УДК 539.216.2

PACS: 07.85.Fv, 61.05.cm, 61.05.cf, 68.37.Og, 68.65.Ac

РОСТ, СТРУКТУРА И ОПТИЧЕСКИЕ СВОЙСТВА МНОГОСЛОЙНЫХ РЕНТГЕНОВСКИХ ЗЕРКАЛ W/MG₂Si Л. Е. Конотопский, И. А. Копылец, В. А. Севрюкова, Е. Н. Зубарев, В. В. Мамон, В. В. Кондратенко

Национальный технический университет «Харьковский политехнический институт»,

г. Харьков, Украина

Поступила в редакцию 16.03.2017

Электронно-микроскопическими и рентгенодифракционными методами исследована структура многослойных рентгеновских зеркал (MP3) W/Mg_2Si . Показано, что в процессе изготовления MP3 W/Mg_2Si наблюдается межслоевое взаимодействие, в результате которого формируется перемешанная зона на границе Mg_2Si -W из силицида вольфрама. Установлено, что состав перемешанной зоны зависит от толщины слоев, составляющих период рентгеновского зеркала. В MP3 W/Mg_2Si с периодом 3,1 нм формируется перемешанная зона силицида вольфрама с преимущественным содержанием вольфрама: W_3Si и/или W_5Si_3 . В MP3 с периодом 14,2 нм состав перемешанной зоны близок к WSi_2 . Плотности перемешанных зон в MP3 W/Mg_2Si с периодами 3,1 нм и 14,2 нм составляют 16,1 г/см³ и 8,2 г/см³ соответственно. Проведена оценка оптических свойств MP3 W/Mg_2Si . Показано, что на длине волны 9,89 нм отражательная способность неоптимизированного по конструкции MP3 W/Mg_2Si находится на уровне с оптимизированным MP3 W/B_4C .

Ключевые слова: рентгеновская дифрактометрия, многослойное рентгеновское зеркало, магнетронное распыление, силицид магния, вольфрам.

РІСТ, СТРУКТУРА ТА ОПТИЧНІ ВЛАСТИВОСТІ БАГАТОШАРОВИХ РЕНТГЕНІВСЬКИХ ДЗЕРКАЛ W/MG₂Si Л. Є Конотопський, І. А. Копилець, В. А. Севрюкова, Є. М. Зубарєв, В. В. Мамон, В. В. Кондратенко

Електронно-мікроскопічними та рентгенодифракційними методами досліджено структуру багатошарових рентгенівських дзеркал (БРД) W/Mg₂Si. Показано, що підчас виготовлення БРД W/Mg₂Si спостерігається міжшарова взаємодія, в результаті якої формується змішана зона на границі Mg₂Si-W з силіциду вольфраму. Встановлено, що склад змішаних зон залежить від товщини шарів, що складають період рентгенівського дзеркала. У БРД W/Mg₂Si з періодом 3,1 нм формується змішана зона силіциду вольфраму з переважним вмістом кремнію: W₃Si та/або W₅Si₃. У БРД з періодом 14,2 нм склад змішаної зони близький до WSi₂. Щільність змішаних зон у БРД W/Mg₂Si з періодами 3,1 нм та 14,2 нм складає 16,1 г/см³ та 8,2 г/см³ відповідно. Оцінені оптичні властивості БРД W/Mg₂Si. Показано, що на довжині хвилі 9,89 нм відбивна здатність не оптимізованого по конструкції БРД W/Mg₂Si знаходиться на рівні з оптимізованим БРД W/B₄C.

Ключові слова: рентгенівська дифрактометрія, багатошарове рентгенівське дзеркало, магнетронне розпилення, силіцид магнію, вольфрам.

GROWTH, STRUCTURE AND OPTICAL FEATURES OF W/MG₂Si MULTILAYER X-RAY MIRRORS L. E. Konotopskyi, I. A. Kopylets, V. A. Sevrykova, E. N. Zubarev,

V. V. Mamon, V. V. Kondratenko

Transmission electron microscopy and low-angle X-ray diffraction methods are used for investigations of W/Mg₂Si multilayers structure. It is shown that due to interlayer interaction mixed zones of tungsten silicide are formed on the Mg₂Si-W interface during deposition of W/Mg₂Si multilayers. It is found that the composition of the mixed zones depends on thickness of the layers in X-ray mirror. In the W/Mg₂Si multilayers with period of 3.1 nm the intermixed zones of tungsten silicide with the predominant content of tungsten namely W₃Si and/or W₅Si₃, can be formed. In the multilayers with a period of 14.2 nm the composition of mixed zones is close to WSi₂. Densities of mixed zones in multilayers with periods of 3.1 nm and 14.2 nm are 16.1 g/cm³ and 8.2 g/cm³ respectively. It is shown that reflectivity of the non-optimized in construction W/Mg₂Si multilayer at wavelength of 9.89 nm is close to that of optimized W/B₄C multilayer.

