УДК 531.38

©2002. И.Н. Гашененко

ОГИБАЮЩИЕ ПОВЕРХНОСТИ В ЗАДАЧЕ О ДВИЖЕНИИ ТЯЖЕЛОГО ГИРОСТАТА

В задаче о движении тяжелого гиростата вокруг неподвижной точки изучаются трехмерные алгебраические поверхности интегральных уровней и их топологические бифуркации. В фазовом пространстве построена двумерная поверхность сечения Пуанкаре и классифицированы возможные типы этих поверхностей, зависящие от значений констант первых интегралов.

Введение. Движение тяжелого гиростата вокруг неподвижной точки описывается дифференциальными уравнениями [1]

$$A\dot{\boldsymbol{\omega}} = (A\boldsymbol{\omega} + \boldsymbol{\lambda}) \times \boldsymbol{\omega} + \mathbf{r} \times \boldsymbol{\nu}, \quad \dot{\boldsymbol{\nu}} = \boldsymbol{\nu} \times \boldsymbol{\omega}, \tag{1}$$

где $A = \text{diag}(A_1, A_2, A_3)$ – тензор инерции, ω – угловая скорость тела-носителя в подвижном базисе, ν – единичный вектор вертикали, λ – постоянный гиростатический момент и **r** – вектор, направленный из неподвижной точки к центру масс механической системы. С помощью первых интегралов

$$H = \frac{1}{2}A\boldsymbol{\omega}\cdot\boldsymbol{\omega} - \mathbf{r}\cdot\boldsymbol{\nu} = h, \quad G = (A\boldsymbol{\omega} + \boldsymbol{\lambda})\cdot\boldsymbol{\nu} = g, \quad I = \boldsymbol{\nu}\cdot\boldsymbol{\nu} = 1$$
(2)

выделим в фазовом пространстве $\mathbb{R}^3(\boldsymbol{\omega}) \times \mathbb{R}^3(\boldsymbol{\nu})$ трехмерное компактное подмножество

$$\mathcal{Q}_{h,g}^3 = \{H = h, G = g, I = 1\} \subset \mathbb{R}^6(\boldsymbol{\omega}, \boldsymbol{\nu}),$$

инвариантное относительно фазового потока системы (1). Инвариантные многообразия $Q_{h,g}^3$ зависят от констант g, h и набора конструктивных параметров A_i, r_i, λ_i и, как правило, являются гладкими многообразиями.

Топология многообразий $Q_{h,g}^3$ и их перестройки при изменении значения энергии h полностью определяются функцией Морса [2, 3]

$$U_g(\boldsymbol{\nu}) = \frac{(g - \boldsymbol{\lambda} \cdot \boldsymbol{\nu})^2}{2A\boldsymbol{\nu} \cdot \boldsymbol{\nu}} - \mathbf{r} \cdot \boldsymbol{\nu},$$

называемой приведенным (эффективным) потенциалом.

Предложение. Если значение h приведенного потенциала $U_g(\boldsymbol{\nu})$ не является критическим, то $\mathcal{Q}^3_{h,g}$ является гладким трехмерным ориентируемым многообразием.

Пусть $\pi : (\boldsymbol{\omega}, \boldsymbol{\nu}) \mapsto \boldsymbol{\nu}$ есть проекция пространства $\mathbb{R}^3(\boldsymbol{\omega}) \times \mathbb{R}^3(\boldsymbol{\nu})$ на второй сомножитель. Областью возможности движения называют область

$$\mathcal{U}_{h,g} = \{U_g(\boldsymbol{\nu}) \leq h\} \subset S^2,$$

которая является проекцией $\pi(\mathcal{Q}_{h,g}^3)$ многообразия $\mathcal{Q}_{h,g}^3$ на сферу $S^2 = \{|\boldsymbol{\nu}| = 1\}$ (сферу Пуассона). Слой над произвольной точкой $(\nu_1, \nu_2, \nu_3) \in S^2$ устроен просто: он гомеоморфен

либо окружности, либо точке, либо пуст. Существует взаимно-однозначное соответствие между топологическими структурами множеств $Q_{h,g}^3$ и $U_{h,g}$, которое помогает находить топологический тип $Q_{h,g}^3$ при любых значениях параметров. Основанная на идеях Смейла схема топологической классификации изоэнергетических поверхностей $Q_{h,g}^3$ успешно применялась в задачах динамики твердого тела [3–6], но из-за большого числа свободных параметров, входящих в уравнение (1), полное исследование не было проведено даже для случая $\lambda = 0$.

Траектории динамической системы (1) проще изучать не во всем фазовом пространстве, а на фиксированных изоэнергетических поверхностях, которые имеют малую размерность и простую топологию. Важность топологического анализа $Q_{h,g}^3$ обусловлена еще и тем, что критические точки отображения

$$\mathcal{F} = H \times G : \mathbb{R}^3(\boldsymbol{\omega}) \times S^2(\boldsymbol{\nu}) \to \mathbb{R}^2(h,g)$$

являются относительными равновесиями исходной системы. Топологическая структура особых инвариантных многообразий $Q_{h,g}^3$ позволяет анализировать устойчивость равномерных вращений твердого тела вокруг вертикали и, наоборот, с помощью относительных равновесий удобно исследовать перестройки топологии $Q_{h,g}^3$. Более важной задачей динамики гиростата является качественное описание траекторной структуры многообразия $Q_{h,g}^3$. В некоторых специальных (интегрируемых) случаях изучение образов фазовых кривых на сфере Пуассона полезно для описания слоения Лиувилля [3] на $Q_{h,g}^3$. Для интегрируемых систем общий метод классификации проекций инвариантных торов на S^2 разработан в [2]. В неинтегрируемых случаях траектории хаотично заполняют область $U_{h,g}$ и только часть траекторий может касаться ее границы

$$\partial \mathcal{U}_{h,g} = \{ U_g(\boldsymbol{\nu}) = h \} \subset S^2.$$

В каждой внутренней точке области $\mathcal{U}_{h,g}$ пересекается однопараметрическое семейство траекторий, прообразы которых принадлежат фиксированной изоэнергетической поверхности $\mathcal{Q}_{h,g}^3$. Конечно, с помощью проекций инвариантных многообразий на трехмерные подпространства фазового пространства $\mathbb{R}^3(\boldsymbol{\omega}) \times \mathbb{R}^3(\boldsymbol{\nu})$ можно получить более полную информацию о фазовых траекториях.

