Высыпание электронов из магнитосферы, стимулированное затмением Солнца

Л. Ф. Черногор

Харьковский национальный университет им. В. Н. Каразина, Украина, 61077, г. Харьков, пл. Свободы, 4 E-mail: Leonid.F.Chernogor@univer.kharkov.ua

Статья поступила в редакцию 5 января 2001 г.

Предложен механизм, объясняющий наблюдаемое увеличение концентрации электронов в 2÷3 раза в течение 3÷4.5 ч на высотах ионосферы 81÷87 км, стимулированное солнечным затмением. Он обусловлен высыпанием магнитосферных электронов, плотность потока которых составляет $10^7 \div 10^8$ м⁻²·c⁻¹.

Запропоновано механізм, що пояснює спостережуване збільшення концентрації электронів у 2÷3 рази впродовж 3÷4.5 г на висотах іоносфери 81÷87 км, стимульоване сонячним затемненням. Він зумовлений висипанням магнітосферних електронів, густина потоку яких становить $10^7 \div 10^8 \text{ м}^{-2} \cdot \text{с}^{-1}$.

Введение

Эффектам в нижней и средней ионосфере, сопровождавшим затмение Солнца (3С) 11 августа 1999 г., посвящены наши работы [1, 2]. Было обнаружено, что в нижней ионосфере (высоты $z \approx 80 \div 90$ км) 3С вызвало сначала уменьшение почти в два раза концентрации электронов N, а затем продолжительное (в течение $3 \div 4.5$ ч) ее увеличение. Первое обусловлено уменьшением скорости образования электронов при покрытии солнечного диска, второе, по-видимому, является следствием ионосферно-магнитосферных связей, а именно, объясняется высыпанием электронов из магнитосферы.

Целью данной работы является рассмотрение возможности стимулированного солнечным затмением высыпания электронов из магнитосферы.

Роль среднеширотного высыпания частиц неоднократно обсуждалась в литературе (см. ссылки в [3]). В работе [3] показано, что *N* на высотах нижней ионосферы, скорее всего, объясняется высыпанием заряженных частиц из внутреннего радиационного пояса (геомагнитная оболочка $L \approx 2$). Высыпание может возникнуть в результате перераспределения захваченных частиц по питч-углам, связанного либо с изменением конфигурации силовых линий магнитного поля, либо с уменьшением "поперечной" энергии є движения заряженных частиц. Последнее обсуждалось нами в работах [4-5], где показано, что такой механизм может быть эффективным при воздействии на ионосферу мощного радиоизлучения наземных установок и инфразвуковых волн от землетрясений. Схема действия механизма следующая. Источник энерговыделения приводит к изменению температуры и концентрации частиц, а значит, к возмущению тензора проводимости б ионосферной плазмы. При этом возникает электрическое поле поляризации Е_p с горизонтальным масштабом неоднородности L_1 .

наблюдавшееся кратковременное увеличение

Оно, незначительно ослабляясь, проникает в магнитосферу и изменяет "поперечную" энергию частиц на величину

$$\mathbf{\varepsilon}_{\perp p} = eE_p L_{\perp},\tag{1}$$

где e – заряд электрона. Кроме того, в процессе становления и релаксации возмущений $\hat{\sigma}$ поле поляризации обладает вихревой компонентой [5, 6]

$$E_r \approx \mu_0 e \upsilon \Delta N L_\perp L_B / t_0 \,, \tag{2}$$

где μ_0 – магнитная проницаемость вакуума, υ – скорость ветра в динамо-области (100÷120 км), ΔN – возмущение N, t_0 – длительность возмущений N, L_B – характерный масштаб неоднородности геомагнитного поля. Этой компоненте поля соответствует изменение энергии частиц

$$\varepsilon_{\perp r} = eE_r L_t, \tag{3}$$

где L_t – длина траектории частиц, пропорциональная L_{\perp} . Важно, что для достаточно больших значений L_{\perp} возможна ситуация, когда $\varepsilon_{\perp r} \gg \varepsilon_{\perp p}$, так как $\varepsilon_{\perp p} \propto L_{\perp}$, а $\varepsilon_{\perp r} \propto L_{\perp}^2$.

