(c)2001. А.А. Игнатьев

АСИМПТОТИЧЕСКАЯ УСТОЙЧИВОСТЬ ОТНОСИТЕЛЬНОГО ПОЛОЖЕНИЯ РАВНОВЕСИЯ СИСТЕМЫ ТЕЛ, МОДЕЛИРУЮЩЕЙ ЛОПАСТНЫЙ ВИНТ

Abstract

В настоящей работе приведена математическая модель вращающегося лопастного винта с учетом упругости и трения в шарнирах. Используется метод моделирования системой связанных твердых тел [1,2]. В случае равномерных вращений винта с симметричными лопастями доказана асимптотическая устойчивость относитетьного положения равновесия лопастей винта. Для случая равномерных вращений винта с несимметричными лопастями получено необходимое и достаточное условие асимптотической устойчивости относительного положения равновесия винта. В случае неравномерных вращений винта с симметричными лопастями получено достаточное условие, обеспечивающее асимптотическую устойчивость относительного положения равновесия лопастей винта.

1. Описание модели. Модель винта (см. рисунок) состоит из четырех твердых тел: трех одинаковых лопастей и вала. Вал имеет одну степень свободы - он может вращаться вокруг неподвижной вертикальной оси $O Z^{\prime}$. Каждая из трех лопастей при-

Модель лопастного винта креплена ко втулке винта посредством двух цилиндрических шарниров - осевого шарнира (ОШ) и горизонтального шарнира (ГШ). Точки O_{1}, O_{2}, O_{3} находятся в центрах ГШI. C вращающимся винтом связана подвижная декартова система координат $O^{\prime} X^{\prime} Y^{\prime} Z^{\prime}$, ось $O^{\prime} X^{\prime}$ которой направлена вдоль первой лопасти винта, ось $O^{\prime} Y^{\prime}$ перпендикулярна оси вала, а ось $O^{\prime} Z^{\prime}$ направлена по оси вала. Векторы $\mathbf{e}_{1}^{\prime}, \mathbf{e}_{2}^{\prime}, \mathbf{e}_{3}^{\prime}$ являются направляющими ортами в этой системе координат. С каждой из лопастей жестко связана система координат $O_{i} X_{i} Y_{i} Z_{i}(i=1,2,3)$ со своим базисом $\mathbf{e}_{1}^{i}, \mathbf{e}_{2}^{i}, \mathbf{e}_{3}^{i}$, оси которой являются главными осями инерции для i-ой лопасти. Оси $O_{i} X_{i}$ направлены вдоль i - ой лопасти винта. Каждая из лопастей имеет две степени свободы, которые характеризуются углами $\psi_{i}, \varphi_{i}(i=1,2,3)$. Угол ψ_{i} - угол взмаха (угол поворота i - ой лопасти вокруг оси $O_{i} Y_{i}$). Угол φ_{i} - угол установки (угол поворота i - ой лопасти вокруг оси $O_{i} X_{i}$).

Обозначим через C_{1}, C_{2}, C_{3} центры масс лопастей. Будем предполагать, что они лежат на главных осях соответствующей лопасти. Предположим, что наша конструкция находится в по.те силы тяжести.

В шарнирах действуют упругие восстанавливающие моменты, зависящие от углов ψ_{i} и $\varphi_{i}(i=1,2,3)$, стремящиеся совместить лопасти с плоскостью $O^{\prime} X^{\prime} Y^{\prime}$. Обобщенные

силы, реализующие эти моменты, определим потенциалами

$$
\begin{gathered}
\Pi_{1}=\frac{1}{2} k_{1}\left[\left(\psi_{1}+\psi^{*}\right)^{2}+\left(\psi_{2}+\psi^{*}\right)^{2}+\left(\psi_{3}+\psi^{*}\right)^{2}\right] \\
\Pi_{2}=\frac{1}{2} k_{2}\left(\varphi_{1}^{2}+\varphi_{2}^{2}+\varphi_{3}^{2}\right)
\end{gathered}
$$

где $k_{1}>0, k_{2}>0$ - жесткости шарниров, а угол ψ^{*} выбираем таким образом, чтобы обеспечить горизонтальное положение лопастей для невращающегося винта. Выбор первоначального горизонтального положения равновесия обусловлен тем, чтобы исключить воздействие центробежных сил на положение лопастей при невозмущенном движении, т.е. при отсутствии возмущений лопасти останутся в горизонтальном положении при любой угловой скорости вращения винта.