В данной работе разработан метод топологической классификации проекций инвариантных многообразий на подвижное пространство угловых скоростей, изучены двумерные *огибающие поверхности*, которые ограничивают образы многообразий $Q_{h,g}^3$ в пространстве $\mathbb{R}^3(\omega)$. В рамках общей проблемы топологического анализа механических систем с симметрией предложен новый подход, позволяющий эффективно анализировать траекторную структуру многообразий $Q_{h,g}^3$ без введения каких-либо существенных параметрических ограничений.

1. Фазовые сечения $\mathcal{P}^2_{h,g}$ и их бифуркации. С помощью векторного равенства

$$F \equiv ((A\boldsymbol{\omega} + \boldsymbol{\lambda}) \times \boldsymbol{\nu}) \cdot \mathbf{r} = 0 \tag{3}$$

введем в фазовом пространстве вспомогательную двумерную поверхность

$$\mathcal{P}^2_{h,g} = \{H = h, \ G = g, \ I = 1, \ F = 0\} \subset \mathcal{Q}^3_{h,g} \subset \mathbb{R}^6(\boldsymbol{\omega}, \boldsymbol{\nu}).$$

Бифуркационные диаграммы отображения

$$\mathcal{F}_1 = H \times G : M^4 \to \mathbb{R}^2(h, g),$$

где M^4 есть совместная поверхность уровня $\{I = 1, F = 0\} \subset \mathbb{R}^6(\boldsymbol{\omega}, \boldsymbol{\nu})$, позволяют полностью классифицировать возможные топологические типы $\mathcal{P}^2_{h,g}$.

Критические точки отображения \mathcal{F}_1 найдем из условия rank $d\mathcal{F}_1 < 2$ или из эквивалентного условия

$$\mu_1 \frac{\partial H}{\partial(\boldsymbol{\omega}, \boldsymbol{\nu})} + \mu_2 \frac{\partial G}{\partial(\boldsymbol{\omega}, \boldsymbol{\nu})} + \mu_3 \frac{\partial F}{\partial(\boldsymbol{\omega}, \boldsymbol{\nu})} + \mu_4 \frac{\partial I}{\partial(\boldsymbol{\omega}, \boldsymbol{\nu})} = 0, \qquad (4)$$

где μ_i – действительные коэффициенты. Дифференцированием (2), (3) запишем (4) в виде системы двух векторных уравнений

$$\begin{cases} \mu_1 \boldsymbol{\omega} + \mu_2 \boldsymbol{\nu} + \mu_3 \boldsymbol{\nu} \times \mathbf{r} = 0, \\ \mu_2 (A \boldsymbol{\omega} + \boldsymbol{\lambda}) + \mu_3 \mathbf{r} \times (A \boldsymbol{\omega} + \boldsymbol{\lambda}) + 2\mu_4 \boldsymbol{\nu} - \mu_1 \mathbf{r} = 0. \end{cases}$$
(5)

Найдем физически допустимые решения системы алгебраических уравнений (2),(3),(5) относительно переменных ω , ν , все они будут являться критическими точками отображения \mathcal{F}_1 . Подстановкой критических точек в интегралы (2) получим зависящие от параметров семейства разделяющих кривых $\Sigma \cup \Sigma' \cup \Sigma'' \subset \mathbb{R}^2(h, g)$.

Итак, обозначим через Σ бифуркационное множество отображения $\mathcal{F} = H \times G$. Параметрические уравнения кривых из множества Σ известны (см. формулы (4), (5) в работе [7]). Уравнения новых бифуркационных кривых имеют следующий вид:

$$\Sigma': \quad h = \frac{g^2}{2|\mathbf{r}|^2} A^{-1} \mathbf{r} \cdot \mathbf{r} \mp |\mathbf{r}| \mp \frac{g}{|\mathbf{r}|} A^{-1} \mathbf{r} \cdot \boldsymbol{\lambda} + \frac{1}{2} A^{-1} \boldsymbol{\lambda} \cdot \boldsymbol{\lambda};$$

$$\Sigma'': \quad h = \frac{1}{2} A^{-1} (\gamma \mathbf{r} - \boldsymbol{\lambda}) \cdot (3\gamma \mathbf{r} - \boldsymbol{\lambda}), \quad g = -\gamma^2 A^{-1} (\gamma \mathbf{r} - \boldsymbol{\lambda}) \cdot \mathbf{r};$$

$$\gamma \in \Gamma, \quad \Gamma = \{ s_1(\gamma) \le 0, \quad s_2(\gamma) \ge 0 \} \subset \mathbb{R},$$
(6)

где

$$s_1(\gamma) = \gamma^2 [A^{-1}\mathbf{r} \cdot (\gamma \mathbf{r} - \boldsymbol{\lambda})]^2 - |\mathbf{r}|^2, \quad s_2(\gamma) = \gamma^2 [\gamma^2 |A^{-1}\mathbf{r}|^2 - 2\gamma (A^{-1}\mathbf{r} \cdot A^{-1}\boldsymbol{\lambda}) + |A^{-1}\boldsymbol{\lambda}|^2] - 1.$$

Теперь приведем необходимые доказательства и укажем основные качественные свойства кривых (6).

Теорема 1. Критическими точками отображения \mathcal{F}_1 являются:

1.
$$\boldsymbol{\omega} = \gamma \boldsymbol{\nu}, \ \gamma \in \mathbb{R} \ (\mu_4 \neq 0);$$

2. $A\boldsymbol{\omega} + \boldsymbol{\lambda} = \pm g\mathbf{r}/|\mathbf{r}|, \ \boldsymbol{\nu} = \pm \mathbf{r}/|\mathbf{r}| \ (\mu_1 = \mu_2 = \mu_4 = 0, \ \mu_3 \neq 0);$
3. $A\boldsymbol{\omega} + \boldsymbol{\lambda} = \gamma \mathbf{r}, \ \gamma \in \Gamma \ (\mu_4 = 0, \ \mu_1 \mu_2 \mu_3 \neq 0),$

$$\gamma A^{-1}(\gamma \mathbf{r} - \boldsymbol{\lambda}) \cdot \boldsymbol{\nu} + 1 = 0, \quad \gamma A^{-1}(\gamma \mathbf{r} - \boldsymbol{\lambda}) \cdot \mathbf{r} + \mathbf{r} \cdot \boldsymbol{\nu} = 0.$$

Соответствующие этим точкам критические значения отображения \mathcal{F}_1 принадлежат бифуркационному множеству $\Sigma \cup \Sigma' \cup \Sigma'' \subset \mathbb{R}^2(h, g)$.