ЗС естественным образом обеспечивает изменение энерговыделения и дает возможность проверить эффективность описанного механизма. Дело в том, что при ЗС имеет место уменьшение N на десятки процентов в Е-области ионосферы (в максимуме токовой струи) [2]. При этом тензор проводимости плазмы возмущается в слое с характерным горизонтальным масштабом $L_{\perp} \approx 4000$ км и вертикальным размером $L_{||} = 20 \div 30$ км в течение времени $t_0 \approx 2.5$ ч [1]. Генерация электрического поля с компонентами E_p и E_r приведет к вариации $\varepsilon_{\perp p}$ и $\varepsilon_{\perp r}$.

Оценки параметров высыпающихся частиц

Наблюдаемый в ходе 3С и после него рост N в нижней ионосфере (табл. 1) может быть вызван следующими причинами [3]:

1. Ионизацией молекул NO рассеянным излучением в линии Лайман- α . При этом $\Delta N \leq 10^7 \div 10^8 \text{ м}^{-3}$ [3], что намного меньше наблюдаемого увеличения *N*.

2. Ионизацией молекул $O_2({}^{1}\Delta_g)$ рассеянным солнечным излучением на длине волны 102.7 ÷111.8 нм. При этом значение $\Delta N \leq 10^7 \text{ м}^{-3}$, т. е. также слишком мало.

3. Ионизацией молекул атмосферного газа потоками энергичных электронов.

Таблица 1. Параметры, описывающие вариации концентрации электронов на различных высотах в нижней ионосфере в результате 3С

Параметр	81 км	84 км	87 км
Δt , мин	100	80	40
ΔT , мин	180	230	280
N_0 , м ⁻³	2.10^{8}	3·10 ⁸	6·10 ⁸
<i>N</i> , м⁻³	6·10 ⁸	8·10 ⁸	12.10^{8}

Примечание. Δt – запаздывание возмущений N, ΔT – их длительность, N_0 – концентрация электронов до начала ЗС

Наиболее вероятным представляется появление потоков электронов из радиационного пояса. Опишем этот процесс подробнее.

В рассматриваемой ситуации уравнение баланса можно представить в виде

$$q = \alpha N^2$$

где q – скорость ионизации, α – коэффициент рекомбинации. Члены, содержащие временную и пространственные производные, здесь опущены по следующим причинам. Время становления N за счет процесса рекомбинации составляет $t_N = (2\alpha N)^{-1} \approx 50$ с (при $N \approx 10^9 \text{ м}^{-3}, \ \alpha \approx 10^{-11} \text{ м}^3/\text{с}).$ Характерное время амбиполярной и турбулентной диффузии, $t_D = L_{\perp}^2 / (D + D_t)$, составляет порядка 10^{10} с (при коэффициентах амбиполярной диффузии $D \approx 1 \text{ м}^2/\text{с}$ и турбулентной диффузии $D_t \approx 10^3 \text{ м}^2/\text{c}$). Для вертикального размера $L_{\parallel} \approx 10 \text{ км}$ величина $t_D \approx 10^5 \text{ с}$. Время выноса ионизации ветром $t_w = L_{\perp} / v \approx 4 \cdot 10^4 \text{ с}$ при v = 100 м/c. Продолжительность высыпания частиц $\Delta T \sim 10^4 \text{ с}$ (см. табл. 1). Следовательно, $t_N \ll \Delta T < t_w \ll t_D$. В силу этих неравенств уравнение баланса приобрело такой простой вид.

Изменение скорости ионизации запишем в виде:

$$\Delta q = q - q_0 = \alpha N^2 - \alpha_0 N_0^2$$

(индексом "0", как обычно, обозначены невозмущенные параметры). Далее будем пренебрегать небольшими изменениями α , которые обусловлены вариациями температуры частиц. В дневное время на высотах $z \le 85$ км преобладает процесс рекомбинации электронов с ионами-связками, для которого $\alpha \approx \alpha_0 \approx 10^{-11}$ м³/с [7].

