacement and forces we can write

pp€"X(0) +€X'(0) = 0, (Ho€? — k)X (&) — EX'(&) + KA = 0.

By using the relation: X(&) = C4 cos§ 4+ Cysiné and its derivative with respect to the
argument & : X'(£) = —Cysin{ + Cs cos &, from previous equations we can obtain

ppECy +£Cy = 0,

Ci[(o€? — k) cos € + Esin €] + Cof(uo€? — k) siné — Ecos €] = —kA;.

Determinant of this previous systems of algebraic equations with respect to the C,Cs
is

_ 1p&? § _
B = (1082 — ) cos +€sing] [(og? — w)sin€ — €cosel|
= {up[(0€? — k) sin € — Ecos€] — [(o&” — k) cos € + Esin €]} (3)
and these coefficients we can express by following expressions:
cn kA€
F{urgl(o8? — k) sin€ — EcosE] — [(1o€? — k) cosé + Esing]}
Oy = kpupE’ A

" upel(Ho€? — m)sin€ — EcosE] — [(uo? — n) cosE + Esnél}
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1.2. Differential Equations of the Material Particles Discrete System with
Boundary Condition. Now, we consider subsystem of discrete material particles with
n degree of freedom and we choose n generalized coordinates z;, ¢« = 1,2,3,...,n, and
corresponding matrix A of inertia coefficients and matrix C quazielastic coefficients

A = (ay), 4,j=1,2,3,...,n; C=(cj), 1,7=1,2,3,...,n.
System of the differential equations of the discrete subsystem with boundary condition
is
A{ZE} + C{ZE} == —Co({L‘l - l’o)Io{]}, (4)
where
( 1 \ 1 ( 1 A
To 0 0
3 0 0
=9 Tt L= ; . m=y e
Tp—1 0 0
Tn 0 0
\ J J

Solution of the previous system (5) is assumed in the following form:

( )
Ay

{z} = . T ={A}T@), {i} = —w{A}T(t) = —Cw{A}T(1).

1.3. Frequency Equation of the Coupled Longitudinal Oscillations of the
Elastic Rod and Discrete System of the Material Particles. Taking into consideration
the relation

A
u(l,t) = zo(t) = X(£)T(t) = (Cycos€ + Cysiné)T(t) = Z(S(cosf — ppEsin&)T(t)
. . 1 — 1 — . . . . .
and desighations —C = C, —A = A from the system of differential equations in matrix
Co mo

form (4) we can obtain following matrix equation:

— _ K .
(C — EupA + |1 - A(é%) (cos€ — ,upfsmﬁ)] IO> {A} = {0}.
The previous matrix equations are algebraic homogeneous equations and for its nontrivial
solutions it is necessary that determinant of this system is equal to zero. From this condition

we can obtain the following characteristic frequency transcendent equation:

C — EugA + [1 - Aﬁé) (cos& — up€ sin{)}IO‘ =0. (6)
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This is main result of this consideration of the mized system of coupled subsystems with
free oscillations. We can see that this equation consists of two parts: one part is expression of
the frequency equations of the discrete system oscillations, and second part of the deformable
body frequency equation is connected by one member with previous.

1.4. Special Cases of the Frequency Equation of the Coupled Longitudinal
Oscillations of the Elastic Rod and Discrete System of the Material Particles.
The frequency equation (6) can be presented in the following form

ki1 — uopan + [1—

— 255 (cos € — ppg sin)|
ko — 52U0M21
k31 — 52U0M31

k1o — £2U0M12 ki — 527«00#13 kin — §2U0M1n
Fkon — §2U0M2n

kSn - §2u0,u3n

kos — §2U0H23
kss — E2uofizs

L §2U0/~L22
k3o — E2uppize

k1 — §2U0Mn1

an - £2UON2n k3n - £2u0,u3n knn - £2u0//mn1

For the case of the coupled elastic rod longitudinal oscillations and chain discrete
material particles system oscillations previous frequency equations take the following form

ki — Euop + [1—

—ky

35 (cos€ — ppgsin)|

—ky

ky + ko — 52100#2
—ky

—ky
ko + ks — E2uops

_knfl
kn—l + kn - gzuONn

For the case that elastic rod is connected with one material particle with two springs
we obtain

Aﬁé) (cos§ — pupEsing)| =0

and taking into account expression (3) we can write the following :

ky — Euopm + [1 -

(k1 + 1 — Euopr ) {ppé[(10€? — k) sin§ — € cos €] —

—[(10€® — k) cos € + Esiné]} — wE(cos € — ppésing) = 0.