Доказательство.

1. Пусть $\mu_4 \neq 0$. Из (5) и F = 0 получим $\mu_3 = 0$. Следовательно, рассматриваемое семейство критических точек приводит к равенствам $\dot{\omega} = \dot{\nu} = 0$ и соответствует зависимым

уровням первых интегралов (2). Бифуркационное множество Σ интегрального отображения $\mathcal{F} = H \times G$ является частью множества критических значений отображения \mathcal{F}_1 . Это означает, что критические точки отображения $\mathcal{F} = H \times G$ всегда расположены на поверхностях $\mathcal{P}_{h,g}^2$, отвечающих данным критическим значениям h, g. Изменение топологии многообразия $\mathcal{Q}_{h,g}^3$ всегда приводит к перестройкам структуры $\mathcal{P}_{h,g}^2$.

2. Пусть $\mu_1 = \mu_2 = \mu_4 = 0$, $\mu_3 \neq 0$. Из уравнений (5) получим следующие равенства $\mathbf{r} \times (A\boldsymbol{\omega} + \boldsymbol{\lambda}) = \boldsymbol{\nu} \times \mathbf{r} = 0$, то есть векторы $\mathbf{r}, (A\boldsymbol{\omega} + \boldsymbol{\lambda})$ и $\boldsymbol{\nu}$ становятся коллинеарными в некоторый фиксированный момент времени. Из первых интегралов I, G находим $\boldsymbol{\nu} = \pm \mathbf{r}/|\mathbf{r}|, A\boldsymbol{\omega} + \boldsymbol{\lambda} = \pm g\mathbf{r}/|\mathbf{r}|$. Подстановка этих выражений в интеграл H приводит к уравнениям кривых $\Sigma' \subset \mathbb{R}^2(h, g)$. В частном случае, когда центр масс гиростата расположен на главной оси инерции, Σ' является подмножеством Σ .

3. Пусть $\mu_4 = 0$, $\mu_1 \mu_2 \mu_3 \neq 0$. Это семейство критических точек определено функциями H, G, F и не зависит от интеграла I. Из второго уравнения (5) следует коллинеарность векторов **r** и $A\omega + \lambda$. Обозначим $\gamma = \mu_1/\mu_2$, тогда скалярное умножение на **r** и ν первого уравнения системы (5) приводит к уравнениям

$$\gamma A^{-1}(\gamma \mathbf{r} - \boldsymbol{\lambda}) \cdot \boldsymbol{\nu} + 1 = 0, \ \gamma A^{-1}(\gamma \mathbf{r} - \boldsymbol{\lambda}) \cdot \mathbf{r} + \mathbf{r} \cdot \boldsymbol{\nu} = 0.$$
(7)

Множитель γ определяется параметрами гиростата и критическими значениями первых интегралов, а непустое пересечение плоскостей (7) со сферой Пуассона соответствует двум критическим точкам для каждого критического значения.

Уравнения Σ' описывают две параболы на плоскости $\mathbb{R}^2(h, g)$. Они пересекаются, если $A^{-1}\mathbf{r} \cdot \boldsymbol{\lambda} \neq 0$. Вершины парабол расположены в точках с координатами

$$(h,g) = (\mp |\mathbf{r}| - \frac{1}{2} (A^{-1}\mathbf{r} \cdot \boldsymbol{\lambda})^2 (A^{-1}\mathbf{r} \cdot \mathbf{r})^{-1} + \frac{1}{2} A^{-1} \boldsymbol{\lambda} \cdot \boldsymbol{\lambda}, \quad \pm (A^{-1}\mathbf{r} \cdot \boldsymbol{\lambda}) |\mathbf{r}| (A^{-1}\mathbf{r} \cdot \mathbf{r})^{-1}).$$

Уравнениям Σ'' соответствует плоская алгебраическая кривая 3-го порядка (полукубическая парабола), имеющая одну особую точку (точку возврата). Из условий $dh/d\gamma = dg/d\gamma = 0$ найдем значение параметра $\gamma_0 = \frac{2}{3}(A^{-1}\mathbf{r}\cdot \boldsymbol{\lambda})(A^{-1}\mathbf{r}\cdot\mathbf{r})^{-1}$, которое соответствует точке возврата. В случае $|\mathbf{r}| \neq 0$ полиномы $s_1(\gamma), s_2(\gamma)$ имеют действительные корни. Из тождества $s_2(\gamma)|\mathbf{r}|^2 - s_1(\gamma) = \gamma^2|A^{-1}(\gamma\mathbf{r}-\lambda)\times\mathbf{r}|^2$ следует неравенство $s_2(\gamma)|\mathbf{r}|^2 \geq s_1(\gamma)$, которое выполняется для любого фиксированного значения γ . Корни полинома $s_2(\gamma)$ расположены между корнями полинома $s_1(\gamma)$, то есть для любых допустимых значений параметров гиростата множество Γ не пусто. Кроме того, можно подобрать параметры таким образом, что множество Γ будет состоять из двух, трех или четырех сегментов действительной оси. Если $s_1(\gamma_*) = 0$, $s_2(\gamma_*) \geq 0$, то в точке, соответствующей значению γ_* , кривая Σ'' касается кривой Σ' или пересекает ее. Если $s_1(\gamma_*) \leq 0$, $s_2(\gamma_*) = 0$, то Σ'' при $\gamma = \gamma_*$ касается Σ или пересекает эту кривую.