Будем учитывать также моменты сил трения в шарнирах, которые будем предполагать равными

$$
\mathbf{L}_{i}=-æ\left(\dot{\psi}_{i}+\dot{\varphi}_{i}\right) \quad(i=1,2,3),
$$

где æ \equiv const >0. Исходя из этого, запишем диссипативную функцию Рэлея

$$
R=\frac{1}{2} æ \sum_{i=1}^{3}\left(\dot{\psi}_{i}^{2}+\dot{\varphi}_{i}^{2}\right) .
$$

2. Кинетическая энергия. Пусть кинетическая энергия нашей системы

$$
T=T_{0}+T_{1}+T_{2}+T_{3}
$$

где T_{0} - кинетическая энергия вала, а T_{i} - кинетическая энергия i-ой лопасти ($i=$ $1,2,3)$.

Пусть $\omega_{0}=r \mathbf{e}_{3}^{\prime}$ - абсолютная угловая скорость вала, здесь $r=\left|\omega_{0}\right|$. В дальнейшем будем предполагать, что $r=r(t)$ - заданная функция и что лопасти никак не влияют на нее и, следовательно, никак не влияют друг на друга. Исходя из этого, в дальнейшем будем исследовать движение только одной лопасти, так как уравнения движения двух других лопастей будут аналогичны уравнениям движения первой лопасти.

Полагая, что координатные оси системы $O^{\prime} X^{\prime} Y^{\prime} Z^{\prime}$ являются главными осями инерции вала, запишем выражение для его кинетической энергии

$$
T_{0}=\frac{1}{2} J r^{2}
$$

где J - момент инерции вала относительно оси $O^{\prime} Z^{\prime}$.
Найдем абсолютную угловую скорость лопасти 1

$$
\begin{gathered}
\omega_{1}=r \mathbf{e}_{3}^{\prime}+\dot{\psi_{1}} \mathbf{e}_{2}^{\prime}+\dot{\varphi}_{1} \mathbf{e}_{1}^{1}= \\
=\dot{\varphi}_{1} \cos \psi_{1} \mathbf{e}_{1}^{\prime}+\dot{\psi_{1}} \mathbf{e}_{2}^{\prime}+\left(r-\dot{\varphi}_{1} \sin \psi_{1}\right) \mathbf{e}_{3}^{\prime}
\end{gathered}
$$

Теперь запишем ω_{1} в системе координат, связанной жестко с лопастью 1.

$$
\omega_{1}=r \mathbf{e}_{3}^{\prime}+\dot{\psi_{1}} \mathbf{e}_{2}^{\prime}+\dot{\varphi_{1}} \mathbf{e}_{1}^{1}=
$$

$=\left(\dot{\varphi}_{1}-r \sin \psi_{1}\right) \mathbf{e}_{1}^{1}+\left(\dot{\psi}_{1} \cos \varphi_{1}+r \cos \psi_{1} \sin \varphi_{1}\right) \mathbf{e}_{2}^{1}+\left(-\dot{\psi}_{1} \sin \varphi_{1}+r \cos \psi_{1} \cos \varphi_{1}\right) \mathbf{e}_{3}^{1}$
Запишем выражение для кинетической энергии первой лопасти.

$$
T_{1}=\frac{1}{2} m\left(V_{1}\right)^{2}+\frac{1}{2} A \omega_{1} \cdot \omega_{1}
$$

где m - масса лопасти, \mathbf{V}_{1} - скорость центра масс первой лопасти, A - тензор инерции лопасти, который имеет диагональный вид. Запишем выражение для скорости центра масс первой лопасти.

$$
\mathbf{V}_{1}=\left(\mathbf{O} \mathbf{O}^{\prime}+\mathbf{O}^{\prime} \mathbf{O}_{1}+s \mathbf{e}_{1}^{1}\right)^{\prime}=\left(l \mathbf{e}_{3}^{\prime}+d \mathbf{e}_{1}^{\prime}+s \mathbf{e}_{1}^{1}\right)^{\prime}
$$

где $l=\left|\mathbf{O O}^{\prime}\right|$ - длина вала; $d=\left|\mathbf{O}^{\prime} \mathbf{O}_{1}\right| ; s=\left|\mathbf{O}_{1} \mathbf{C}_{1}\right|$.

$$
\begin{gathered}
\left(\mathbf{e}_{3}^{\prime}\right)^{\prime}=\omega_{0} \times \mathbf{e}_{3}^{\prime}=0, \\
\left(\mathbf{e}_{1}^{\prime}\right)^{\prime}=\omega_{0} \times \mathbf{e}_{1}^{\prime}=r \mathbf{e}_{2}^{\prime}, \\
\left(\mathbf{e}_{1}^{1}\right)^{\prime}=\omega_{1} \times\left(\cos \psi_{1} \mathbf{e}_{1}^{\prime}-\sin \psi_{1} \mathbf{e}_{3}^{\prime}\right)=-\dot{\psi}_{1} \sin \dot{\psi}_{1} \mathbf{e}_{1}^{\prime}+r \cos \psi_{1} \mathbf{e}_{2}^{\prime}-\dot{\psi}_{1} \cos \psi_{1} \mathbf{e}_{3}^{\prime} \\
\mathbf{V}_{1}=-s \dot{\psi}_{1} \sin \psi_{1} \mathbf{e}_{1}^{\prime}+\left(d r+\operatorname{sr} \cos \psi_{1}\right) \mathbf{e}_{2}^{\prime}-s \dot{\psi}_{1} \cos \psi_{1} \mathbf{e}_{3}^{\prime},
\end{gathered}
$$