Keywords: X-ray diffraction, multilayer X-Ray mirror, DC magnetron sputtering, magnesium silicide, tungsten.

^{20 ©} Конотопский Л. Е., Копылец И. А., Севрюкова В. А., Зубарев Е. Н., Мамон В. В., Кондратенко В. В., 2017

введение

Развитие технологий нанесения пленочных покрытий позволило изготавливать многослойные периодические композиции с нанометровыми толщинами слоев. Многослойные рентгеновские зеркала являются разновидностью таких покрытий [1]. Они представляют собой искусственные кристаллы, в которых в одном направлении реализовано периодическое чередование слоев двух материалов, соотношение оптических констант которых обеспечивает максимальный коэффициент отражения зеркала. МРЗ широко используются для управления рентгеновским излучением в диапазоне длин волн 0,5-50 нм в различных областях науки и техники, среди которых рентгеновская астрофизика и рентгеновский спектральный анализ.

Особый интерес для двух указанных выше областей применения МРЗ представляет часть спектра 0,9–2,5 нм. Данный участок электромагнитного спектра содержит характеристические линии таких элементов, как Mg, Na, F, O (Mg-k α = 0,989 нм, Na-k α = 1,191 нм, F-k α = 1,832 нм, O-k α = 2,362 нм) [2]. Контроль содержания указанных элементов в сталях, алюминиевых и магниевых сплавах является важным как для металлургии, так и для других отраслей промышленности.

В рентгеновской астрофизике в указанном участке спектра планируются исследования черных дыр, нейтронных звезд, наблюдение гамма-всплесков [3].

В рентгеновских спектрометрах с волновой дисперсией традиционно для указанного диапазона длин волн используются MP3 W/ Si и W/B₄C. Улучшение оптических характеристик данных рентгеновских зеркал позволит увеличить чувствительность прибора, а также уменьшить время экспозиции при анализе исследуемых образцов. Поэтому существует целый ряд работ [4, 5, 6], посвященных совершенствованию методов изготовления рентгеновских зеркал W/Si и W/B₄C для повышения их коэффициента отражения. Тем не менее, отражательная способность MP3 W/Si и W/B₄C даже в случае отсутствия «дефектов» конструкции ограничена оптическими константами слабо поглощающих слоев Si и B₄C [7]. Поэтому поиск новых пар материалов является актуальной задачей.

По оптическим характеристикам наиболее перспективным в рассматриваемой части рентгеновского спектра слабопоглощающим материалом является Mg. Однако низкая температура плавления Mg ограничивает возможность выращивания короткопериодных зеркал на его основе. В работе [8] указывается, что методом магнетронного распыления не удается вырастить на основе магния (W/Mg) зеркала с периодом меньше 4 нм. При этом типичное значение периода зеркала при его использовании в рентгеновских спектрометрах с волновой дисперсией составляет примерно 3 нм.

Для решения проблемы создания короткопериодных зеркал на основе магния целесообразно перейти к более тугоплавким материалам, например, силициду магния Mg₂Si. Силицид магния имеет близкие к Mg оптические константы, что делает данный материал перспективным для изготовления MP3 на его основе. При этом открывается возможность выращивать сплошные слабо поглощающие слои в отличие от Mg при меньших толщинах. Однако это предположение нуждается в экспериментальном подтверждении.

Вторым материалом в зеркале целесообразно использовать W, как и в случае зеркал W/Si и W/B₄C. На длине волны Mg-k α = 0,989 нм при угле падения 9° теоретически рассчитанный коэффициент отражения идеального MP3 W/Mg,Si выше, чем у MP3 W/Si($R_{W/Si} = 54,3$ %) и W/B₄C(R_{W/B4C} = 52,1 %) и составляет 59,2 %. Необходимо отметить, что в MP3 W/Si и W/ В₄С в результате межслоевого взаимодействия формируются перемешанные зоны [9, 10, 11], которые приводят к снижению коэффициента отражения. В этой связи необходимо знать реальную структуру MP3 W/ Mg₂Si. Это позволит предложить оптимальную конструкцию зеркала и оценить его оптические характеристики.