Множество $\Sigma \cup \Sigma' \cup \Sigma''$ разделяет плоскость $\mathbb{R}^2(h,g)$ на несколько подобластей, внутри которых топологический тип поверхности $\mathcal{P}_{h,g}^2$ сохраняется. Проекция многообразия $\mathcal{P}_{h,g}^2$ на сферу $S^2 = \{|\boldsymbol{\nu}| = 1\}$ позволяет исследовать перестройки топологии и определять топологический тип $\mathcal{P}_{h,g}^2$, зависящий от значений параметров.

2. Топология поверхности $\mathcal{P}_{h,g}^2$. Отображение проектирования $\pi : (\boldsymbol{\omega}, \boldsymbol{\nu}) \mapsto \boldsymbol{\nu}$ переводит поверхность $\mathcal{P}_{h,g}^2$ в компактную область $\widetilde{\mathcal{U}}_{h,g} \subset \mathcal{U}_{h,g}$ на сфере $S^2 = \{|\boldsymbol{\nu}| = 1\}$. В декартовых координатах запишем

$$\widetilde{\mathcal{U}}_{h,g} = \{\widetilde{U}_g(\boldsymbol{\nu}) \leq h\} \subset S^2.$$

Здесь аналогом приведенного потенциала U_g является функция

$$\widetilde{U}_g(\boldsymbol{\nu}) = \frac{(A^{-1}\mathbf{w} \times A^{-1}\mathbf{v}) \cdot (\mathbf{w} \times \mathbf{v})}{2(A^{-1}\mathbf{v} \cdot \mathbf{v})} - \mathbf{r} \cdot \boldsymbol{\nu},$$

где обозначены векторы

$$\mathbf{v} = \boldsymbol{\nu} \times (\boldsymbol{\nu} \times \mathbf{r}), \ \mathbf{w} = g\boldsymbol{\nu} - \boldsymbol{\lambda}.$$

Действительная функция \widetilde{U}_g определена на всей единичной сфере за исключением двух полюсов с координатами $\nu = \pm \mathbf{r}/|\mathbf{r}|$.

ТЕОРЕМА 2. Поверхность $\mathcal{P}_{h,g}^2$ гомеоморфна расслоенному пространству с базой $\mathcal{U}_{h,g}$, при этом слой над $(\nu_1, \nu_2, \nu_3) \in \mathcal{U}_{h,g}$ есть

- 1. окружность S^1 , если $\boldsymbol{\nu} = \pm \mathbf{r}/|\mathbf{r}| \notin \partial \mathcal{U}_{h,q};$
- 2. точка S^0 , если $(\nu_1, \nu_2, \nu_3) \in \partial \widetilde{\mathcal{U}}_{h,q}$;
- 3. две точки $2S^0$ в остальных случаях.

Доказательство. Найдем соответствие между точками поверхности $\mathcal{P}_{h,g}^2$ и точками ее образа $\pi(\mathcal{P}_{h,g}^2)$ на единичной сфере. Зафиксируем вектор $\boldsymbol{\nu}$ и рассмотрим случай $\boldsymbol{\nu} \times \mathbf{r} \neq 0$ (когда векторы $\boldsymbol{\nu}$, \mathbf{r} неколлинеарны). Тогда отображение $\pi|_{\mathcal{P}_{h,g}^2}$ на слоях определяется следующей формулой

$$A\boldsymbol{\omega} = \mathbf{w} - \mathbf{v} \frac{(A^{-1}\mathbf{w} \cdot \mathbf{v})}{(A^{-1}\mathbf{v} \cdot \mathbf{v})} \pm \mathbf{v} \frac{\sqrt{2(h - \widetilde{U}_g(\boldsymbol{\nu}))}}{\sqrt{A^{-1}\mathbf{v} \cdot \mathbf{v}}}.$$
(8)

Непосредственная подстановка (8) в соотношения H = h, G = g, F = 0 обращает их в тождества на единичной сфере, соответствующей интегральному уровню I = 1. Каждая точка сферы Пуассона, удовлетворяющая неравенствам $\widetilde{U}_g(\boldsymbol{\nu}) < h$ и $\boldsymbol{\nu} \times \mathbf{r} \neq 0$, имеет ровно два прообраза на $\mathcal{P}_{h,g}^2$. Граничные точки, которые удовлетворяют условиям $\widetilde{U}_g(\boldsymbol{\nu}) = h$ и $\boldsymbol{\nu} \times \mathbf{r} \neq 0$, имеют только один прообраз S^0 на $\mathcal{P}_{h,g}^2$.

В альтернативном случае положим $\boldsymbol{\nu} = \pm \mathbf{r}/|\mathbf{r}|$, тогда слой на $\mathcal{P}_{h,g}^2$ диффеоморфен окружности, сформированной пересечением эллипсоида и плоскости в $\mathbb{R}^3(\boldsymbol{\omega})$ (см. интегральные уровни H = h и G = g). Наконец, если $\boldsymbol{\nu}$ принадлежит границе области возможности движения $\partial \mathcal{U}_{h,g}$, то эта окружность становится точкой на $\mathcal{P}_{h,g}^2$, так как эллипсоид касается плоскости. \Box

На единичной сфере полюсы с координатами $\boldsymbol{\nu} = \pm \mathbf{r}/|\mathbf{r}|$ могут пересечь $\partial \mathcal{U}_{h,g}$, тогда следует равенство $U_g(\pm \mathbf{r}/|\mathbf{r}|) = h$. То есть полюсы принадлежат $\partial \mathcal{U}_{h,g}$ только тогда, когда константы интегралов и параметры гиростата связаны следующим уравнением

$$h = \frac{(g|\mathbf{r}| \mp \boldsymbol{\lambda} \cdot \mathbf{r})^2}{2(A\mathbf{r} \cdot \mathbf{r})} \mp |\mathbf{r}|.$$
(9)

С другой стороны, если векторы ν , **r** коллинеарны ($\nu = \pm \mathbf{r}/|\mathbf{r}|$), тогда равенство F = 0 выполняется при любых допустимых значениях $A\omega + \lambda$ – кинетического момента гиростата. Если точки $\nu = \pm \mathbf{r}/|\mathbf{r}|$ принадлежат области $\mathcal{U}_{h,g}$, тогда они принадлежат $\widetilde{\mathcal{U}}_{h,g}$ также. В этом случае $\nu = \pm \mathbf{r}/|\mathbf{r}|$ является особой точкой на $\partial \widetilde{\mathcal{U}}_{h,g}$, которая появилась в

результате проектирования на сферу, но имеет регулярный прообраз на $\mathcal{P}^2_{h,g}$. Как отмечалось ранее, топологические перестройки поверхности $\mathcal{P}^2_{h,g}$ происходят только в критических точках отображения \mathcal{F}_1 , все эти точки были указаны в теореме 1.