Теперь запишем кинетическую энергию первой лопасти
$T_{1}=\frac{1}{2} m s^{2}{\dot{\psi_{1}}}^{2}+\frac{1}{2} m r^{2}\left(d+s \cos \psi_{1}\right)^{2}+\frac{1}{2} A_{1}\left(\dot{\varphi}_{1}-r \sin \psi_{1}\right)^{2}+\frac{1}{2} A_{2}\left(\dot{\psi}_{1} \cos \varphi_{1}+r \cos \psi_{1} \sin \varphi_{1}\right)^{2}+$ $+\frac{1}{2} A_{3}\left(-\dot{\psi}_{1} \sin \varphi_{1}+r \cos \psi_{1} \cos \varphi_{1}\right)^{2}$,
где A_{1}, A_{2}, A_{3} - моменты инерции лопасти относительно осей $O_{1} X_{1}, O_{1} Y_{1}, O_{1} Z_{1}$ соответственно.
3. Уравнения движения. Обозначим через П потенциальную энергию системы.

$$
\begin{gathered}
\Pi=\frac{1}{2} k_{1}\left(\left(\psi_{1}+\psi^{*}\right)^{2}+\left(\psi_{2}+\psi^{*}\right)^{2}+\left(\psi_{3}+\psi^{*}\right)^{2}\right)+\frac{1}{2} k_{2}\left(\varphi_{1}^{2}+\varphi_{2}^{2}+\varphi_{3}^{2}\right)- \\
-m g s\left(\sin \psi_{1}+\sin \psi_{2}+\sin \psi_{3}\right)
\end{gathered}
$$

Уравнения движения лопасти винта запишем в форме Лагранжа

$$
\begin{aligned}
\frac{d}{d t} \frac{\partial T}{\partial \dot{\psi}_{1}}-\frac{\partial T}{\partial \psi_{1}} & =-\frac{\partial \Pi}{\partial \psi_{1}}-\frac{\partial R}{\partial \dot{\psi}_{1}} \\
\frac{d}{d t} \frac{\partial T}{\partial \dot{\varphi}_{1}}-\frac{\partial T}{\partial \varphi_{1}} & =-\frac{\partial \Pi}{\partial \varphi_{1}}-\frac{\partial R}{\partial \dot{\varphi}_{1}}
\end{aligned}
$$

Или

$$
\begin{aligned}
& \left(m s^{2}+A_{2} \cos ^{2} \varphi_{1}+A_{3} \sin ^{2} \varphi_{1}\right) \ddot{\psi}_{1}+\left(A_{3}-A_{2}\right) \dot{\psi}_{1} \dot{\varphi}_{1} \sin 2 \varphi_{1}+\frac{1}{2}\left(A_{2}-A_{3}\right) \dot{r} \cos \psi_{1} \sin 2 \varphi_{1}+ \\
+ & \left(A_{2}-A_{3}\right) r \dot{\varphi}_{1} \cos \psi_{1} \cos 2 \varphi_{1}+m s d r^{2} \sin \psi_{1}+\frac{1}{2} m s^{2} r^{2} \sin 2 \psi_{1}+A_{1} r \dot{\varphi}_{1} \cos \psi_{1}-\frac{1}{2} A_{1} r^{2} \sin 2 \psi_{1}+
\end{aligned}
$$

$$
\begin{gather*}
+\frac{1}{2} r^{2} \sin 2 \psi_{1}\left(A_{2} \sin ^{2} \varphi_{1}+A_{3} \cos ^{2} \varphi_{1}\right)=-k_{1}\left(\psi_{1}+\psi^{*}\right)+m g s \cos \psi_{1}-æ \dot{\psi}_{1} \tag{1}\\
A_{1} \ddot{\varphi}_{1}-A_{1} \dot{r} \sin \psi_{1}-A_{1} r \dot{\psi}_{1} \cos \psi_{1}+\frac{1}{2}\left(A_{2}-A_{3}\right) \dot{\psi}_{1}^{2} \sin 2 \varphi_{1}+ \\
+\left(A_{2}-A_{3}\right) r \dot{\psi}_{1} \cos \psi_{1} \cos 2 \varphi_{1}-\frac{1}{2}\left(A_{2}-A_{3}\right) r^{2} \cos ^{2} \psi_{1} \sin 2 \varphi_{1}=-k_{2} \varphi_{1}-æ \dot{\varphi}_{1}
\end{gather*}
$$

