THE PAIR INTERACTION FORCES AND THE FRICTION AND
DIFFUSION COEFFICIENTS OF PARTICLES IN MOMENTUM SPACE

V.V. Ognivenko

National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine;
V.N. Karasin Kharkiv National University, Kharkov, Ukraine

E-mail: ognivenko@kipt.kharkov.ua

Diffusion processes in momentum space in the systems containing a large number of particles are considered.
The friction coefficient and diffusion tensor are derived directly on the bases of the dynamics of individual particles
motion under the action of the pair interaction forces from each of them. The expression for the frictional force in
the case of pre-Brownian motion of particles with Coulomb interaction is obtained.
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INTRODUCTION

The transport phenomena and relaxation processes
in the systems consisting of a large number of particles
are studied using the kinetic equations (see, e.g., [1-6]).
The collision integrals occurring in these equations are
derived for specific studied physical processes. Thus for
a fully ionized plasma the integral of collisions has been
obtain in [1] by transformation of Boltzmann’s collision
integral. The general method of construction of the
kinetic equations from equations of motion of particles
has been given in [2].

The Kinetic equations describe the evolution of
particles systems on times greater than some
characteristic time of particles motion randomization.
Therefore the friction and diffusion of the charged
particles in  momentum space are investigated
theoretically by means of such equations at a Kinetic
stage of the system evolution, when motion of particles
is completely random. For a smaller time intervals, in
case of pre-Brownian motion of the particles, the
expression for mean square spread in momenta of
Coulomb interacting nonrelativistic charged particles
was derived in [7] based on the dynamics of particles
motion. The same method was used to investigate the
diffusion in momenta space at collisions of the
relativistic charged particles [8]. The change of the
mean square spread in momenta of the charged particles
under the influence of their electromagnetic radiation in
external periodic fields was investigated in [9-12].

In the given work the change in mean value of
momentum of nonrelativistic particles in the absence of
external fields is considered. The expression for the
friction force describing average change of particles
momentum per a time unit, both at the kinetic stage of
evolution of a system, and at the initial stage in the case
of pre-Brownian motion of particles is derived. The
relationship between mean square spread in momenta of
particles and the frictional force at the initial stage of
evolution of system is analyzed.

1. FRICTION FORCE AND DIFFUSION
COEFFICIENTS

Let's consider the system consisting of N identical,
nonrelativistic particles, occupying volume V, whose
motion complies with laws of classical mechanics with
arbitrary interaction between particles. The equations of
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motion of the individual (test) particle we will write in
the form

%f:F[x(o,t]:ilw[x(t),t,xs(t,xm)] e

dr
—=V, 2
ot 2)

where r and p are the coordinates and momentum of
particle, p=mv, mis a particle mass, F is microscopic

force, F® is the pair interaction force of particles,
x=1{r,p} is the set of coordinates and momentum of

particles, X, = {,.,Py} IS the coordinates and

momentum of s-th particle at the initial instant to.

We will assume that pair interaction force between
particles is known. Integration in the Egs. (1) and (2)
yields the expressions for the coordinates and
momentum of particle

plt)=po + [Pt ®
r(0)=rO)+ ot @

to
where r© = +vy(t-t,).
Neglecting influence of average forces on motion of

particles, we will consider small deviations of the
coordinates and the momentum (Ar, Ap) from
equilibrium values, where Ar:r—r(o), Ap=p-pg -
Expanding the expression for microscopic force into
series on small deviations from equilibrium values in
the right-hand side of Eq. (1), taking into account the
Egs. (3) and (4), we obtain the following equation for

average change of the momentum of the test particle per
unit time:

<% P > = <Fi [x(o)(t),t]> +

+ijdt'|_-(x t-tfF(x OF OO ) t']>
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tayj v , X {r ,po}, angular
brackets mean the ensemble average, y; is the Cartesian
coordinates of the vector r, j=1,2,3.

The first term in the Eq. (5) describes the change in
momentum caused by influence of forces induced by the
particle, as we neglect the influence of the average
forces on particles motion. In particular this term
corresponds to polarization losses by a charged particle
passing through plasma. The second term in this
equation describes the change in the momentum due to
the fluctuation forces acting on the test particle from
other particles. Below we will consider this frictional
force.

