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     Diffusion processes in momentum space in the systems containing a large number of particles are considered. 

The friction coefficient and diffusion tensor are derived directly on the bases of the dynamics of individual particles 

motion under the action of the pair interaction forces from each of them. The expression for the frictional force in 

the case of pre-Brownian motion of particles with Coulomb interaction is obtained. 
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INTRODUCTION  

The transport phenomena and relaxation processes 

in the systems consisting of a large number of particles 

are studied using the kinetic equations (see, e.g., [1-6]). 

The collision integrals occurring in these equations are 

derived for specific studied physical processes. Thus for 

a fully ionized plasma the integral of collisions has been 

obtain in [1] by transformation of Boltzmann’s collision 

integral. The general method of construction of the 

kinetic equations from equations of motion of particles 

has been given in [2].  

The kinetic equations describe the evolution of 

particles systems on times greater than some 

characteristic time of particles motion randomization. 

Therefore the friction and diffusion of the charged 

particles in momentum space are investigated 

theoretically by means of such equations at a kinetic 

stage of the system evolution, when motion of particles 

is completely random. For a smaller time intervals, in 

case of pre-Brownian motion of the particles, the 

expression for mean square spread in momenta of 

Coulomb interacting nonrelativistic charged particles 

was derived in [7] based on the dynamics of particles 

motion. The same method was used to investigate the 

diffusion in momenta space at collisions of the 

relativistic charged particles [8]. The change of the 

mean square spread in momenta of the charged particles 

under the influence of their electromagnetic radiation in 

external periodic fields was investigated in [9-12].  

In the given work the change in mean value of 

momentum of nonrelativistic particles in the absence of 

external fields is considered. The expression for the 

friction force describing average change of particles 

momentum per a time unit, both at the kinetic stage of 

evolution of a system, and at the initial stage in the case 

of pre-Brownian motion of particles is derived. The 

relationship between mean square spread in momenta of 

particles and the frictional force at the initial stage of 

evolution of system is analyzed. 

1. FRICTION FORCE AND DIFFUSION 

COEFFICIENTS  

Let's consider the system consisting of N identical, 

nonrelativistic particles, occupying volume V, whose 

motion complies with laws of classical mechanics with 

arbitrary interaction between particles. The equations of  

 

 

motion of the individual (test) particle we will write in 

the form  
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where r  and p  are the coordinates and momentum of 

particle, vp m , m is a particle mass, F  is microscopic 

force,  s
F  is the pair interaction force of particles, 

 pr,x  is the set of coordinates and momentum of 

particles,  sssx 000 ,pr  is the coordinates and 

momentum of s-th particle at the initial instant t0.  

We will assume that pair interaction force between 

particles is known. Integration in the Eqs. (1) and (2) 

yields the expressions for the coordinates and 

momentum of particle  
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where 
   000
0 ttr  vr .  

Neglecting influence of average forces on motion of 

particles, we will consider small deviations of the 

coordinates and the momentum ( r , p ) from 

equilibrium values, where  0
rrr  , 0ppp  . 

Expanding the expression for microscopic force into 

series on small deviations from equilibrium values in 

the right-hand side of Eq. (1), taking into account the 

Eqs. (3) and (4), we obtain the following equation for 

average change of the momentum of the test particle per 

unit time: 
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brackets mean the ensemble average, yj is the Cartesian 

coordinates of the vector r , j=1,2,3.  

The first term in the Eq. (5) describes the change in 

momentum caused by influence of forces induced by the 

particle, as we neglect the influence of the average 

forces on particles motion. In particular this term 

corresponds to polarization losses by a charged particle 

passing through plasma. The second term in this 

equation describes the change in the momentum due to 

the fluctuation forces acting on the test particle from 

other particles. Below we will consider this frictional 

force.  

The equation for diffusion coefficient in momenta 

space is 
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where FF  F .                                                    (6) 

The average values of product of microscopic forces 

and the space-time correlation function of fluctuations 

of the forces appear in the integrand on the right-hand 

side of the Eqs. (5) and (6), calculated by means of the 

function of dynamic state of considered system in 6N-

dimensional phase space of coordinates and momenta of 

particles at the initial instant t0 [7, 8], is  
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where  001 ,txf  is the single-particle distribution 

function,  0002 ,, txxf   is the two-particle distribution 

function. 

Using the principle of the correlations reduction at 

the initial instant t0, we write 

     0010010002 ,,,, txftxftxxf  .  

Then the second term in the right-hand side of the 

formula (7) can be presented in the form of product of 

average values of the microscopic forces. The 

contribution of this term in the integrand on the right-

hand side of the Eq. (5) can be neglected, as on the 

considered time interval the change of the average value 

of the force on x is small, if these forces are not equal to 

zero. Using the above mentioned assumptions, it is 

possible to present the Eqs. (5) and (6) in the following 

form:  
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These formulae can be used to calculate the friction 

force and mean square spread in the momenta of 

particles at the specific nature of their interaction in the 

system.  