Для того, чтобы у системы (1) существовало решение

$$
\begin{equation*}
\psi_{1}=0, \dot{\psi}_{1}=0, \varphi_{1}=0, \dot{\varphi}_{1}=0, r=r(t) \tag{2}
\end{equation*}
$$

соответствующее относительному положению равновесия лопасти, необходимо и достаточно, чтобы выполнялось условие

$$
\begin{equation*}
\psi^{*}=\frac{m g s}{k_{1}} \tag{3}
\end{equation*}
$$

Запишем уравнения возмущенного движения для системы (1), полагая $x_{1}=\psi_{1}$; $x_{2}=\dot{\psi}_{1} ; x_{3}=\varphi_{1} ; x_{4}=\dot{\varphi}_{1}$. Получим систему

$$
\begin{gather*}
\left(m s^{2}+A_{2} \cos ^{2} x_{3}+A_{3} \sin ^{2} x_{3}\right) \dot{x_{2}}=-\left(A_{3}-A_{2}\right) x_{2} x_{4} \sin 2 x_{3}+\frac{1}{2}\left(A_{3}-A_{2}\right) \dot{r} \cos x_{1} \sin 2 x_{3}+ \\
+\left(A_{3}-A_{2}\right) r x_{4} \cos x_{1} \cos 2 x_{3}-m s d r^{2} \sin x_{1}-\frac{1}{2} m s^{2} r^{2} \sin 2 x_{1}-A_{1} r x_{4} \cos x_{1}+ \\
+\frac{1}{2}\left(A_{1}-A_{2} \sin ^{2} x_{3}-A_{3} \cos ^{2} x_{3}\right) r^{2} \sin 2 x_{1}-k_{1} x_{1}-æ x_{2} \tag{4}\\
A_{1} \dot{x_{4}}=A_{1} \dot{r} \sin x_{1}+A_{1} r x_{2} \cos x_{1}+\frac{1}{2}\left(A_{3}-A_{2}\right) x_{2}^{2} \sin 2 x_{3}+ \\
+\left(A_{3}-A_{2}\right) r x_{2} \cos x_{1} \cos 2 x_{3}-\frac{1}{2}\left(A_{3}-A_{2}\right) r^{2} \cos ^{2} x_{1} \sin 2 x_{3}-k_{2} x_{3}-æ x_{4} \\
\dot{x_{1}}=x_{2}, \quad \dot{x_{3}}=x_{4} .
\end{gather*}
$$

Частному решению (2) системы (1) соответствует частное решение $x_{1}=x_{2}=x_{3}=x_{4}=$ 0 системы (4). Запишем линеаризованные уравнения для системы (4).

$$
\begin{gather*}
\left(m s^{2}+A_{2}\right) \dot{x_{2}}=\left(A_{3}-A_{2}\right) \dot{r} x_{3}+\left(A_{3}-A_{2}-A_{1}\right) r x_{4}-\left(m s d+m s^{2}-A_{1}+A_{3}\right) r^{2} x_{1}-k_{1} x_{1}-æ x_{2} \\
A_{1} \dot{x_{4}}=A_{1} \dot{r} x_{1}+A_{1} r x_{2}+\left(A_{3}-A_{2}\right) r x_{2}-\left(A_{3}-A_{2}\right) r^{2} x_{3}-k_{2} x_{3}-æ x_{4} \tag{5}\\
\dot{x_{1}}=x_{2} \\
\dot{x_{3}}=x_{4}
\end{gather*}
$$

4. Равномерные вращения. Рассмотрим случай равномерного вращения винта с симметричными лопастями ($r=r_{0} \equiv$ const, $A_{2}=A_{3}$). В этом случае линеаризованная система (5) примет вид

$$
\begin{gather*}
D \dot{x_{2}}=-B x_{1}-A_{1} r x_{4}-æ x_{2} \\
A_{1} \dot{x_{4}}=A_{1} r x_{2}-k_{2} x_{3}-æ x_{4}, \tag{6}\\
\dot{x_{1}}=x_{2}
\end{gather*}
$$

$$
\dot{x_{3}}=x_{4}
$$

где $D=m s^{2}+A_{2}>0, B=\left(m s d+m s^{2}-A_{1}+A_{2}\right) r^{2}+k_{1}=\mathrm{const}>0$.
ТеоремА 1. В случае равномерных вращений винта с симметричными лопастями при любом выборе параметров системы относительное положение равновесия лопастей винта будет асимптотически устойчиво.