For the case that one end of the rod is fixed — case of the cantilever rod, in the previous
frequency equation we can introduce pup — oo, and than we obtain

E(ky + 1 — Euop)
{&2[po (k1 + 1) + Kuopn — po&uopia] — kir}

tgl =
For the case of free material particle and connected by one spring we can write:

1- 52@60#1

{tgé = :
(po + Kuopr — po&>uoper)
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For two material particles connected to a rod as a chain, we obtain:

: (cos§ — pupEsin 5)] }(k:1 + kg — Eugpz) — k7 = 0

{kl — Euopr + |1 - Aﬁ(ﬁ)

where A(§) from (3).
For three material particles the chain frequency equation is

— uppn+ .
—i—[ A(g) (cosf wpé smf)} ! _o.
—k1 ki + ko — Euops —ks
—ks ko + ks — Euops

For the case of discrete material particles homogeneous chain, frequency equation takes
the following form:

1 — Eqy+
. . 1
i 1—F§)(cos§—,up£sm§)}
1 92— 4y -1
-1 2= ... =0.
— &%y -1
12— &4

For special case of three material particles homogeneous chain, frequency equation is

K&
A(E)

2. Analogy between the Frequency Equation of the Coupled Longitudinal
Oscillations of the Elastic Rod and Discrete System of the Material Particles
and Coupled Torsion Oscillations of the Elastic Rod and Corresponding Discrete
System of the Material Particles. By using analogy [28, 29] between two systems, and
especially between longitudinal and torsional oscillations of elastic rod with circle cross
section we can use previous analytical results for determining frequency equation of coupled
small oscillations of mixed systems presented in Fig. 2 and 3.

In general case the mixed system consists of two subsystems: one elastic rod-shaft,
whose axis is straight with parameters: G, p, ¢, A, Iy, and with two rigid discs at the free
ends with mass inertia moments with respect to the shaft axis: Jp and Jg. This rod-shaft
is constrained by torsion spring with rigidity ¢y and coupled with discrete systems with n
degrees of freedom. For example, this discrete subsystem is mechanism in the form of chain
system of n material particles (or rigid bodies) with generalized masses m;, i = 1,2,3,...,n
torsion (rotation) movable along circle line coaxial to the rod-shaft’s axis; these masses are
connected by torsion springs with rigidities ¢;, ¢+ = 1,2,3,...,n. We consider connections
between torsional vibrations of elastic rod-shaft and free oscillations of generalized chain
of material particles of system-mechanism (examples in Fig. 2 and 3). Let us to determine
frequency equations of the defined mixed system of the coupled discrete subsystem of rigid
bodies and continuous subsystem.

[(2 — &%a) —1{1—52U0+ 1-

(cos& — upfsinf)]} —(2— &%) =0
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By using analogy 0(z,t) = u(z,t), Jp = mp, Jo = my, xr; = 0;, and taking into
account that
Jp Jo G &G

up p10£’ Ho p10€7 g ) w P /2 D § Wo,

_ _ _ _ 2
= ﬁ7 G = GIO/& k= Co/Ct, Uy = JOW()/COa

we can write the following frequency equation of the considered mixed system with torsional
oscilations of the shaft and coupled mechanisms (Fig. 2):

 (cos€ — pp€sing)| L[ =0

in same form as expression (6).

For the special case of the mixed system presented in Fig. 3 with cantilever shaft, and
corresponding mechanisms in accordance with presentation in Fig. 3,0*, or 3,c¢* or 3,d* we
can write the following frequency equation:

9€2 — k2

pétgé = 5667 — 02 (7)

When ¢ is small we can take that is tg€ ~ £ and for approximation of previous frequency
equation we can write

2

1,k
pE (5662 — 9k?) — 9% + k? ~ 0 = 56€* — 9¢2(k? + ;) Ho =0

and minimal value of the eigenvalues of small oscillations of the mixed system is

s , L k?
9(k*+ 1) F4/81(k +;) _224?