 

2. COLLISIONS OF PARTICLES WITH 

COULOMB INTERACTION  

We will consider the system of the charged particles 

with Coulomb interaction. The pair interaction force 

acting on the particle with the charge q in the coordinate 

r at the time t from the particle, moving on the 

trajectory  ss xt 0,r , we will present in the form of [13] 
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Let's consider the spatially homogeneous system on 

time intervals during which motion of particles does not 

change essentially. Then the expression for the 

trajectory of particle may be written as 

 000 ttsss  vrr . We will substitute the pair 

interaction force (11) in (8) and we will integrate on 

initial coordinates 0rd , assuming that N and volume 

V, so the density of particles VNn   is constant. 

Substituting the coordinates of test particle for its 

unperturbed trajectories, passing thus to differentiation 

on momentum [7, 8], we obtain the following 

expression for the friction force due to the fluctuating 

electric fields  
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0vvu  ,  ttu  , rmin is the minimum distance 

between two particles used to eliminate the divergence 

on integration over dr0 in Eq.(8) [7, 8].  

After the integration on t, the expression for the 

frictional force and change in time of the mean-square 

momentum deviation from equilibrium value, becomes 
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minru , 0tt  , ij is the Kronecker delta.  

3. DISCUSSION  

The Eqs. (13) and (14) describe the change in time 

of the mean value of the momentum and mean square 

spread in the momentum of particles on all considered 

time interval, from the initial instant t0.  

Let's consider the initial evolution stage of the 

system, when time  is less than characteristic time 0 

randomization of particles motion in the considered 

system, where urm0 , u  is the mean speed of the 

particles. For small values of the time <<0 expanding 

the functions Gij in powers of  as far as the third-order 

terms, we find 
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Substituting (15) in (13) and (14) we get: 
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It is easy to see that the dynamical friction 

experienced by the particles in the case of their pre-

Brownian motion is defined by the second term in 

Eq. (15).  

The mean square spread in the momentum of 

particles at this stage of the evolution of the system is 

governed mainly by the first term in the Eq. (15) and 

increases proportionally to the square of the time [7] 
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It should be noted that quadratic dependence of the 

mean-square spread in velocity of particles on time at 

the initial stage of the charged particles system 

evolution was observed in many numerical experiments 

[14]. 

From Eqs. (13) and (14) it follows that friction force 

and the change in the mean-square spread in momenta 

per unit time are connected by the relation 
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which is valid for all times both at the pre-Brownian 

particles motion and the kinetic stage of the system 

evolution. For the kinetic stage such relation between 

frictional force and diffusion coefficients also follows 

from the collision integral.  

For isotropic initial distribution of particles in 

momenta from the Eq. (16) follows that the more the 

velocity of the test particle, the more dynamical friction 

is experienced by this particle 

vA
3

min

34

3

4

mr

nq 
 , 

where   001 pdpfn  . 

At the kinetic stage of the system evolution of the 

charged particles with Coulomb interaction the 

frictional force decreases as the particle velocity 

increases [15].  

From the formula (16) also follows that if there is a 

stream of particles in the system, the particles with the 

velocity higher than mean velocity of particles reduce 

the velocity, and the particles with velocity low than 

mean velocity increase the velocity.  

At the pre-Brownian stage of the system evolution 

of the charged particles with Coulomb interaction the 

change in time of mean value of the momentum of the 

test particle due to the fluctuations of the field is 

proportional to the third power of time and can be 

smaller than the changes in time of a mean-square 

momenta spread at this stage, which is proportional to 

the time.  

For >> 0 at the kinetic stage of the system 

evolution, when motion of particles is completely 

random, asymptotic expression of the friction force (13) 

derived for >> 1, becomes 
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where 
min

2
ln

r

u
 .  

When 1  the expression (19) agrees with the 

corresponding formulas of [1].  
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СИЛЫ ПАРНОГО ВЗАИМОДЕЙСТВИЯ И КОЭФФИЦИЕНТЫ ТРЕНИЯ И ДИФФУЗИИ ЧАСТИЦ 

В ПРОСТРАНСТВЕ ИМПУЛЬСОВ  

 

В.В. Огнивенко 

 

     Рассмотрены процессы диффузии частиц в пространстве импульсов для системы, состоящей из большого 

числа частиц. Коэффициент трения и тензор диффузии получены исходя непосредственно из динамики 

движения отдельных частиц под действием сил парного взаимодействия со стороны каждой из них. 

Получено выражение для силы трения в случае предброуновского движения кулоновски 

взаимодействующих заряженных частиц. 

 

 

СИЛИ ПАРНОЇ ВЗАЄМОДІЇ І КОЕФІЦІЄНТИ ТЕРТЯ І ДИФУЗІЇ ЧАСТИНОК У ПРОСТОРІ 

ІМПУЛЬСІВ  

 

В.В. Огнівенко 

 

     Розглянуто процеси дифузії частинок у просторі імпульсів для системи, що складається з великої 

кількості частинок. Коефіцієнт тертя й тензор дифузії отримані виходячи безпосередньо з динаміки руху 

окремих частинок під дією сил парної взаємодії з боку кожної з них. Отримано вираз для сили тертя у 

випадку передброунівського руху кулонівськи взаємодіючих заряджених частинок. 

 