С величиной Δq связана плотность потока мощности, теряемой моноэнергичными частицами [8],

 $\Pi = 2\varepsilon_i \Delta z \Delta q,$

где $\varepsilon_i \approx 35$ эВ – энергия, затрачиваемая высыпающимся электроном на ионизацию одной молекулы воздуха; Δz – толщина слоя, где поглощается поток энергичных частиц (она порядка приведенной высоты нейтральной атмосферы – около 5 км на высотах $80 \div 90$ км).

С другой стороны,

 $\Pi = \varepsilon p,$

где ε – энергия высыпающихся частиц, p – их плотность потока. Если известны значения П, площади области высыпания частиц S и времени высыпаний ΔT , можно оценить мощность Р и энергию Е источника частиц:

$$P = \Pi S, \qquad E = P \Delta T.$$

Результаты оценок основных параметров потока частиц приведены в табл. 2. При этом в качестве исходных использовались данные из табл. 1. Полагалось, что $S = \pi L_{\perp}^2/4$. С учетом того, что лунная тень движется по Земле, продольный размер возмущенной области в конечном итоге примерно на порядок превышает L_{\perp} . Во столько же раз увеличиваются *S*, *P* и *E*.

Таблица 2. Параметры потоков высыпающихся электронов

Параметр	81 км	84 км	87 км
$q_0, \mathrm{M}^{-3} \cdot \mathrm{c}^{-1}$	4·10 ⁵	9·10 ⁵	36·10 ⁵
$q, { m M}^{-3} \cdot { m c}^{-1}$	36·10 ⁵	64·10 ⁵	144·10 ⁵
Δq , m ⁻³ ·c ⁻¹	32·10 ⁵	55·10 ⁵	108·10 ⁵
$\Pi, Bt \cdot m^{-2}$	1.8.10-7	$3.1 \cdot 10^{-7}$	6.0.10-7
ε, кэВ	80	60	40
$p, M^{-2} \cdot c^{-1}$	1.4.107	3.2.107	9.4.107
<i>Р</i> , МВт	2.3	4.0	7.8
Е, ГДж	25	55	131

Оценим далее изменение "поперечной" энергии электронов в магнитосфере под действием поля поляризации и вихревого поля. Поле поляризации приблизительно равно

$$E_p = \left| \frac{\Delta N}{N_0} \right| E_0,$$

где E_0 – электрическое поле в динамо-области, $\Delta N/N_0$ – относительное изменение концентрации электронов в Е-области. В дневное время в средних широтах $E_0 \approx 3$ мВ/м. Для $|\Delta N/N_0| \approx 0.2$, или $\Delta N \approx -2 \cdot 10^{10}$ м⁻³ при $N_0 \approx 10^{11}$ м⁻³ [2], имеем $E_p \approx 0.6$ мВ/м.

Для оценки E_r по формуле (2) положим, что v = 100 м/с, абсолютная величина изменения концентрации электронов $\Delta N = 2 \cdot 10^{10}$ м⁻³, $L_{\perp} \approx 4 \cdot 10^6$ м, $L_B \approx R_e \approx 6.4 \cdot 10^6$ м (R_e – радиус Земли), $t_0 \approx 2$ ч = 7.2 · 10³ с. При этих условиях $E_r \approx 1.4$ мВ/м. Считая, что частицы в магнитосфере испытывают действие полей E_p и E_r на расстоянии L_{\perp} , по формулам (1) и (3) получим, что $\varepsilon_{\perp p} \approx 4$ кэВ и $\varepsilon_{\perp r} \approx 6$ кэВ. В принципе, возможна ситуация, когда $L_t \gg L_{\perp}$. При этом $\varepsilon_{\perp r}$ может составить десятки кэВ.

Обсуждение

Для обеспечения наблюдаемого на высотах $81 \div 87$ км роста N в течение 3С и после него требуются плотности потока электронов ~ $10^7 \div 10^8$ м⁻²·c⁻¹ (см. табл. 2). Такие значения p не представляются большими. Как показано в работе [3], при воздействии на околоземную среду магнитных бурь и источников энерговыделения антропогенного происхождения на высотах $80 \div 90$ км ожидаются потоки электронов с $\varepsilon \approx 80 \div 40$ кэВ и $p \approx 2 \cdot 10^8 \div 5 \cdot 10^8$ м⁻²·c⁻¹. В нашем случае p примерно на порядок меньше.