Ранее рентгеновские зеркала W/Mg_2Si исследовались в работе [12]. Было показано, что в процессе осаждения многослойной композиции W/Mg_2Si с периодом 8 нм наблюдается взаимодействие W с Si.

В результате формируются перемешанные зоны на границах W-Mg, Si и Mg, Si-W. Методом эллипсометрии было установлено, что толщина зоны, которая формируется на границе Mg₂Si-W, составляет 2 нм, толщина второй зоны — 0,5 нм. Вместе с тем остались невыясненными такие важные параметры для оптимизации конструкции зеркал и последующей их эксплуатации как плотность перемешанных зон, влияние толщин слоев W и Mg₂Si на эволюцию зон. Кроме того остается открытым вопрос о возможности выращивания MP3 W/Mg,Si с периодом 3 нм. В этой связи, целью данной работы было исследование особенностей формирования перемешанных зон в короткопериодных МРЗ W/Mg₂Si в исходном состоянии, оценка отражательной способности зеркал с учетом их реальной структуры и сравнение оптических характеристик данного рентгеновского зеркала с MP3 W/B₄C в Mg-Ка и Na-Ка излучении.

МЕТОДИКА

Образцы MP3 W/Mg₂Si на стеклянных и монокристаллических кремниевых (111) подложках были изготовлены методом прямоточного магнетронного распыления в среде аргона. МРЗ были осаждены с периодами (толщиной пары слоев) 3,1 нм и 14,2 нм и количеством пар слоев 120 и 40 соответственно Вакуумная камера предварительно прогревалась и откачивалась до давления 10⁻⁴ Па. Давление аргона во время осаждения составляло 0,3 Па. Подложка перед осаждением очищалась пучком ионов аргона. Толщина слоев контролировалась путем задания скорости транспортировки подложки над мишенями при стабилизации скоростей осаждения из мишеней W и Mg₂Si. В процессе нанесения многослойного покрытия температура подложки не превышала 50 °С.

Структура MP3 W/Mg₂Si исследовалась с помощью просвечивающей электронной микроскопии и рентгеновской дифрактометрии с последующим компьютерным моделированием.

Для получения электронно-микроскопических изображений поперечных срезов и картин электронной микродифракции использовался просвечивающий электронный микроскоп ПЭМ-У. Величина ускоряющего напряжения составляла 100 kV.

Съемка малоугловых рентгеновских дифрактограмм проводилась в $\theta/2\theta$ геометрии на дифрактометре ДРОН-3М в излучении Сик α_1 . Монохроматизация первичного пучка обеспечивалась кососрезанным кремниевым (110) монохроматором. Моделирование экспериментальных кривых проводилось в программе *X*-Ray Calc [13].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Малоугловая рентгеновская дифрактограмма от MP3 W/Mg₂Si с периодом 3,1 нм в исходном состоянии (рис. 1) свидетельствует о высоком уровне периодичности слоев. Наличие дифракционных максимумов на углах >14° указывает на низкий уровень среднеквадратичной шероховатости границ раздела слоев. Удовлетворительное совпадение экспериментальной и расчетной малоугловой кривой рентгеновской дифракции достигается при значении плотности слоев W ~16,2 г/см³. Полученное значение плотности слоев вольфрама значительно меньше табличного значения для массивного W (ρ = 19,25 г/см³ [7]).

Рис. 1. Экспериментальная (——) и теоретическая (----) малоугловые рентгеновские дифрактограммы в излучении Cu-kα₁ от MP3 W/Mg₂Si с периодом 3,1 нм

Принимая во внимание результаты работы [2], мы считаем, что уменьшение плотности сильно поглощающего слоя связано с формированием перемешанных зон в MP3 W/Mg₂Si в результате взаимодействия W с Si (W с Mg не взаимодействует [14]). Для того чтобы подтвердить этот факт прямым методом, были проведены электронно-микроскопические исследования поперечных срезов MP3 W/Mg₂Si.