Топологический тип поверхности $\mathcal{P}_{h,g}^2$ однозначно определяется двумя факторами: во-первых, структурой области $\widetilde{\mathcal{U}}_{h,g} \subset S^2$, во-вторых, расположением диаметрально противоположных полюсов $\boldsymbol{\nu} = \pm \mathbf{r}/|\mathbf{r}|$ относительно этой области. Топология границы $\partial \widetilde{\mathcal{U}}_{h,g}$ изменяется либо на кривых бифуркационного множества Σ (когда меняется тип $\partial \mathcal{U}_{h,g}$), либо на кривых Σ'' . Число точек $\boldsymbol{\nu} = \pm \mathbf{r}/|\mathbf{r}|$, расположенных внутри области $\widetilde{\mathcal{U}}_{h,g}$, изменяется только на бифуркационных кривых Σ' .

3. Огибающая поверхность в $\mathbb{R}^{3}(\boldsymbol{\omega})$. С помощью интегралов исключим $\boldsymbol{\nu}$ из уравнения F = 0:

$$f \equiv (|A\boldsymbol{\omega} + \boldsymbol{\lambda}|^2 - g^2)(|\mathbf{r}|^2 - (T-h)^2) - [(A\boldsymbol{\omega} + \boldsymbol{\lambda}) \cdot \mathbf{r} - (T-h)g]^2 = 0.$$
(10)

Кинетическая энергия $(A\omega \cdot \omega)/2$ механической системы обозначена в (10) через T. Функция $f(\omega)$ впервые была получена П.В.Харламовым [1] при выводе специального вида уравнений движения тяжелого гиростата, классическим аналогом которых являются уравнения Гесса.

Пусть $p : (\boldsymbol{\omega}, \boldsymbol{\nu}) \mapsto \boldsymbol{\omega}$ есть отображение проектирования фазового пространства $\mathbb{R}^{3}(\boldsymbol{\omega}) \times \mathbb{R}^{3}(\boldsymbol{\nu})$ на первый сомножитель. Замкнутая область $\mathcal{V}_{h,g} = p(\mathcal{Q}_{h,g}^{3})$ является проекцией многообразия $\mathcal{Q}_{h,g}^{3}$ на пространство $\mathbb{R}^{3}(\boldsymbol{\omega})$. Назовем $\mathcal{V}_{h,g}$ областью допустимых скоростей, соответствующих фиксированной поверхности $\mathcal{Q}_{h,g}^{3}$, ее край

$$\partial \mathcal{V}_{h,q} = \{f(\boldsymbol{\omega}) = 0\} \subset \mathbb{R}^3(\boldsymbol{\omega})$$

назовем *огибающей поверхностью*. В интегрируемых случаях $\partial \mathcal{V}_{h,g}$ является огибающей поверхностью для однопараметрического семейства сингулярных поверхностей – образов инвариантных торов Лиувилля. Пример исследования сингулярных поверхностей и их огибающих для классического случая Ковалевской см. в работе [8].

Область допустимых скоростей является "почти" многообразием с краем, так как край $\partial \mathcal{V}_{h,g}$ может иметь несколько (но не более трех!) особых точек, расположенных на фиксированной прямой в $\mathbb{R}^{3}(\omega)$. Все особые точки поверхности $\partial \mathcal{V}_{h,g}$ изучены в работе [7]. Их классификация связана с кривыми (6): единственное отличие состоит в том, что параметр γ в уравнениях Σ'' принадлежит множеству $\{s_1(\gamma) \leq 0\} \subset \mathbb{R}$. Следовательно, только часть особых точек $\partial \mathcal{V}_{h,g}$ связана с особыми точками $\mathcal{P}^{2}_{h,g}$. Установим точное соответствие между поверхностями $\partial \mathcal{V}_{h,g}$ и $\mathcal{P}^{2}_{h,g}$.

ТЕОРЕМА З. Пусть $\mathcal{P}_{h,g}^2$ – неособая поверхность уровня и $\partial \mathcal{V}_{h,g} = p(\mathcal{P}_{h,g}^2)$ – ее образ в $\mathbb{R}^3(\boldsymbol{\omega})$. Тогда слой в $\mathcal{P}_{h,g}^2 \subset \mathcal{Q}_{h,g}^3$ над $(\omega_1, \omega_2, \omega_3) \in \partial \mathcal{V}_{h,g}$ является окружностью S^1 (если точка принадлежит прямой $A\boldsymbol{\omega} + \boldsymbol{\lambda} = \gamma \mathbf{r}$), либо точкой S^0 (в остальных случаях).

Доказательство. Предположим, что векторы $A\boldsymbol{\omega} + \boldsymbol{\lambda}$, г удовлетворяют равенству (3) и не являются коллинеарными. Тогда единственный вектор $\boldsymbol{\nu}$, соответствующий фиксированному вектору $\boldsymbol{\omega} \in \mathcal{V}_{h,g}$, однозначно определяется соотношением $\boldsymbol{\nu} = \zeta_1(A\boldsymbol{\omega} + \boldsymbol{\lambda}) + \zeta_2 \mathbf{r}$, где

$$\zeta_1 = \frac{|\mathbf{r}|^2 g + (h - T)(A\boldsymbol{\omega} + \boldsymbol{\lambda}) \cdot \mathbf{r}}{|(A\boldsymbol{\omega} + \boldsymbol{\lambda}) \times \mathbf{r}|^2}, \quad \zeta_2 = \frac{(T - h)|A\boldsymbol{\omega} + \boldsymbol{\lambda}|^2 - g(A\boldsymbol{\omega} + \boldsymbol{\lambda}) \cdot \mathbf{r}}{|(A\boldsymbol{\omega} + \boldsymbol{\lambda}) \times \mathbf{r}|^2}.$$