Энергетические характеристики потоков электронов также являются сравнительно небольшими: мощность $P \approx 2 \div 8$ МВт, энергия $E \approx 25 \div 130$ ГДж.

Высыпание частиц – эффект вторичный. Ему предшествует уменьшение N на высотах динамо-области, вызванное уменьшением qпри ЗС. Возникающие при этом потенциальное и вихревое поля с напряженностями порядка 1 мВ/м способны уменьшить ε_{\perp} на величину порядка 4÷6 кэВ. Таких значений достаточно для перераспределения части магнитосферных электронов по питч-углам и их высыпания в атмосферу. Горизонтальный размер области высыпаний может превышать размер первоначально возмущенной области, который приблизительно равен L_{\perp} . Это приведет к увеличению эффективности обсуждаемого механизма. Процессы в нижней ионосфере будут определяться повторяющимся воздействием ионосфера – магнитосфера – ионосфера.

Как видно из табл. 1, время запаздывания высыпаний электронов Δt и продолжительность высыпаний ΔT существенно зависят от высоты. Время Δt быстро уменьшается, а ΔT растет с увеличением высоты. Это можно объяснить тем фактом, что для перевода частиц с большими энергиями в конус потерь требуется большее время торможения потенциальным или вихревым полем.

Добавим, что день 3С 11 августа 1999 г. относился к умеренно-спокойным (индексы $A_p \approx 8$, $\sum K_p \approx 18$) или слабо возмущенным, для которых $A_p \geq 10$. Естественная возмущенность способствовала "срабатыванию" обсуждаемого механизма высыпания частиц.

Таким образом, проведенный анализ свидетельствует в пользу того, что ЗС может стимулировать высыпание электронов из магнитосферы. Основные звенья механизма стимуляции следующие. ЗС вызывает уменьшение концентрации электронов на высотах динамо-области. Это приводит к генерации электрического потенциального поля поляризации и вихревого поля. Проникая в магнитосферу, эти поля способны уменьшить "поперечную" энергию электронов и тем самым перевести их в конус потерь. Возникающее высыпание электронов приводит к ионизации нейтральных частиц на высотах 80÷90 км.

Выводы

1. Предложен механизм стимуляции высыпаний магнитосферных электронов в атмосферу в течение солнечного затмения и после него.

2. Оценены плотности потоков высыпающихся электронов с энергиями $40 \div 80$ кэВ. Они оказались порядка $10^7 \div 10^8$ м^{-2.}с⁻¹.

Литература

 А. М. Гоков, Л. Ф. Черногор. Радиофизика и радиоастрономия. 2001, 5, №4, с. 348-360.

2. Л. С. Костров, Л. Ф. Черногор. Радиофизика и радиоастрономия. 2001, **5**, №4, с. 361-370.

- 3. L. F. Chernogor, K. P. Garmash, V. T. Rozumenko. Radiophys. and Radioastron. 1998, **3**, No. 2, pp. 191-197.
- К. П. Гармаш, Л. Ф. Черногор. В сб.: Тез. докл. Международного симпозиума "Спутниковые исследования ионосферных и магнитосферных процессов". Москва, Изд-во ИЗМИРАН, 1995, с. 30-31.
- 5. Л. Ф. Черногор. Радиофизика и радиоастрономия. 1997, **2**. №4, с. 463-472.
- 6. К. П. Гармаш, Л. Ф. Черногор. Зарубежная радиоэлектроника. Успехи современной радиоэлектроники. 1998, №6, с. 17-40.
- 7. А. Д. Данилов. Популярная аэрономия. Ленинград, Гидрометеоиздат, 1989, 230 с.
- 8. В. Б. Ляцкий, Ю. П. Мальцев. Магнитосферноионосферное взаимодействие. Москва, Наука, 1983, 192 с.

Magnetosphere Electron Precipitation Induced by a Solar Eclipse

L. F. Chernogor

The mechanism is suggested to explain an increase $2 \div 3$ times in the electron number density in $81 \div 87$ km height range, triggered by the solar eclipse. The effect observed persisted for $3 \div 4.5$ h, being caused by magnetospheric electron precipitation fluxes with the density of $10^7 \div 10^8$ m⁻²·s⁻¹.