Согласно данным электронномикроскопического изображения поперечного среза MP3 W/Mg₂Si с периодом 3,1 нм (рис. 2а) в исходном состоянии представляет собой структуру периодически чередующихся слоев двух материалов. Толщины слоев, как следует из фотометрирования поперечного среза (рис. 26), близки. Картина электронной микродифракции (рис. 2в) свидетельствует о том, что слои силицида магния кристаллические. Необходимо отметить, что силицид магния формируется в равновесной кубической, а не гексагональной модификации, как наблюдалось в многослойной системе Si/Mg₂Si [15]. Это косвенно свидетельствует об отсутствии механических напряжений в MP3 W/Mg,Si, достаточных для формирования силицида магния в гексагональной модификации. Также на картине электронной микродифракции присутствует гало, соответствующее аморфным слоям второго материала. Положение гало находится близко к положению рефлексов соответствующих самым интенсивным линиям W, WSi, и W₅Si₃ ($d_{W(110)} = 0,2238$ нм, $d_{WSi2(511)} = 0,212$ нм, $d_{WSSi3(411)} = 0,2109$ нм). Поэтому отнести гало к чистому вольфраму или к его силицидам не представляется возможным.

Таким образом, с помощью электронной микроскопии поперечных срезов не удается визуализировать наличие перемешанных зон в MP3 W/Mg₂Si с периодом 3,1 нм. Объяснить их отсутствие на электронномикроскопическом изображении (рис. 2*a*) можно исходя из предположения, что весь материал одного из слоев, в данном случае W, расходуется на формирование перемешанной зоны. Для того чтобы проверить данное предположение, было изготовлено зеркало W/Mg,Si с большим периодом 14,2 нм и соответственно большими толщинами составляющих слоев (t_w = 5,8 нм, t_{Mg2Si} = 8,4 нм). Электронно-микроскопическое изображение поперечного среза MP3 W/Mg₂Si с периодом 14,2 нм (рис. 3а) свидетельствует о том, что данное рентгеновское зеркало состоит из трех чередующихся слоев. Перемешанная зона формируется на границе Mg, Si-W. Определить толщины слоев с высокой точностью в рентгеновском зеркале по данным картины поперечного среза невозможно.

Рис. 2. Электронно-микроскопическое изображение поперечного среза W/Mg₂Si в исходном состоянии, подложка снизу — *a*. Распределение интенсивности на изображении поперечного среза W/Mg₂Si — *б*. Картина электронной микродифракции от поперечного среза W/Mg₂Si в исходном состоянии — *в*

Тем не менее, фотометрирование позволяет получить оценочные данные о толщинах слоев. Согласно данным, полученным в результате фотометрирования электронномикроскопического изображения (рис. 3δ), толщина зоны, которая формируется при

Рис. 3. Электронно-микроскопическое изображение поперечного среза W/Mg₂Si с периодом 14,2 нм в исходном состоянии, подложка снизу — *а*. Фотометрирование одного периода на изображении поперечного среза W/Mg₂Si — *б*

осаждении силицида магния на вольфрам, составляет ~2,5 нм. Полученный результат о формировании перемешанной зоны и ее толщине согласуется с данными, которые получили авторы работы [12]. Однако в нашем случае зона выявляется только на одной границе раздела слоев (Mg_2Si -W). Перемешанная зона на границе W- Mg_2Si не выявляется. Это может быть связано с тем, что зона имеет такую плотность, которая не обеспечивает абсорбционный контраст на электронномикроскопическом изображении. Кроме того, выявление этой зоны осложняет ее малая толщина (0,5 нм), как следует из работы [12].

Отсутствие на электронно-микроскопическом изображении перемешанных зон в MP3 W/Mg₂Si с периодом 3,1 нм обусловлено тем, что большая часть слоя или весь слой вольфрама провзаимодействовал с кремнием. Поэтому мы считаем, что рентгеновское зеркало W/Mg,Si с периодом 3,1 нм представляет собой чередование слоев Mg₂Si и W₂Si₂.

Известно, что в системе W-Si могут формироваться следующие силициды: W_5Si_3 , WSi_2 и метастабильный W_3Si [16]. Мы проанализировали возможность формирования каждого из этих силицидов на основании моделирования экспериментального спектра малоугловой рентгеновской дифракции от MP3 W/Mg₂Si с периодом 3,1 нм и 14,2 нм. Моделирование выполнялось с учетом данных электронно-микроскопических исследований поперечных срезов о соотношении толщин слоев в периоде.

Для зеркал с периодом 3,1 нм хорошее совпадение экспериментального и теоретического спектров наблюдается и при моделировании двухслойной моделью W_3 Si-Mg₂Si с плотностью перемешанной зоны $\rho = 16 \text{ г/см}^3$. В данном случае расчетное значение плотности перемешанной зоны находится ближе всего к значению плотности массивного W_3 Si, которое приводится в литературе $\rho_{\text{пит}}(W_3$ Si) = 16,1 г/см³ [16].

