Особенности магнитных свойств квазиодномерного магнетика β-TeVO₄ при низких температурах

Ю.А. Савина, А.Н. Блудов, В.А. Пащенко, С.Л. Гнатченко

Физико-технический институт низких температур им. Б.И. Веркина НАН Украины пр. Ленина, 47, г. Харьков, 61103, Украина E-mail: vpashchenko@ilt.kharkov.ua

P. Lemmens

Institute for Condensed Matter Physics, TU Braunschweig, Braunschweig D-38106, Germany

H. Berger

Institute for Condensed Matter and Complex Systems, EPFL, Lausanne CH-1015, Switzerland

Статья поступила в редакцию 17 декабря 2014 г., опубликована онлайн 23 февраля 2015 г.

Исследовано влияние магнитного поля на магнитную восприимчивость $\chi(T)$ и температуру трех магнитных фазовых переходов в монокристалле β -TeVO₄ при низких температурах. Восстановлена фазовая H-T-диаграмма для $H \parallel b$ и $H \perp b$. Обнаружена трикритическая точка с координатами $H^* = (3, 2 \pm 0, 1)$ Тл и $T^* = (3, 0 \pm 0, 1)$ К для $H \parallel b$.

Досліджено вплив магнітного поля на магнітну сприйнятливість $\chi(T)$ та температуру трьох магнітних фазових переходів у монокристалі β -TeVO₄ при низьких температурах. Побудовано фазову *H*–*T*-діаграму для $H \parallel b$ та $H \perp b$. Виявлено трикритичну точку з координатами $H^* = (3, 2 \pm 0, 1)$ Тл та $T^* = (3, 0 \pm 0, 1)$ К для $H \parallel b$.

PACS: 73.30.Cr Моменты насыщения и магнитная восприимчивость;

75.30.Кz Магнитные фазовые границы;

75.50.Ее Антиферромагнетики;

75.40.Сх Статические свойства.

Ключевые слова: квазиодномерный магнетик, магнитная *H*–*T*-фазовая диаграмма, трикритическая точка, магнитная восприимчивость.

В последнее время изучение одномерных (1D) магнетиков привлекает повышенное внимание исследователей. Это связано с нетривиальностью физических свойств таких объектов, особенно при низких температурах, и возможностью тестирования различных теоретических моделей. Как известно, в изолированной 1D гейзенберговской цепочке спинов S = 1/2 переход в магнитноупорядоченное состояние невозможен [1]. Однако в реальных объектах всегда существуют слабые обменные взаимодействия, которые в большинстве случаев приводят к трехмерному упорядочению. По этой причине многие одномерные магнетики называются квазиодномерными. При низких температурах в квазиодномерных магнетиках может реализовываться большое многообразие различных состояний: неупорядоченное щелевое состояние (немагнитное при T = 0), коллинеарное неелевское состояние, геликоидальный порядок, а также хиральный порядок с нарушенной симметрией левой/правой спирали и несоразмерные геликоидальные корреляции без установления магнитного порядка [2–5]. Таким образом, определение основного состояния, которое реализуется в квазиодномерной системе, и/или изучение ее низкотемпературных свойств является актуальной научной задачей.

Соединение β -TeVO₄ — типичный квазиодномерный магнетик [6]. Кристаллическая структура состоит из зигзагообразных цепочек спинов S = 1/2 (V⁴⁺), образованных из слегка искаженных квадратных пирамид VO5, соединенных между собой через вершины базисной плоскости [7]. Магнитная восприимчивость характеризуется наличием максимума при 14 К, положение и амплитуда которого не зависят от величины приложенного магнитного поля (*H* ≤ 0,1 Тл). Как показано в работе [6], магнитные свойства β-TeVO₄ могут быть хорошо описаны в рамках модели для одномерной гейзенберговской цепочки спинов S = 1/2 с одной константой антиферромагнитного обменного взаимодействия $J/k_B = 21,4$ К. Следует отметить, что в зигзагообразной спиновой цепочке существенную роль в формировании основного состояния может играть не только обменное взаимодействие между ближайшими соседями в цепочке, но и взаимодействие между следующими за ближайшими соседями (*J*₁-*J*₂ модель). Конкуренция J_1/J_2 способствует образованию сложных спиновых состояний, упомянутых paнee. При T < 5 К на температурных зависимостях магнитной восприимчивости также были обнаружены три особенности при температурах 4,65, 3,28 и 2,32 К. Переход в упорядоченное антиферромагнитное состояние соединения β-TeVO₄ происходит при $T_N = 4,65$ К [6].