Доказателъство. Для автономной (т.к. $r=r_{0} \equiv \mathrm{const}$) системы дифференциальных уравнений возмущенного движения (6) запишем функцию Ляпунова в виде:

$$
V=\frac{1}{2}\left(B x_{1}^{2}+D x_{2}^{2}+k_{2} x_{3}^{2}+A_{1} x_{4}^{2}\right)
$$

Тогда производная \dot{V} в силу системы (6)

$$
\dot{V}=-æ\left(x_{2}^{2}+x_{4}^{2}\right) \leq 0
$$

Производная \dot{V} обращается в нуль только на множестве точек $M=\left\{x:\left(x_{2}=x_{4}=0\right)\right\}$, которое не включает в себя целых полутраекторий нашей системы. Значит по теореме Барбашина - Красовского [3] решение $x_{1}=x_{2}=x_{3}=x_{4}=0$ линейной системы (6) асимптотически устойчиво. Следовательно, в этом случае $\left(r(t)=r_{0} \equiv\right.$ сonst, $A_{2}=A_{3}$) будет асимптотически устойчивым и решение $x_{1}=x_{2}=x_{3}=x_{4}=0$ нелинейной системы (4).

ЗАмечАниЕ. При отсутствии сил трения в шарнирах (т.е. æ $\equiv 0$ и $\dot{V} \equiv 0$) решение $x_{1}=x_{2}=x_{3}=x_{4}=0$ линейной системы (6) будет устойчивым.

Рассмотрим теперь случай равномерного вращения винта с несимметричными лопастями ($r=r_{0} \equiv \mathrm{const}, A_{2} \neq A_{3}$). Обозначая $C=A_{2}-A_{3}$, в этом случае получим систему линеаризованных уравнений

$$
\begin{gather*}
D \dot{x_{2}}=-B x_{1}-æ x_{2}-\left(A_{1}+C\right) r x_{4}, \\
A_{1} \dot{x_{4}}=\left(A_{1}-C\right) r x_{2}+\left(C r^{2}-k_{2}\right) x_{3}-æ x_{4}, \tag{7}\\
\dot{x_{1}}=x_{2}, \\
\dot{x_{3}}=x_{4},
\end{gather*}
$$

где $B=\left(m s d+m s^{2}+A_{3}-A_{1}\right) r^{2}+k_{1}=$ const $>0, \quad D=m s^{2}+A_{2}$.
Теорема 2. В случае равномерных вращений винта с несимметричными лопастями для того, чтобы относительное положение лопастей винта было асимптотически устойчиво, необходимо и достаточно, чтобы выполнялось условие

$$
k_{2}-C r^{2}>0
$$

Доказателъство. Воспользуемся критерием Раусса - Гурвица. Характеристический многочлен для системы (7) имеет вид:

$$
\left|\begin{array}{cccc}
-\lambda & 1 & 0 & 0 \\
-B & -æ-D \lambda & 0 & -\left(A_{1}+C\right) r \\
0 & 0 & -\lambda & 1 \\
0 & \left(A_{1}-C\right) r & C r^{2}-k_{2} & -æ-A_{1} \lambda
\end{array}\right|=a_{0} \lambda^{4}+a_{1} \lambda^{3}+a_{2} \lambda^{2}+a_{3} \lambda+a_{4},
$$

где $a_{0}=A_{1} D ; a_{1}=æ\left(A_{1}+D\right) ; a_{2}=æ^{2}+\left(A_{1}^{2}-C^{2}\right) r^{2}+D\left(k_{2}-C r^{2}\right)+A_{1} B ; a_{3}=æ\left(k_{2}-\right.$ $\left.C r^{2}+B\right) ; a_{i}=B\left(k_{2}-C r^{2}\right)$. Для выполнения критерия Раусса - Гурвица необходимо и достаточно [4], чтобы выполнялись условия $a_{1}>0, a_{3}>0, a_{4}>0, a_{3}\left(a_{1} a_{2}-a_{0} a_{3}\right)$ $a_{4} a_{1}^{2}>0$. Значит $a_{3}=æ\left(k_{2}-C r^{2}+B\right)>0$, т.е.

$$
\begin{equation*}
k_{2}-C r^{2}+B>0 \tag{8}
\end{equation*}
$$

Условие $a_{4}>0$ влечет за собой условие

$$
\begin{equation*}
k_{2}-C r^{2}>0 \tag{9}
\end{equation*}
$$

Так как $B>0$, условие (8) следует из условия (9). Рассмотрим выражение $f=a_{3}\left(a_{1} a_{2}-\right.$ $\left.a_{0} a_{3}\right)-a_{4} a_{1}^{2}$.

$$
\begin{gathered}
f=æ^{4}\left(A_{1}+D\right)\left(k_{2}-C r^{2}+B\right)+\mathfrak{æ}^{2}\left[(k _ { 2 } - C r ^ { 2 } + B) \left[\left(A_{1}+D\right) P-\right.\right. \\
\left.\left.-A_{1} D\left(k_{2}-C r^{2}+B\right)\right]-B\left(k_{2}-C r^{2}\right)\left(A_{1}+D\right)^{2}\right]>0
\end{gathered}
$$