При моделировании вольфрамсодержащего слоя силицидом $W_5 Si_3$ хорошее совпадение расчетной и экспериментальной кривой для короткопериодного зеркала достигается, если предположить, что не весь слой вольфрама провзаимодействовал с кремнием. В случае, когда не провзаимодействовавшие слои вольфрама и силицида $W_5 Si_3$ имеют табличные плотности, толщина вольфрама составляет 0,6 нм. Если принять во внимание, что в пленочном состоянии вольфрам имеет плотность на 10 % меньше, то его толщина составит 0,8 нм.

Разделить варианты с образованием W_5Si_3 с не провзаимодействовавшим W и W_3Si с помощью моделирования не представляется возможным.

Моделирование экспериментального спектра от MP3 W/Mg_2Si в рамках двухслойной модели WSi_2-Mg_2Si не позволяет удовлетворительно описать экспериментальную дифракционную кривую.

Полученные результаты свидетельствуют о том, что имеющихся данных недостаточно, чтобы однозначно указать состав W-содержащего слоя в MP3 W/Mg₂Si с периодом 3,1 нм. Однако мы можем говорить о том, что его плотность составляет ~16 г/см³, что меньше плотности вольфрама. Необходимо отметить, что величина среднеквадратичной шероховатости, с которой выполняется моделирование, не превышает 0,3 нм.

Совпадение экспериментального и теоретического спектров малоугловых рентгеновских дифракций от MP3 W/Mg₂Si с периодом 14,2 нм (рис. 46) достигается при значении плотности перемешанной зоны 8,2 г/см³. Полученное значение плотности перемешанной зоны находится ближе всего к плотности

Рис. 4. Экспериментальные (—) и теоретические (-----) спектры малоугловых рентгеновских дифракций в излучении Cu-k α_1 от MP3 W/Mg₂Si с периодами 3 нм — *а* и 14,2 нм — *б*

WSi₂ ($\rho = 9,528$ г/см³). В работе [9] авторы показали, что в исходном состоянии все слои составляющие MP3 W/Si (а именно W, Si, W₅Si₃ и WSi₂) аморфные. Плотности слоев отличаются от табличных значений на 7–9 %. Полученное нами значение плотности перемешанной зоны в MP3 W/Mg₂Si с периодом 14,2 нм меньше табличного значения плотности массивного WSi₂ на 14,4 %. Такое расхождение может быть связано с тем, что при моделировании трудно корректно учесть наличие свободного магния (см. ниже) в слабопоглощающем слое Mg₂Si.

Таким образом, в системе W-Mg₂Si формируются перемешанные зоны, состав которых зависит от толщин слоев в многослойном покрытии. В MP3 W/Mg₂Si с периодом 3,1 нм формируются перемешанные зоны, состав которых близок к силицидам с минимальным содержанием кремния: W₅Si₃ или W₃Si. Это обусловлено малой толщиной кремнийсодержащего слоя ($t_{Mg2Si} = 1,51$ нм), которая сопоставима с толщиной W ($t_w = 1,5$ нм). При этом не весь кремний взаимодействует с вольфрамом, о чем свидетельствует наличие рефлексов силицида магния на электронной микродифракционной картине от поперечного среза (рис. 2*в*).

В MP3 W/Mg₂Si с периодом 14,2 нм толщина слоя Mg₂Si значительно превышает толщину W ($t_w = 5,8$ нм, $t_{Mg_SSi} = 8,4$ нм). В этом случае количество кремния не ограничивает формирование силицида вольфрама, обогащенного Si, а именно WSi₂. Этот силицид имеет наибольшую отрицательную теплоту образования среди всех возможных силицидов в данной композиции: $\Delta H_{298,15}^{0}$ (W₅Si₃) = -9,3 ккал/ат. металла [17], $\Delta H_{298,15}^{0}$ (MSi₂) = -22,2 ккал/ат. металла [17], $\Delta H_{298,15}^{0}$ (MSi₂) = -5,07 ккал/ат. металла [18]. Таким образом, формирование силицидов вольфрама вместо силицида магния направленно на уменьшение свободной энергии системы.