Основная цель данной работы — исследование влияния магнитного поля (до 5 Тл) на магнитную восприимчивость $\chi(T)$ и температуру трех магнитных фазовых переходов в монокристаллическом образце β-TeVO4 в температурном диапазоне 1,9 К $\leq T \leq 10$ К. Эксперименты проводились на SQUID магнитометре MPMS-XL5 (Quantum Design) в магнитных полях 0-5 Тл, направленных вдоль трех кристаллографических осей. Измерения $\chi(T)$ выполнялись в режиме медленного изменения температуры со скоростью 0,01 К/мин, что позволило определить положение аномалий с точностью 0,02 К. Было обнаружено, что в режимах возрастания и убывания температуры кривые $\chi(T)$ полностью совпадают, при этом фазовые переходы не демонстрируют гистерезисного поведения. Также выявлено, что вдоль кристаллографических осей а и с магнитное поведение исследуемого кристалла идентично в рамках экспериментальной ошибки, поэтому в дальнейшем результаты экспериментов будут приведены только для двух направлений магнитного поля $H \perp b$ ($H \parallel a, c$) и $H \parallel b$.

Две серии температурных зависимостей магнитной восприимчивости $\chi(T)$, измеренных в нескольких фиксированных магнитных полях в диапазоне 0–5 Тл, представлены на рис. 1(а) ($H \parallel b$) и рис. 1(б) ($H \perp b$). На рисунках показаны экспериментальные данные в температурном интервале 1,9–6 К. Нетрудно заметить, что для всех приложенных полей при T > 5 К магнитная восприимчивость $\chi(T)$ имеет одинаковый характер монотонного роста при увеличении температуры, однако наблюдается слабая зависимость величины магнитной восприимчивости от величины магнитного поля. Так, увеличение измерительного поля на 1 Тл приводит к возрастанию амплитуды магнитной восприимчивости приблизительно на 1%. По-видимому, это связано с тем, что магнитный момент M(T,H) образца β -TeVO₄ является функцией двух параметров: температуры T и магнитного поля H. Как было отмечено в работе [6], для магнитных полей ниже 0,1 Тл такой полевой зависимости не наблюдалось.

В температурной области ниже 5 К на зависимостях $\chi(T)$ хорошо наблюдаются три аномалии при температурах (4,65 ± 0,02), (3,28 ± 0,02) и (2,32 ± 0,02) К (H = 0,005 Тл), которые могут быть интерпретированы как магнитные фазовые переходы. Первые две аномалии выглядят как излом на кривой $\chi(T)$, в то время как третья особенность имеет форму резкого скачка (ступеньки) с шириной $\Delta T \approx 0,10$ К. На рис. 1 звездочками обозначены температурные положения особенностей

Рис. 1. (Онлайн в цвете) Низкотемпературная часть магнитной восприимчивости $\chi(T)$ монокристалла β-TeVO₄ в фиксированных магнитных полях $H \parallel b$ (а) и $H \perp b$ (б). (*****) — две аномалии типа «излом», (**↓**) — «ступенька»

типа «излом», стрелками — аномалии типа «ступенька». Следует отметить, что поведение этих особенностей зависит от направления приложенного магнитного поля. Так, например, с ростом температуры в точке $T^{III}(0) = 2,32$ К происходит резкое изменение магнитной восприимчивости вверх для $H \parallel b$ и вниз для $H \perp b$. Кроме того, для $H \perp b$ более ярко выражена особенность в $T_N = 4,65$ К, тогда как для $H \parallel b$ более четко выражен излом кривой $\chi(T)$ в $T^{II}(0) = 3,28$ К.

При $H \ge 1$ Тл обнаружено заметное влияние магнитного поля на температуру трех фазовых переходов. Как для ориентации $H \parallel b$, так и для $H \perp b$, температурное положение первого перехода типа «излом» монотонно смещается в сторону низких температур при возрастании поля до 5 Тл. Аналогичное движение в сторону низких температур претерпевает и вторая особенность типа «излом». Однако следует подчеркнуть, что это смещение гораздо больше, чем для первого перехода. Кроме того, для Н || b аномалия наблюдается только в магнитных полях до 3 Тл. Характер полевой зависимости температуры перехода типа «ступенька» сильно зависит от направления магнитного поля. Так, для Н || b с увеличением поля эта особенность смещается в сторону высоких температур, одновременно уменьшаясь по амплитуде. Для $H \perp b$ эта аномалия быстро уходит из экспериментального диапазона (в сторону низких температур) и уже не наблюдается в полях выше 2 Тл.