где $P=\left(A_{1}^{2}-C^{2}\right) r^{2}+D\left(k_{2}-C r^{2}\right)+A_{1} B$. Выполнив некоторые преобразования, f запишем в виде:

$$
\begin{equation*}
f=\mathfrak{æ}^{2}\left(\left(k_{2}-C r^{2}+B\right)\left[æ^{2}\left(A_{1}+D\right)+\left(A_{1}+D\right)\left(A_{1}^{2}-C^{2}\right) r^{2}\right]+\left[D\left(k_{2}-C r^{2}\right)-A_{1} B\right]^{2}\right)>0 \tag{10}
\end{equation*}
$$

Условие (10) выполняется, очевидно, автоматически при выполнении условия (9). Значит выполнение условий критерия Раусса - Гурвица для линейной автономной системы (7) сводится к выполнению условия

$$
k_{2}-C r^{2}>0
$$

которое, следовательно, является необходимым и достаточным условием асимптотической устойчивости решения $x_{1}=x_{2}=x_{3}=x_{4}=0$ нелинейной автономной (т.к. $r=r_{0} \equiv$ const) системы (4).
5. Неравномерные вращения. Рассмотрим теперь случай неравномерных, почти периодических по времени t, вращений винта с симметричными лопастями ($r=r(t)$, причем $r(t)$-почти периодическая функция времени $t, A_{2}=A_{3}$). Будем предполагать, что

$$
\begin{equation*}
M_{1} \leq r(t) \leq M_{2} \text { и }|\dot{r}(t)|<\varepsilon, \tag{11}
\end{equation*}
$$

где $M_{1} \equiv$ const $>0, M_{2} \equiv$ const $>0, \varepsilon \equiv$ const >0.
Для этого случая запишем линеаризованную систему уравнений возмущенного движения.

$$
\begin{gather*}
D \dot{x_{2}}=-B(t) x_{1}-æ x_{2}-A_{1} r(t) x_{4} \\
A_{1} \dot{x_{4}}=A_{1} \dot{r}(t) x_{1}+A_{1} r x_{2}-k_{2} x_{3}-æ x_{4} \tag{12}\\
\dot{x_{1}}=x_{2} \\
\dot{x_{3}}=x_{4}
\end{gather*}
$$

где $B(t)=\left(m s d+m s^{2}+A_{2}-A_{1}\right) r^{2}(t)+k_{1}>0 ; D=m s^{2}+A_{2}$. Обозначим $B=B(t)=$ $B_{1} r^{2}(t)+B_{2}$, где $B_{1}=m s d+m s^{2}+A_{2}-A_{1}>0, B_{2}=k_{1}>0$.

Tеорема 3. В случае неравномерных, почти периодических по времени t вращений винта с симметричными лопастями для того, чтобы относительное положение равновесия лопастей винта в линейном приближении было асимптотически устойчиво, достаточно, чтобы выполнялось условие

$$
æ>D r_{1}+\frac{B_{1}^{2}\left(M_{2}^{2}-M_{1}^{2}\right)^{2}+4 A_{1}^{2}\left(\varepsilon+M_{2} r_{1}\right)^{2}}{16\left(B_{2}+B_{1} M_{2}^{2}\right) r_{1}},
$$

где

$$
r_{1}=\frac{B_{1}^{2}\left(M_{2}^{2}-M_{1}^{2}\right)^{2}+4 A_{1}^{2} \varepsilon^{2}}{16 D\left(B_{2}+B_{1} M_{2}^{2}\right)+4 A_{1}^{2} M_{2}^{2}} .
$$

Доказателъство. Запишем для неавтономной системы уравнений (12) функцию Ляпунова в виде

$$
V=\frac{1}{2} N x_{1}^{2}+\frac{1}{2} D x_{2}^{2}+\frac{1}{2} k x_{3}^{2}+\frac{1}{2} A_{1} x_{4}^{2}+D r_{1} x_{1} x_{2}
$$

где $r_{1} \equiv$ const >0 и число $N>0$ будут определены позже. Используя критерий Сильвестра находим условие положительной определенности функции V

$$
\begin{equation*}
\frac{1}{4} D\left(N-D r_{1}^{2}\right)>0, \text { т.е. } N>D r_{1}^{2} \tag{13}
\end{equation*}
$$