Формирование силицида вольфрама на границе Mg_2Si -W сопровождается обогащением слоя Mg_2Si магнием. Хотя на микродифракционной картине от MP3 W/Mg_Si в исходном состоянии магний не выявляется, однако в результате отжига MP3 W/Mg_Si при T = 400 °C на микродифракционной картине появляется рефлекс, соответствующий 100 %-ой линии Mg (рис. 5).

Теоретически рассчитанная отражательная способность MP3 W/Mg₂Si с периодом 3,1 нм на длине волны Mg-k α = 0,989 нм, которое исследовалось в данной работе, с реальной структурой слоев составляет 30 % (рис. 6). Это близко к расчетному значению

Рис. 5. Электронная микродифракция от поперечного среза MP3 W/Mg₂Si с периодом 3,1 нм отожженного при T = 400 °C

отражательной способности MP3 W/B₄C — 29 % (рис. 6). Расчет отражательной способности MP3 W/B₄C выполнялся с учетом реальной структуры зеркала и оптимальным соотношением толщин слоев. Данные для расчета были взяты из работы [11]. Таким образом, отражательная способность неоптимизированного MP3 W/Mg₂Si находится на одном уровне с MP3 W/B₄C с оптимальной конструкцией.

Эффективность MP3 W/Mg₂Si и W/B₄C с периодами \sim 3 нм была оценена на рентгеновском спектральном приборе СПРУТ

Рис. 6. Теоретически рассчитанный коэффициент отражения для MP3 W/Mg₂Si с периодом 3,1 нм с учетом формирования перемешанных зон и с оптимальным соотношением толщин слоев (•••••). Теоретический расчет коэффициента отражения для MP3 W/Mg₂Si с периодом 3,1 нм, которое было исследовано в данной работе (——). Теоретический расчет коэффициента отражения для MP3 W/B₄C, с которым проводилось сравнение (-----)

[19]. Согласно проведенным измерениям отражательная способность MP3 W/Mg₂Si на длине волны Mg-k α = 0,989 нм находится на уровне с отражательной способностью MP3 W/B₄C (рис. 7*a*). Необходимо отметить, что полученные экспериментальные данные по соотношению интенсивностей MP3 W/B₄C и W/Mg₂Si согласуются с теоретически рассчитанными (рис. 6).

Рис. 7. Эффективность MP3 W/Mg₂Si (—) в сравнении с MP3 W/B₄C (----) в излучении Mg-K α — *a*, Na-K α — δ

На большей длине волны, соответствующей характеристическому излучению Na-k α = 1,191 нм, преимущество неоптимизированного MP3 W/Mg₂Si над MP3 W/B₄C составляет 5 относительных процентов.

Необходимо отметить, что при изготовлении MP3 W/Mg₂Si формирование перемешанных зон не учитывалось. Это повлияло на соотношение толщин слоев в MP3. Изготовление рентгеновского зеркала W/ Mg₂Si с оптимальным соотношением толщин слоев, согласно теоретическому расчету, приведет к повышению его отражательной способности на длине волны Mg-k α = 0,989 нм на 10 % (рис. 6).

выводы

Проведенные исследования показали, что метод магнетронного распыления обеспечивает возможность выращивания высокосовершенных MP3 W/Mg₂Si с периодом ~3 нм, что подтверждается данными малоугловой рентгеновской дифракции и электронной микроскопии поперечных срезов. Среднеквадратичная шероховатость межслоевых границ раздела этих зеркал составляет ~0,3 нм, что вполне приемлемо для зеркал с таким периодом.

Важной особенностью формирования МРЗ W/Mg,Si является межслоевое взаимодействие в процессе изготовления, в результате которого в сильнопоглощающем слое образуется перемешанная зона на границе Mg₂Si-W из силицида вольфрама, а слой Mg,Si обогащается магнием. Состав и ширина перемешанной зоны зависят от толщины слоев, составляющих период. Так, в исходном состоянии в MP3 W/Mg₂Si с периодом 3,1 нм формируется перемешанная зона, стехиометрический состав которой близок к силицидам вольфрама с наименьшим содержанием кремния: W₃Si и/или W₅Si₃. При увеличении периода MP3 до 14,2 нм состав перемешанной зоны меняется и на межслоевых границах формируется силицид вольфрама с составом близким к WSi₂. Моделирование экспериментальных спектров малоугловых рентгеновских дифракций свидетельствует о том, что плотности перемешанных зон в МРЗ W/Mg,Si с периодами 3,1 нм и 14,2 нм составляют 16,1 г/см³ и 8,2 г/см³ соответственно. Переход от силицида магния к силициду вольфрама обусловлен стремлением системы к понижению свободной энергии за счет усиления межатомных связей у соединений с большей отрицательной теплотой образования.