Используя температурные положения трех аномалий магнитной восприимчивости $\chi(T)$ в различных полях, была восстановлена фазовая H–T-диаграмма монокристалла β -TeVO₄ для ориентаций $H \parallel b$ и $H \perp b$ (рис. 2). На рис. 2 различными символами показаны три фазовые границы, которые разделяют все пространство диаграммы на четыре области: PM — парамагнитная фаза и три фазы, которые обозначены как AF^I, AF^{II} и AF^{III}. Фазы AF^I, AF^{II} и AF^{III} являются магнитоупорядоченными фазами антиферромагнетика β -TeVO₄.

Первая фазовая граница

Как видно на рис. 2, при увеличении внешнего магнитного поля температура фазового перехода PM–AF^I незначительно смещается в сторону низких температур от 4,65 К (H = 0,005 Тл) до ~ 4,5 К (H = 5 Тл). Поскольку в работе [6] $T_N = 4,65$ К была определена как температура Нееля, то мы считаем, что наблюдаемая фазовая граница является границей раздела парамагнитного и магнитоупорядоченного состояний антиферромагнетика.

Для антиферромагнетика полевую зависимость температуры перехода из парамагнитной в магнитоупорядоченную фазу вблизи T_N можно получить из теории фазовых переходов II рода, используя разложение термодинамического потенциала. В этом случае смещение температуры перехода должно быть

Рис. 2. (Онлайн в цвете) Фазовая Н–Т-диаграмма монокристалла β -ТеVO₄ для $H \parallel b$ (а) и $H \perp b$ (б).

пропорционально квадрату приложенного поля *Н*. Для описания границы PM–AF^I использовано следующее выражение из работы [8]:

$$T^{I}(H) = T_{N} \left(1 - \left(\frac{H}{2H_{e}} \right)^{2} \right), \qquad (1)$$

где $T_N = 4,65$ К — температура фазового перехода в нулевом магнитном поле, $2H_e$ — эффективное поле обменного взаимодействия спиновой системы. Сплошной линией на рис. 2 показан результат расчета, полученный с использованием выражения (1) для $2H_e = (21 \pm 0,5)$ Тл. Наблюдается вполне удовлетворительное согласие с экспериментальными данными. Параметр $2H_e$ определяет магнитное поле полного насыщения намагничен-

Low Temperature Physics/Физика низких температур, 2015, т. 41, № 4

ности антиферромагнетика β -TeVO₄ и согласуется с оценкой константы обменного взаимодействия. Следует отметить, что температурное положение перехода $T^{I}(H)$ не зависит от направления приложенного поля.

Вторая фазовая граница

В отличие от рассмотренного выше фазового превращения РМ–АF^I, наблюдается существенное изменение температуры фазового перехода $AF^{I}-AF^{II}$. При увеличении магнитного поля от 0 до 5 Тл температура перехода смещается от 3,28 до 2,17 К ($H \perp b$). В то время как для ориентации $H \parallel b$ мы наблюдаем этот фазовый переход только до температур порядка 3 К. При анализе полевой зависимости было обнаружено, что смещение температуры перехода не следует квадратичному по H закону. Поэтому для описания полученных экспериментальных данных было использовано следующее эмпирическое выражение:

$$T^{II}(H) = T^{II}(0) \sqrt{1 - \left(\frac{H}{H_{\rm cr}^{II}}\right)^3},$$
 (2)

где $T^{II}(0) = 3,28 \text{ K}$ — температура фазового перехода в $H = 0, H_{cr}^{II}$ — критическое магнитное поле AF^{II} фазы. Пунктирной линией на рис. 2 показан результат расчета по формуле (2) с параметром $H_{cr}^{II} = (6 \pm 0,5) \text{ Тл. Как}$ видно на рисунке, выражение (2) вполне удовлетворительно описывает полевую зависимость температуры второго фазового перехода. Таким образом, была сделана оценка области полей ($0 \le H \le H_{cr}^{II}$), в которых существует магнитная фаза AF^{II} при $T \rightarrow 0$. Отметим, что в температурном интервале 3,00–3,28 К поведение фазовой границы не зависит от направления магнитного поля.