Вычислим \dot{V} в силу уравнений (12)

$$
\begin{gathered}
\dot{V}=N x_{1} x_{2}-B(t) x_{1} x_{2}-A_{1} r x_{2} x_{4}-æ x_{2}^{2}+k_{2} x_{3} x_{4}+A_{1} \dot{r} x_{1} x_{4}+ \\
+A_{1} r x_{2} x_{4}-k_{2} x_{3} x_{4}-æ x_{4}^{2}+D r_{1} x_{2}^{2}-B(t) r_{1} x_{1}^{2}-A_{1} r r_{1} x_{1} x_{4}-æ r_{1} x_{1} x_{2}
\end{gathered}
$$

или

$$
\dot{V}=-B(t) r_{1} x_{1}^{2}-æ x_{4}^{2}-\left(æ-D r_{1}\right) x_{2}^{2}+A_{1}\left(\dot{r}-r r_{1}\right) x_{1} x_{4}+\left(N-B(t)-æ r_{1}\right) x_{1} x_{2}
$$

Мы получили \dot{V}, как квадратичную форму переменных x_{1}, x_{2}, x_{4}. Запишем матрицу соответствующую этой квадратичной форме (для удобства будем полагать, что первому столбцу и первой строке соответствует переменная x_{2}, второму столбцу и второй строке соответствует переменная x_{4}, третьему столбцу и третьей строке соответствует переменная x_{1}):

$$
\left(\begin{array}{ccc}
-æ+D r_{1} & 0 & \frac{1}{2}\left(N-B(t)-æ r_{1}\right) \\
0 & -æ & \frac{1}{2} A_{1}\left(\dot{r}-r r_{1}\right) \\
\frac{1}{2}\left(N-B(t)-æ r_{1}\right) & \frac{1}{2} A_{1}\left(\dot{r}-r r_{1}\right) & -B(t) r_{1}
\end{array}\right)
$$

Для того, чтобы \dot{V} была определенно отрицательной по переменным x_{1}, x_{2}, x_{4}, используя критерий Сильвестра, необходимо, чтобы выполнялись следующие условия:

$$
\begin{gather*}
æ>D r_{1} \tag{14}\\
f(æ)=\left(-æ+D r_{1}\right) æ B r_{1}+\frac{1}{4} æ G^{2}(t)-\frac{1}{4}\left(-æ+D r_{1}\right) A_{1}^{2}\left(\dot{r}-r r_{1}\right)^{2}<0, \tag{15}
\end{gather*}
$$

где $G(t)=N-B(t)-æ r_{1}$.
Условие (15) перепишем в виде

$$
-f(æ)=B r_{1} æ^{2}-æ\left[D B r_{1}^{2}+\frac{1}{4} G^{2}(t)+\frac{1}{4} A_{1}^{2}\left(\dot{r}-r r_{1}\right)^{2}\right]+\frac{1}{4} D r_{1} A_{1}^{2}\left(\dot{r}-r r_{1}\right)^{2}>0
$$

Возьмем $N=æ r_{1}+B_{2}+B_{1} \frac{M_{1}^{2}+M_{2}^{2}}{2}$. Очевидно, что при выполнении условия (14), условие (13) выполняется автоматически (для выбранного N).

Оценим $-f(æ)$ снизу (с учетом (11) и того, что æ >0).

$$
-f(æ)>B(t) r_{1} æ^{2}-æ\left[D r_{1}^{2} B(t)+\frac{1}{16} B_{1}^{2}\left(M_{2}^{2}-M_{1}^{2}\right)^{2}+\frac{1}{4} A_{1}^{2}\left(\varepsilon+M_{2} r_{1}\right)^{2}\right]>0,
$$

т.е.

$$
16 B(t) r_{1} æ^{2}-æ\left[16 D r_{1}^{2} B(t)+B_{1}^{2}\left(M_{2}^{2}-M_{1}^{2}\right)^{2}+4 A_{1}^{2}\left(\varepsilon+M_{2} r_{1}\right)^{2}\right]>0
$$

Значит

$$
\begin{aligned}
æ> & \frac{16 D r_{1}^{2} B(t)+B_{1}^{2}\left(M_{2}^{2}-M_{1}^{2}\right)^{2}+4 A_{1}^{2}\left(\varepsilon+M_{2} r_{1}\right)^{2}}{16 B(t) r_{1}}= \\
& =D r_{1}+\frac{B_{1}^{2}\left(M_{2}^{2}-M_{1}^{2}\right)^{2}+4 A_{1}^{2}\left(\varepsilon+M_{2} r_{1}\right)^{2}}{16 \overline{B(t) r_{1}}>} \\
& >D r_{1}+\frac{B_{1}^{2}\left(M_{2}^{2}-M_{1}^{2}\right)^{2}+4 A_{1}^{2}\left(\varepsilon+M_{2} r_{1}\right)^{2}}{16\left(B_{2}+B_{1} M_{2}^{2}\right) r_{1}}
\end{aligned}
$$