Показано, что отражательная способность неоптимизированного MP3 W/Mg₂Si находится на уровне с MP3 W/B₄C на длине волны Mg-K α = 9,89 нм. На длине волны Na-K α = 1,191 нм преимущество неоптимизированного MP3 W/Mg₂Si над MP3 W/B₄C составляет 5 %. Согласно расчетам оптимизация соотношения толщин слоев рентгеновского зеркала W/Mg₂Si с учетом формирования перемешанных зон повысит его отражательную способность на 10 % на длине волны 9,89 нм. Представленные результаты свидетельствуют о перспективности использования короткопериодных MP3 W/Mg₂Si в рентгеноспектральном анализе для определения таких элементов, как Mg, Na, F, O.

ЛИТЕРАТУРА

- Spiller E. Low-Loss Reflection Coatings Using Absorbing Materials // Appl. Phys. Lett. — 1972. — Vol. 20, No. 9. — P. 365–367.
- Блохин М. А., Швейцер И. Г. Рентгеноспектральный справочник. — М.: «Наука», 1982. — 376 с.
- Yongwei Dong. The *x*-ray timing and polarization satellite 1, 2, 3: uncovering the mysteries of black holes and extreme physics in the universe // Proc. of SPIE. 2014. Vol. 9144. P. 91443O-1–91443O-7.
- David L. Windt. Reduction of stress and roughness by reactive sputtering in W/B₄C *X*-ray multilayer films // Proc. of SPIE. 2007. Vol. 6688. P. 66880R-1–66880R-10.
- Kristin K. Madsen, Fiona A. Harrison, Peter H. Mao, Finn E. Christensen, Carsten P. Jensen, Nicolai Brejnholt, Jason Koglin, Michael J. Pivovaroff Optimizations of Pt/SiC and W/ Si multilayers for the Nuclear Spectroscopic Telescope Array // Proc. of SPIE. — 2009. — Vol. 7437. — P. 743716-1–743716-11.
- Michaelsen C., Ricardo P., Anders D. Improved graded multilayer mirrors for XRD applications // Adv. X-Ray Anal. — 2000. — Vol. 42. — P. 308–320.
- 7. http://cxro.lbl.gov/
- Platonov Y., Kazuaki Shimizu, Hiroshi Kobayashi, Gary Fournier, Jim Rodriguez. Mg₂Sibased multilayer XRF analyzers with two- and three-layer structure design // Adv. X-Ray Anal. — 2009. — Vol. 52. — P. 129–134.
- Першин Ю. П., Девизенко А. Ю., Мамон В. В., Чумак В. С., Кондратенко В. В. Структура, фазовый состав и модель роста аморфных многослойных рентгеновских зеркал W-Si, изготовленных методом магнетронного распыления // ЖФИП. — 2016. — Т. 1, № 1. — С. 27–41.
- Решетняк Е. Н., Малыхин С. В., Першин Ю. П., Пугачев А. Т. Рентгенографический анализ периодических пленочных композиций W/Si // Вопросы атомной науки и техники. — 2003. — № 3. — С. 161–167.

- Копылец И. А., Кондратенко В. В., Зубарев Е. Н., Рощупкин Д. В. Особенности формирования короткопериодных много-слойных композиций W/B₄C // ЖТФ. 2012. Т. 82, вып. 12. С. 101–107.
- Pierre Boher, Philippe Houdy, Kuhne M., Muller P., Barchewitz R., Delaboudiniere P., David Smith. Tungsten/Magnesium Silicide Multilayers for Soft X-Ray Optics // J. X-ray Sci. Technol. — 1992. — Vol. 3, No. 2. — P. 118–132.
- 13. http://sci-progs.com/
- 14. Диаграммы состояния двойных металлических систем. Справочник / Под ред. Н. П. Лякишева. М.: «Машиностроение», 2001, Т. 3, Книга 1. 872 с.
- Конотопский Л. Е., Копылец И. А., Севрюкова В. А., Зубарев Е. Н., Кондратенко В. В. Особенности роста наноразмерных слоев Mg₂Si в многослойных рентгеновских зеркалах Si/Mg₂Si // J. Nano- Electron. Phys. 2016. Т. 8, № 2. С. 02021-1–02021-6.
- Свойства, получение и применение тугоплавких соединений. Справочник / Под ред. Т. Я. Косолаповой. — М: «Металлургия», 1986. — 928 с.
- 17. Мьюрарка Ш. Силициды для СБИС. М.:«Мир», 1986. 176 с.
- 18. http://www.ukrrentgen.kharkiv.com/