2
§ip = G

3. Numerical Experiment and Visualization of the Frequency Equation of
the Coupled Torsional Oscillations of the Elastic Rod-shaft and Discrete System
of the Mechanisms. For numerical experiment we take into account the special case of
the mixed system presented in Fig. 3 with cantilever shaft and corresponding mechanisms in
accordance with presentation in Fig. 3,b*, or 3,¢* or 3,d*. For that case frequency equation
is in the form (7). By changing parameters k£ and p of mixed system the Fig. 4 — 11 are

922 — k?
composed for the frequency functions f1(z) = —uxrtgr + h and corresponding parts
:C —_
922 — k2
to the influence of discrete f3(x) = h or continuous f2(x) = —uxrtger subsystem.
:L' —

4. Concluding Remarks. From the obtained analytical and numerical results for
natural longitudinal vibrations of the elastic rod coupled with material particle discrete system,
it can be seen that connections are convenient for changing characteristic function depending
on discrete system material parameters, and that fundamental eigen function depending on
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space coordinate is dependent on boundary conditions and geometrical properties of coupled
discrete system.

In this paper we returned to classical problems of the theory of oscillations, coupled elastic
bodies and systems of discrete material points on selected examples and at the same time
we determined the corresponding frequency equations. Results of numerical experiment are
shown on frequency function graphs that consist out of members expressing the influence of
discrete systems on frequency equations over potential functions and members expressing the
influence of deformable bodies and which contain transcedent functions withing themselves.
We can see from the graphs the visualizations of perturbations of frequency spectre of own
circular frequencies, deformable bodies oscillations or wvice versa. Similar disturbances can
be seen on the frequency spectre of a discrete system but with opposite effects. We can
see "the continualization of frequency spectres of discrete system”"on the graph of frequency
functions. At the same time we can interpret these results as discretization of the part of
frequency spectre of continual system as a result of coupling with a discrete system. It should
also be stated here the analogy used between these mized systems with coupled subsystems,
continuous and discrete when it is possible to establish a direct analogy between longitudinal
and torsional oscillations of deformable body with annular cross-sections. That enabled an
analythical analysis to be conducted for one type of system and results to be used on another
type. And at the end, it should be stressed again that the goal of this paper was the solution
of a classical but very concurrent task since the literature contains a very small number of
examples of such a task. Methodology of continuum discretization and of continualization of
discrete system which meet at border cases of study of properties of real systems.
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Technologies and Development of Republic Serbia trough Mathematical Institute SANU
Belgrade Grants N 1616 Real Problems on Mechanics and Faculty of Mechanical Engineering
University of Nis Grant N 1828 Dynamics and Control of Active Structures.
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Appendix A. Figures
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Fig.1. Small oscillations of the mixed system of coupled discrete and continuous subsystems Longitudinal
oscillations of the beam with multibody chain with changeable numbers of material particles.
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Fig.2. Small oscillations of the mixed system of the coupled discrete and continuous subsystems. Torsion
oscillations of the cantilever shaft with multibody mechanisms with two chain of the changeable numbers of
discs.
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Fig.3. Small oscillations of the mixed system of the coupled discrete and continuous subsystems. Torsion
oscillations of the cantilever shaft with multi body mechanisms with changeable numbers of discs.
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Fig. 4. Numerical simulations and graphical presentations. The figure shows frequency functions and
frequency function members that introduce discretization in continual system of transcedent frequency

function for parameters: k =1, u = 0.5.
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Fig.5. Numerical simulations and graphical presentations. The figure shows frequency functions and
frequency function members that introduce discretization in continual system of transcedent frequency

function for parameters: k = 50, u = 10.
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Fig.6. Numerical simulations and graphical presentations. The figure shows frequency functions and

frequency function members that introduce discretization in continual system of transcedent frequency

function for parameters: k = 0.5, u = 10.
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Fig.8. Numerical simulations and graphical presentations. The figure shows frequency functions and
frequency function members that introduce discretization in continual system of transcedent frequency
function for parameters: k = 20, u = 0.5.
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Fig.9. Numerical simulations and graphical presentations. The figure shows frequency functions and
frequency function members that introduce discretization in continual system of transcedent frequency
function for parameters: k = 100, u = 0.5.
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Fig.10. Numerical simulations and graphical presentations. The figure shows frequency functions and
frequency function members that introduce discretization in continual system of transcedent frequency
function for parameters: k = 0.5, n = 1/3.
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Fig.11. Numerical simulations and graphical presentations. The figure shows frequency functions and
frequency function members that introduce discretization in continual system of transcedent frequency
function for parameters: k = 50, u = 0.5.
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