Однако, если $\boldsymbol{\omega} \in \partial \mathcal{V}_{h,g}$ и, кроме того, принадлежит специальной оси в $\mathbb{R}^{3}(\boldsymbol{\omega})$ с ортом $\mathbf{l} = A^{-1}(\gamma \mathbf{r} - \boldsymbol{\lambda})/|A^{-1}(\gamma \mathbf{r} - \boldsymbol{\lambda})|$, тогда $\boldsymbol{\nu}$ удовлетворяет уравнениям

$$\gamma \mathbf{r} \cdot \boldsymbol{\nu} = g, \quad |\boldsymbol{\nu}| = 1, \tag{11}$$

где коэффициент γ есть действительное решение кубического уравнения [7]

$$\frac{1}{2}(A^{-1}\mathbf{r}\cdot\mathbf{r})\gamma^3 - (A^{-1}\mathbf{r}\cdot\boldsymbol{\lambda})\gamma^2 + \left[\frac{1}{2}(A^{-1}\boldsymbol{\lambda}\cdot\boldsymbol{\lambda}) - h\right]\gamma - g = 0.$$
(12)

Заданное уравнениями (11) непустое пересечение плоскости с единичной сферой формирует окружность $S^1 \subset \mathbb{R}^3(\boldsymbol{\nu})$. Докажем, что все точки этой окружности принадлежат области $\widetilde{\mathcal{U}}_{h,g} \subset \mathcal{U}_{h,g}$. С помощью уравнений (11), (12) преобразуем $\widetilde{U}_g(\boldsymbol{\nu})$ и найдем выражение

$$h - \widetilde{U}_g(\boldsymbol{\nu})|_{S^1} = \frac{[(\mathbf{w} - \gamma \mathbf{v}) \cdot A^{-1} \mathbf{v}]^2}{2(A^{-1} \mathbf{v} \cdot \mathbf{v})}.$$
(13)

Неотрицательность правой части уравнения (13) означает, что любой точке окружности S^1 отвечают допустимые значения ω , полученные по формуле (8). Окружность может касаться границы $\partial \widetilde{\mathcal{U}}_{h,g}$, но не пересекает ее. Итак, слой над данной точкой $\omega \in \partial \mathcal{V}_{h,g}$ есть S^1 . \Box

Любое замкнутое ориентируемое трехмерное многообразие всегда можно представить в виде объединения двух полных "кренделей" подходящего рода без общих внутренних точек, то есть всегда можно найти $\mathcal{M}^+, \mathcal{M}^- \subset \mathcal{Q}^3$ такие, что $\mathcal{M}^+ \cup \mathcal{M}^- = \mathcal{Q}^3$ и $\mathcal{M}^+ \cap \mathcal{M}^- = \partial \mathcal{M}^+ = \partial \mathcal{M}^-$. Такое разбиение многообразия $\mathcal{Q}^3_{h,g}$ называется разбиение м Хегора рода m, где m – топологический род "кренделя" $\partial \mathcal{M}$. Именно с разбиением Хегора связан распространенный и удобный способ задания замкнутых ориентируемых многообразий [9]. В рассматриваемой задаче поверхностью $\partial \mathcal{M}$ служит связная компонента $\mathcal{P}^2_{h,g} = p^{-1}(\partial \mathcal{V}_{h,g})$, ее род m зависит от параметров гиростата. Как известно, род – единственный топологический инвариант замкнутых ориентируемых связных поверхностей; две поверхности $\mathcal{P}^2_{h,g}$ диффеоморфны в том и только в том случае, когда их род m совпадает. Связная компонента двумерной поверхности $\mathcal{P}^2_{h,g}$ разбивает неособую компоненту $\mathcal{Q}^3_{h,g}$ на два ориентируемых многообразия с гомеоморфными краями, а открытое множество $\mathcal{V}_{h,g} \setminus \partial \mathcal{V}_{h,g}$ двулистно накрывается множеством $\mathcal{Q}^3_{h,g} \setminus \mathcal{P}^2_{h,g}$. Любое трехмерное замкнутое многообразие не вкладывается и не погружается в про-

Любое трехмерное замкнутое многообразие не вкладывается и не погружается в пространство \mathbb{R}^3 , поэтому полученное здесь представление $\mathcal{V}_{h,g} = p(\mathcal{Q}_{h,g}^3)$ в виде двух непересекающихся копий $\mathcal{V}_{h,g} = p(\mathcal{M}^+)$ и $\mathcal{V}_{h,g} = p(\mathcal{M}^-)$ в $\mathbb{R}^3(\boldsymbol{\omega})$ позволяет изучать конечные дуги траекторий отдельно на каждой копии. Внутри $p(\mathcal{M}^{\pm})$ траектории не пересекаются.

Траектории $\omega(t)$ заполняют замкнутую область $\mathcal{V}_{h,g}$ и касаются огибающей поверхности $\partial \mathcal{V}_{h,g} \subset \mathbb{R}^3(\omega)$. В фазовом пространстве многообразия \mathcal{M}^+ , \mathcal{M}^- имеют общий край – поверхность $\mathcal{P}^2_{h,g}$, и любая непериодическая траектория пересекает этот край бесконечное число раз. Все траектории не могут быть одновременно направлены внутрь \mathcal{M}^+ (или \mathcal{M}^-). Следовательно, можно указать области на $\mathcal{P}^2_{h,g}$ с различными направлениями фазового потока: из \mathcal{M}^+ в \mathcal{M}^- или из \mathcal{M}^- в \mathcal{M}^+ . Действительная функция времени $|A\omega + \lambda|$ достигает локального экстремума в момент контакта траектории с поверхностью $\mathcal{P}^2_{h,g}$. Поэтому одна часть $\mathcal{P}^2_{h,g}$ соответствует локальным минимумам, а другая – локальным максимумам функции $|A\omega + \lambda|$. Из условия $d^2|A\omega + \lambda|^2/dt^2 = 0$, записанного в виде

$$|\boldsymbol{\nu} \times \mathbf{r}|^2 + \left((A\boldsymbol{\omega} + \boldsymbol{\lambda}) \times \boldsymbol{\nu} \right) \cdot (\mathbf{r} \times \boldsymbol{\omega}) = 0, \tag{14}$$

найдем уравнение кривой, разделяющей эти два множества на $\mathcal{P}^2_{h,g}$. Если в точке указанной сепаратрисы (14) выполняется неравенство $d^3|A\omega + \lambda|^2/dt^3 \neq 0$, тогда траектория после контакта с $\mathcal{P}^2_{h,g}$ снова возвращается в исходную область \mathcal{M}^+ или \mathcal{M}^- .