REFERENCES

- Spiller E. Low-Loss Reflection Coatings Using Absorbing Materials // Appl. Phys. Lett. — 1972. — Vol. 20, No. 9. — P. 365–367.
- Blohin M. A., Shvejcer I. G. Rentgenospektral'nyj spravochnik. — M.: «Nauka», 1982. — 376 p.
- Yongwei Dong. The *x*-ray timing and polarization satellite 1, 2, 3: uncovering the mysteries of black holes and extreme physics in the universe // Proc. of SPIE. 2014. Vol. 9144. P. 91443O-1–91443O-7.
- David L. Windt. Reduction of stress and roughness by reactive sputtering in W/B4C X-ray multilayer films // Proc. of SPIE. — 2007.—Vol. 6688.—P. 66880R-1–66880R-10.
- Kristin K. Madsen, Fiona A. Harrison, Peter H. Mao, Finn E. Christensen, Carsten P. Jensen, Nicolai Brejnholt, Jason Koglin, Michael J. Pivovaroff. Optimizations of Pt/SiC and W/ Si multilayers for the Nuclear Spectroscopic Telescope Array // Proc. of SPIE. — 2009. —

Vol. 7437. — P. 743716-1–743716-11.

- Michaelsen C., Ricardo P., Anders D. Improved graded multilayer mirrors for XRD applications // Adv. X-Ray Anal. 2000. Vol. 42. P. 308–320.
- 7. http://cxro.lbl.gov/
- Platonov Y., Kazuaki Shimizu, Hiroshi Kobayashi, Gary Fournier, Jim Rodriguez. Mg₂Sibased multilayer XRF analyzers with two- and three-layer structure design // Adv. X-Ray Anal. — 2009. — Vol. 52. — P. 129–134.
- Pershin Yu. P., Devizenko A. Yu., Mamon V. V., Chumak V. S., Kondratenko V. V. Struktura, fazovyj sostav i model' rosta amorfnyh mnogoslojnyh rentgenovskih zerkal W-Si, izgotovlennyh metodom magnetronnogo raspyleniya // ZhFIP. — 2016. — Vol. 1, No. 1. — P. 27–41.
- Reshetnyak E. N., Malyhin S. V., Pershin Yu. P., Pugachev A. T. Rentgenograficheskij analiz periodicheskih plenochnyh kompozicij W/Si // Voprosy atomnoj nauki i tehniki. — 2003. — No. 3. — P. 161–167.
- Kopylec I. A., Kondratenko V. V., Zubarev E. N., Roschupkin D. V. Osobennosti formirovaniya korotkoperiodnyh mnogoslojnyh kompozicij W/B4C // ZhTF. — 2012. — Vol. 82, vyp. 12. — P. 101–107.
- Pierre Boher, Philippe Houdy, Kuhne M., Muller P., Barchewitz R., Delaboudiniere P., David Smith. Tungsten/Magnesium Silicide Multilayers for Soft X-Ray Optics // J. X-ray Sci. Technol. — 1992. — Vol. 3, No. 2. — P. 118–132.
- 13. http://sci-progs.com/
- Diagrammy sostoyaniya dvojnyh metallicheskih sistem. Spravochnik / Pod red.
 N. P. Lyakisheva. — M.: «Mashinostroenie», 2001, Vol. 3, Kniga 1. — 872 p.
- Konotopskij L. E., Kopylec I. A., Sevryukova V. A., Zubarev E. N., Kondratenko V. V. Osobennosti rosta nanorazmernyh sloev Mg₂Si v mnogoslojnyh rentgenovskih zerkalah Si/ Mg₂Si // J. Nano- Electron. Phys. — 2016. — T. 8, No. 2. — P. 02021-1–02021-6.
- 16. Svojstva, poluchenie i primenenie tugoplavkih soedinenij. Spravochnik / Pod red.
 T. Ya. Kosolapovoj. — M: «Metallurgiya», 1986. — 928 p.
- M'yurarka Sh. Silicidy dlya SBIS. M.:«Mir», 1986. — 176 p.
- 18. http://www.ukrrentgen.kharkiv.com/