Следовательно,

$$
\begin{equation*}
æ>D r_{1}+\frac{B_{1}^{2}\left(M_{2}^{2}-M_{1}^{2}\right)^{2}+4 A_{1}^{2}\left(\varepsilon+M_{2} r_{1}\right)^{2}}{16\left(B_{2}+B_{1} M_{2}^{2}\right) r_{1}} \tag{16}
\end{equation*}
$$

Очевидно, что условия (14) и (16) можно объединить одним условием (16). Осталось выбрать число $r_{1}>0$. Очевидно, что r_{1} нужно выбирать таким образом, чтобы функция

$$
g\left(r_{1}\right)=D r_{1}+\frac{B_{1}^{2}\left(M_{2}^{2}-M_{1}^{2}\right)^{2}+4 A_{1}^{2}\left(\varepsilon+M_{2} r_{1}\right)^{2}}{16\left(B_{2}+B_{1} M_{2}^{2}\right) r_{1}}
$$

принимала наименьшее положительное значение. Решая эту задачу, получаем

$$
\begin{equation*}
r_{1}=\frac{B_{1}^{2}\left(M_{2}^{2}-M_{1}^{2}\right)^{2}+4 A_{1}^{2} \varepsilon^{2}}{16 D\left(B_{2}+B_{1} M_{2}^{2}\right)+4 A_{1}^{2} M_{2}^{2}} \tag{17}
\end{equation*}
$$

Значит, мы получили оценку (16) на параметр æ, где r_{1} это выражение (17). Следовательно, если æ удовлетворяет условию (16), то функция $\dot{V} \leq 0$ в пространстве переменных $x_{1}, x_{2}, x_{3}, x_{4}$, причем $V=0$ на множестве $W=\left\{x:\left(x_{1}=x_{2}=x_{4}=0\right)\right\}$, которое, очевидно, не включает в себя целых полутраекторий системы уравнений (12) с почти периодическими коэффициентами. Значит, по теореме, доказанной в работе [5], решение $x_{1}=x_{2}=x_{3}=x_{4}=0$ линеаризованной системы (12) будет эквиасимптотически устойчивым.
6. Анализ полученных результатов. Сравним результаты, полученные в теоремах 1 и 2 . Будем рассматривать равномерные вращения винта с симметричными лопастями (т.е. $A_{2}=A_{3}$) как основную модель исследования. Тогда равномерные вращения винта с несимметричными лопастями (т.е. $A_{2} \neq A_{3}$) можно рассматривать как влияние

А.А. Игнатьев

механических несовершенств модели винта на устойчивость относительного положения равновесия лопастей. Результаты теорем 1 и 2 полностью согласуются, т.к. результат теоремы 1 вытекает из теоремы 2 при $C=0\left(\right.$ т.е. $A_{2}=A_{3}$). Кроме того, теорема 2 дает условие, при выполнении которого система теряет устойчивость:

$$
k_{2}-C r^{2}<0 .
$$

Сравним теперь результаты, полученные в теоремах 1 и 3 . Так как в действительности не бывает "полностью"равномерных процессов, то неравномерные, почти периодические по t, вращения винта с симметричными лопастями можно рассматривать как влияние погрешностей системы управления, обеспечивающей вращение вала, на устойчивость относительного положения равновесия лопастей. Очевидно, что если считать, что угловая скорость вращения вала $r(t)$ "близка"к $r_{0} \equiv$ const т.е. $\left|M_{2}-M_{1}\right| \rightarrow 0$ и $\varepsilon \rightarrow 0$, то устремляя в (16) $r_{1} \rightarrow 0$, получаем, что æ >0, что полностью согласуется с результатом теоремы 1 , где $r(t)=r_{0} \equiv$ const. Чем больше будут величины $\left|M_{2}-M_{1}\right|$ и ε, тем, очевидно, более "узкой"будет область возможных значений параметра æ, обеспечивающего асимптотическую устойчивость относительного положения равновесия лопастей.

1. Савченко А.Я., Болграбская И.А., Кононьхин Г.А. Устойчивость движения систем связанных твердых тел. - Киев:Наук.думка, 1991. - 168 с.
2. Харламов П.В. Об уравнениях движения системы твердых тел //Механика твердого тела. - 1972. - Вып. 4. - С. 52-73.
3. Барбашия Е.А., Красовский Н.Н. Об устойчивости движения в целом //Докл. АН. -- 1952. -- 86, вып. 3. С. 453-456.
4. Малкин И.Г. Тсория устойчивости движения. - М.: Наука, 1966. - 530 с.
5. Игнатьев А.А. Эквиасимптотическая устойчивость почти периодических систем //Доклады НАН Украины. - 1997. - Вып. 10. -С. 32-35.

Ин-т прикл. математики и механики НАН Украины, Донецк Получено 15.07.01 ignat@iamm.ac.donetsk.ua