Рис. 1. Функция $|A\omega(t) + \lambda|$ в окрестности разделяющей кривой (14).

Вычислим значения функции $|A\omega(t) + \lambda|$ вдоль траектории, находящейся в малой окрестности кривой (14) на $\mathcal{P}_{h,g}^2$. Результаты представлены на рис. 1. В данном примере начальные условия подобраны так, что траектория не выходит из указанной окрестности, а значение модуля кинетического момента $|A\omega + \lambda|$ мало отличается от константы. Локальные минимумы и максимумы здесь чередуются с точками перегиба, в которых фазовая траектория касается кривой (14) на поверхности $\mathcal{P}_{h,g}^2$. Напомним, что в рассматриваемой задаче модуль кинетического момента постоянен только

в решении Эйлера-Жуковского, во всех случаях равномерных вращений и в некоторых частных случаях решений Лагранжа и Гесса-Сретенского, характеризуемых прецессионными движениями тела-носителя вокруг вертикали [10]. Соответствующие этим решениям траектории целиком принадлежат поверхности $\mathcal{P}_{h,g}^2$.

$\mathcal{Q}^3_{h,g}$	$\mathbb{R}P^3$	S^3	$S^1 \times S^2$	$(S^1 \times S^2) \# (S^1 \times S^2)$
	_	S^2	T^2	$M_2^2(?)$
$\mathcal{P}_{h,a}^2$	_	T^2	M_2^2	M_3^2
	T^2	M_2^2	M_3^2	M_4^2
	M_2^2	$M_3^{\overline{2}}$	M_4^2	M_5^2

Табл. Допустимые типы неособых многообразий ($\lambda \approx 0$)

В таблице перечислены допустимые типы многообразий $\mathcal{Q}_{h,g}^3, \mathcal{P}_{h,g}^2$, которые существуют при малых значениях модуля гиростатического момента и, в частности, при $\lambda = 0$. Двумерное компактное ориентируемое многообразие рода m в таблице обозначено через M_m^2 , а для сферы и тора использованы стандартные обозначения $S^2 \equiv M_0^2, T^2 \equiv M_1^2$. Представленное в виде связной суммы $(S^1 \times S^2) \# (S^1 \times S^2)$ многообразие $\mathcal{Q}_{h,g}^3$ является "кренделем", который получен из трехмерной сферы приклеиванием двух "ручек" (см. [11, с. 345]). Полное исследование случая $\lambda = 0$ проведено автором совместно с П.Х.Рихтером. Для всех пар $(\mathcal{Q}_{h,g}^3, \mathcal{P}_{h,g}^2)$, кроме ($(S^1 \times S^2) \# (S^1 \times S^2), M_2^2$), были найдены соответствующие этим многообразиям примеры областей в пространстве параметров твердого тела. На рис. 2, *а* показаны множества: $\mathcal{U}_{h,g} \subset S^2$ (серая область), $\mathcal{U}_{h,g} \setminus \mathcal{U}_{h,g}$ (темная область) и

На рис. 2, *а* показаны множества: $\mathcal{U}_{h,g} \subset S^2$ (серая область), $\mathcal{U}_{h,g} \setminus \mathcal{U}_{h,g}$ (темная область) и $S^2 \setminus \widetilde{\mathcal{U}}_{h,g}$ (светлая область). Центр масс тела принадлежит главной плоскости инерции, точкой на сфере отмечен полюс $\boldsymbol{\nu} = -\mathbf{r}/|\mathbf{r}|$. На рис. 2, δ изображена огибающая поверхность, соответствующая многообразиям $\mathcal{P}_{h,g}^2 = T^2 \cup S^2 \cup S^2$ и $\mathcal{Q}_{h,g}^3 = S^3 \cup S^3 \cup S^3$. Точкой на оси отмечено расположение центра масс в базисе, жестко связанном с телом-носителем. Две основные проекции многообразия $\mathcal{Q}_{h,g}^3 = S^3 \cup S^3 \cup S^3$ показаны на рис. 3, *a*, *b*. **4. Сечение Пуанкаре.** Пусть \mathcal{Q}^3 – замкнутое компактное гладкое ориентируемое мно-

4. Сечение Пуанкаре. Пусть Q^3 – замкнутое компактное гладкое ориентируемое многообразие, целиком состоящее из траекторий; $\dot{x} = v(x)$ – дифференциальное уравнение, заданное гладким векторным полем на Q^3 ; F – гладкая действительная функция на мно-

a) $\mathcal{U}_{h,g} = \pi(\mathcal{Q}^3_{h,g}) \subset S^2 \subset \mathbb{R}^3(\boldsymbol{\nu})$ 6) $\mathcal{V}_{h,g} = p(\mathcal{Q}^3_{h,g}) \subset \mathbb{R}^3(\boldsymbol{\omega})$

Рис. 3. Проекции изоэнергетической поверхности $Q^3_{h,q}$.

гообразии Q^3 . Если ноль не является критическим значением F, то множество уровня $\mathcal{P}^2 = F^{-1}(0)$ является гладким подмногообразием в Q^3 . Из теоремы о неявной функции следует существование двух гладких многообразий $\mathcal{M}^{\pm} = \{x \in Q^3 : \pm F(x) \leq 0\}$ с общим краем $\mathcal{P}^2 = F^{-1}(0)$. Касание траекторий с поверхностью \mathcal{P}^2 происходит только на кривой $\partial \mathcal{N} = \{x \in \mathcal{P}^2 : \nabla F(x) \cdot v(x) = 0\}$, которая разделяет \mathcal{P}^2 на два подмножества $\mathcal{N}^{\pm} = \{x \in \mathcal{P}^2 : \pm \nabla F(x) \cdot v(x) \leq 0\}$. Кривая $\partial \mathcal{N}$ может состоять из нескольких замкнутых связных компонент. Выберем такое сечение $\mathcal{P}^2 = F^{-1}(0) \subset Q^3$, чтобы все траектории его пересекали. Сделаем это следующим образом. Пусть F_0 – ограниченная дифференцируемая функция, заданная на Q^3 . Если F_0 не постоянна на траекториях рассматриваемой динамической системы, тогда положим $F = \nabla F_0(x) \cdot v(x)$. Например, в качестве F_0 может быть использовано сужение действительной функции $|A\omega + \lambda|$ на множестве Q^3 .