The equation for diffusion coefficient in momenta
space is

where L,(x,t)=

J8F [r(t) t]+

)
+8F; [r(t).t]- 6F; [r(t)t]> ’
where 8F = F —(F). -

The average values of product of microscopic forces
and the space-time correlation function of fluctuations
of the forces appear in the integrand on the right-hand
side of the Egs. (5) and (6), calculated by means of the
function of dynamic state of considered system in 6N-
dimensional phase space of coordinates and momenta of
particles at the initial instant to [7, 8], is

<Fi(x,t)Fj (¢, 1)) = Kyt t)+
—1/N IF-(l) X, 15 % (t, Xo1 )]
[ %ot on)]fz(Xml X2 to )Xoy Xy
(oF () ( N=(ROF;E)-(RENF; ),
Ky (t.t)=

—_[F [X XltXO ]F [X t Xl(t Xo)] 1(Xo'to)dxo’

(")

where  f,(x,,t,) is the single-particle distribution
function, f,(x,,X),t,) is the two-particle distribution
function.

Using the principle of the correlations reduction at
the initial instant to, we write

o (%0, %, to) = f1(%0.to) (6, o).

Then the second term in the right-hand side of the
formula (7) can be presented in the form of product of
average values of the microscopic forces. The
contribution of this term in the integrand on the right-
hand side of the Eq. (5) can be neglected, as on the
considered time interval the change of the average value
of the force on x is small, if these forces are not equal to
zero. Using the above mentioned assumptions, it is
possible to present the Egs. (5) and (6) in the following

form:
d '
A= <E .>=—jdt|_ ~U)K; (1), 9)
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These formulae can be used to calculate the friction
force and mean square spread in the momenta of
particles at the specific nature of their interaction in the
system.

2. COLLISIONS OF PARTICLES WITH
COULOMB INTERACTION

We will consider the system of the charged particles
with Coulomb interaction. The pair interaction force
acting on the particle with the charge g in the coordinate
r at the time t from the particle, moving on the
trajectory r, (t, xos ) , we will present in the form of [13]

0 1

Ot xg, ) = g2 O

(.t %) = -0 ar |r—ry(t, xg )

Let's consider the spatially homogeneous system on
time intervals during which motion of particles does not
change essentially. Then the expression for the
trajectory of particle may be written as
Fy =Fos +Vos(t—ty). We will substitute the pair
interaction force (11) in (8) and we will integrate on
initial coordinates dr,, assuming that N—oo and volume
V—o, so the density of particles n=N/V is constant.

Substituting the coordinates of test particle for its
unperturbed trajectories, passing thus to differentiation
on momentum [7,8], we obtain the following
expression for the friction force due to the fluctuating
electric fields

P t
A =a—jdt'(t-t K

Pj to

(11)

i tt),

(12)

Kij = q4jJij (&)fl(po)dpo :

2 2 2
+4E% +r
I In—é St +

2&,2 2 m
U
u?ye?+r2
u=v-vy, &=u(t—t'), rmn is the minimum distance

between two particles used to eliminate the divergence
on integration over dro in Eq.(8) [7, 8].

After the integration on t', the expression for the
frictional force and change in time of the mean-square
momentum deviation from equilibrium value, becomes

A=2m' S [opoflpoloy(u.c). (13
J

%<ApiApj>:4nq4Idpo fl(pO)Gij(u’C), (14)

where
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B(x)=[1+ %} In(x+ﬁj— \/? :

E=ut/ry, , T=t—1g, &j is the Kronecker delta.

3. DISCUSSION

The Egs. (13) and (14) describe the change in time
of the mean value of the momentum and mean square
spread in the momentum of particles on all considered
time interval, from the initial instant to.

Let's consider the initial evolution stage of the
system, when time t is less than characteristic time 7o
randomization of particles motion in the considered
system, wherety =r, /U, T is the mean speed of the
particles. For small values of the time t<<to expanding

the functions G;; in powers of ¢ as far as the third-order
terms, we find

27 3 2
G = i — ud;; +2u;u; ). (15)
1] 3 in 1) 15rr131in ( 1) [ J)
Substituting (15) in (13) and (14) we get:
47Zq4z_3
A=- 3mrn3]in IUfl(po)dpo ) (16)
d 8nq*t
E<ApiApj > = %Idpo fl(po)[sij -
rmin (17)
2 4
— Tz (U28”+2U|UJ) Egﬂn'fgu .
101 min 3Mmin

It is easy to see that the dynamical friction
experienced by the particles in the case of their pre-
Brownian motion is defined by the second term in
Eg. (15).