Теперь траектории, которыми заполнено инвариантное многообразие Q^3 , либо пересекают поверхность \mathcal{P}^2 , либо (в исключительных случаях) целиком ей принадлежат. *Отоб*-

ражением последования назовем отображение, сопоставляющее точке $x \in \mathcal{P}^2$ первую по времени точку пересечения с поверхностью \mathcal{P}^2 исходящей из x полутраектории фазового потока. Если каждая траектория \mathcal{Q}^3 пересекает сечение \mathcal{P}^2 , то отображение последования в значительной степени определяет поведение всех траекторий на инвариантном многообразии. Две близкие точки x, x' имеют близкие образы при отображении последования. Исключением являются точки и их образы, оказавшиеся на кривой $\partial \mathcal{N}$. В частности, образ любой связной компоненты $\partial \mathcal{N}$ не является замкнутой кривой. Чтобы избежать этих исключительных случаев, сечением обычно выбирают криволинейную односвязную область, лежащую внутри \mathcal{N}^+ или \mathcal{N}^- . Для интегрируемых динамических систем на \mathcal{P}^2 существует однопараметрическое семейство замкнутых кривых, инвариантных относительно отображения последования. Метод фазовых сечений и теорию инвариантных кривых для отображений последования впервые разработал Пуанкаре [12, гл. 27].

Локальное сечение можно представить в виде малой гладкой площадки коразмерности 1, трансверсально пересекающей замкнутую траекторию в фазовом пространстве. Локальные сечения эффективно используются при изучении периодических и асимптотических решений, но для общего описания динамики они почти бесполезны: такие сечения пересекаются только частью траекторий и, кроме того, некоторые траектории не возвращаются на сечение. Глобальное сечение в виде компактного многообразия, трансверсального к фазовому потоку, можно построить только в исключительных случаях [13]. Например, в рассматриваемой задаче лишь для многообразия $Q^3 = S^1 \times S^2$ могут (теоретически !) существовать глобальные трансверсальные сечения вида $\mathcal{P}^2 = S^2$. В этой статье исследовано глобальное нетрансверсальное сечение динамической системы (1) и доказаны его основные свойства:

- \mathcal{P}^2 является замкнутым гладким подмногообразием \mathcal{Q}^3 , следовательно, все точки фазового сечения принадлежат \mathcal{Q}^3 ;
- сечение разделяет каждую компоненту Q^3 на два замкнутых подмногообразия с общим краем;
- любая траектория на Q^3 пересекает сечение \mathcal{P}^2 ;
- каждая полутраектория снова возвращается на \mathcal{P}^2 ;
- если функция F_0 не постоянна на траекториях инвариантного многообразия Q^3 , тогда возвращение на \mathcal{P}^2 происходит за конечный интервал времени;
- требование трансверсальности \mathcal{P}^2 к потоку нарушается только на кривой $\partial \mathcal{N}$;
- кривая $\partial \mathcal{N}$ разделяет \mathcal{P}^2 на области \mathcal{N}^{\pm} , каждую из которых траектории пересекают в одном направлении.
- 1. *Харламов П.В.* Лекции по динамике твердого тела. Новосибирск: Изд-во Новосибир. ун-та, 1965. 221 с.
- 2. *Харламов М.П.* Топологический анализ интегрируемых задач динамики твердого тела. Л.: Изд-во Ленингр. ун-та, 1988. 200 с.
- 3. Болсинов А.В., Фоменко А.Т. Интегрируемые гамильтоновы системы. Геометрия, топология, классификация. Ижевск: Удмуртский ун-т, 1999. Т. 2. 448 с.

Огибающие поверхности в задаче о движении тяжелого гиростата

- 4. *Татаринов Я.В.* Портреты классических интегралов задачи о вращении твердого тела вокруг неподвижной точки // Вестн. Моск. ун-та. Сер. Математика и механика. 1974. N 6. С. 99-105.
- 5. Oshemkov A.A. Fomenko invariants for the main integrable cases of the rigid body motion equations // Advances in Sov. Math. 1991. 6. P. 67-146.
- 6. Гашененко И.Н., Кучер Е.Ю. Анализ изоэнергетических поверхностей для точных решений задачи о движении твердого тела// Механика твердого тела. 2001. Вып. 31. С. 18-30.
- 7. *Гашененко И.Н.* Инвариантные множества в пространстве угловых скоростей тяжелого гиростата// Механика твердого тела. – 2000. – Вып. 30. – С. 79-87.
- Gashenenko I.N. Angular velocity of the Kovalevskaya top// Regular and chaotic dynamics. 2000. 5, N 1. – P. 104-113.
- 9. *Матвеев С.В., Фоменко А.Т.* Алгоритмические и компьютерные методы в трехмерной топологии. М: Изд-во МГУ, 1991. 301 с.
- 10. Горр Г.В., Илюхин А.А. Случаи постоянства модуля момента количества движения гиростата// Механика твердого тела. 1974. Вып.6. С. 9–15.
- 11. Арнольд В.И. Математические методы классической механики. М.: Наука, 1974. 432 с.
- 12. *Пуанкаре А*. Новые методы небесной механики. Избр. труды в 3-х томах. М.: Наука, 1972. Т. II. 999 с.
- Bolsinov A.V., Dullin H.R., Wittek A. Topology of energy surfaces and existence of transversal Poincaré section// J. Phys. A. – 1996. – 29, N 16. – P. 4977–4985.

Ин-т прикл. математики и механики НАН Украины, Донецк gashenenko@iamm.ac.donetsk.ua

Получено 19.10.02