The mean square spread in the momentum of
particles at this stage of the evolution of the system is
governed mainly by the first term in the Eq. (15) and
increases proportionally to the square of the time [7]

4
<(Ap)2> :ﬂmz .
min

It should be noted that quadratic dependence of the
mean-square spread in velocity of particles on time at
the initial stage of the charged particles system
evolution was observed in many numerical experiments
[14].

From Egs. (13) and (14) it follows that friction force
and the change in the mean-square spread in momenta
per unit time are connected by the relation

o d
A 2op, (Apip; ) |
which is valid for all times both at the pre-Brownian
particles motion and the kinetic stage of the system
evolution. For the Kinetic stage such relation between
frictional force and diffusion coefficients also follows
from the collision integral.

For isotropic initial distribution of particles in

momenta from the Eq. (16) follows that the more the

(18)
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velocity of the test particle, the more dynamical friction
is experienced by this particle

4 3
_47zqz3-nV
3mr

min

A=

where n :I f, (p, K, -

At the kinetic stage of the system evolution of the
charged particles with Coulomb interaction the
frictional force decreases as the particle velocity
increases [15].

From the formula (16) also follows that if there is a
stream of particles in the system, the particles with the
velocity higher than mean velocity of particles reduce
the velocity, and the particles with velocity low than
mean velocity increase the velocity.

At the pre-Brownian stage of the system evolution
of the charged particles with Coulomb interaction the
change in time of mean value of the momentum of the
test particle due to the fluctuations of the field is
proportional to the third power of time and can be
smaller than the changes in time of a mean-square
momenta spread at this stage, which is proportional to
the time.

For t>> 1o at the kinetic stage of the system
evolution, when motion of particles is completely
random, asymptotic expression of the friction force (13)
derived for ¢>> 1, becomes

0
A= 2Wq4a—jdpo fl(po)x
Pj

U:U; U:U;
XKBU —3'—2‘]1(/\—%)+ 2'—3’A} |
u u u

where A = Inﬁ .

Fmin

(19)

When A >>1 the expression (19) agrees with the
corresponding formulas of [1].
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CIJIBI TAPHOT'O B3AMMOJIEVICTBUSA 1 KO3®®UIIUEHTHI TPEHUS U IA®PY3UU YACTHI]
B TIPOCTPAHCTBE UMITYJIbCOB

B.B. Oznueenko

PaccmoTtpens! mporiecchl quddy3uu 4acTuil B MPOCTPAHCTBE UMITYJIHCOB ISl CUCTEMBI, COCTOSIICH U3 OOJIBIIOrO
guciaa yactull. KoddhduiueHt TtpeHus U TeH30p Muddy3ud MOTYyYSHBI UCXOs HETMOCPEACTBEHHO W3 TUHAMHUKU
JIBIDKCHHUSI OT/CNIBHBIX YaCTHUIl TOJ JCUCTBHEM CHJI MaPHOTO B3aMMOICHCTBUS CO CTOPOHBI KXIOW W3 HUX.

HonyquO BbIpaKCHUC JIIA CHJIBI TpCHUA B
BSaHMOHeﬁCTBymmHX 3apAKCHHBIX YaCTHUILIL.

ciry4ae

Hpe,ﬂ[6p0yHOBCKOFO JABHXCHUA KYJIOHOBCKH

CUJIN TAPHOI B3AEMO/III I KOE®IIIEHTH TEPTS I TU® Y31 YACTHUHOK Y IIPOCTOPI
IMITYJIBCIB

B.B. Oznigenko

PosrisiHyTo mporecu audy3il YaCTHMHOK y MPOCTOPI IMIYJIBCIB ISl CHCTEMH, MO CKIAJAEThCS 3 BEIUKOT
KibKocTi yacTuHOK. KoedimieHT Tepta i TeH3op audysii oTpuMaHi BHXOAI9H Oe3MOCepeTHbO 3 JTUHAMIKUA PYXY
OKpEeMHX YaCTHHOK T[] J[i€f0 CHJI MapHOi B3aeMoxii 3 00Ky KoxHOi 3 HuX. OTpUMaHO BHpa3 ISl CHIIM TEpPTS y
BUIAJKY Nepea0pOYHIBCEKOTO PyXy KyJIOHIBCHKH B3a€EMOJIIIOUMX 3aps/KEHUX YaCTHHOK.
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