Третья фазовая граница

Влияние внешнего магнитного поля на температуру перехода $AF^{II} - AF^{III}$ фаз сильно различается для ориентаций магнитного поля $H \parallel b$ и $H \perp b$ (см. рис. 2). Для $H \perp b$ с увеличением магнитного поля температура фазового перехода быстро смещается в сторону низких температур (от 2,28 до 2 К) и в полях выше 2 Тл выходит за пределы доступного экспериментального диапазона. В то время как для $H \parallel b$ эта граница фаз движется в сторону высоких температур от 2,28 приблизительно до 3,3 К. Как видно на рис. 2(а), существует точка сосуществования трех фаз $\{AF^{I}, AF^{II}, AF^{III}\}$ с координатами $H^{*} = (3,2 \pm 0,1)$ Тл и $T^{*} = (3,0 \pm 0,1)$ К. При $T < T^{*}$ фазовая граница является линией раздела $AF^{II} - AF^{III}$ фаз, а при $T > T^{*} - AF^{I} - AF^{III}$ фаз. Для описания полевой зависимости температуры фазового перехода $AF^{II} - AF^{III}$ для $H \parallel b$ использовалось следующее эмпирическое выражение:

$$T^{III}(H) = T^{III}(0) \sqrt{1 - \left(\frac{H}{H_{\rm cr}^{III}}\right)^2}$$
, (3),

где $T^{III}(0) = 2,32 \text{ K}$ — температура фазового перехода в $H = 0, H_{cr}^{III}$ — критическое магнитное поле AF^{III} фазы. Наилучшее совпадение с экспериментальными данными получено для критического поля H_{cr}^{III} , равного (3,5 ± 0,2) Тл. Уточнение вида эмпирических выражений (2) и (3) требует дальнейших теоретических обоснований. Попыток описать фазовую границу $AF^{II} - AF^{III}$ для $H \parallel b$ не предпринималось.

Таким образом, восстановленная фазовая *H*–*T*-диаграмма явно демонстрирует наличие нескольких фаз упорядоченного антиферромагнитного состояния в монокристалле β-TeVO₄.

Наблюдение подобных особенностей магнитных свойств ниже температуры упорядочения может говорить о переходе системы либо в несоразмерную фазу, либо об образовании геликоидальной магнитной структуры. Заметим, что каскады фазовых переходов ниже T_N наблюдались в квазиодномерных магнетиках LiCu₂O₂ и NaCu₂O₂, в которых устанавливается геликоидальный тип антиферромагнитной структуры [9,10]. Мы предполагаем, что образование спиральной магнитной структуры происходит и в соединении β-TeVO₄.

В данной работе в диапазоне полей 0-5 Тл проведено детальное исследование низкотемпературного участка (1,9-10 K) магнитной восприимчивости $\chi(T)$ монокристалла β-TeVO₄ вдоль трех кристаллографических осей. Выявлено, что низкотемпературные магнитные свойства β-TeVO₄ имеют ярко выраженную аксиальную симметрию по отношению к направлению кристаллографической оси b. Обнаружен эффект заметного влияния величины магнитного поля как на амплитуду магнитной восприимчивости $\chi(T)$, так и на температуру наблюдаемых трех фазовых переходов. Это позволило изучить поведение фазовых границ и восстановить фазовую Н-Т-диаграмму исследуемого квазиодномерного антиферромагнетика. Показано, что антиферромагнитное состояние ниже $T_N = 4,65$ К имеет три различающиеся по своим свойствам магнитоупорядоченные фазы. Для Н || b наблюдается трикритическая точка. Выяснение природы основного состояния и наблюдаемых переходов в монокристалле β-TeVO₄ требует дополнительных исследований.

В заключение авторы выражают благодарность А.А. Степанову и А.А. Звягину за плодотворное обсуждение экспериментальных результатов и полезные советы.

- 1. H. Bethe, Z. Phys. 71, 205 (1931).
- A. Möller, M. Schmitt, W. Schnelle, T. Förster, and H. Rosner, *Phys. Rev. B* 80, 125106 (2009).
- O. Janson, W. Schelle, M. Schmidt, Yu. Prots, S.-L. Drechsler, S.K. Filatov and H. Rosner, *New J. Phys.* 11, 113034 (2009).

- 4. B.J. Gibson, R.K. Kremer, A.V. Prokofiev, and W. Assmus, *Physica B* **350**, e253 (2004).
- M. Enderle, C. Mukherjee, B. Fåk, R.K. Kremer, J.-M. Broto, H. Rosner, S.-L. Drechsler, J. Richter, J. Malek, A. Prokofiev, W. Assmus, S. Pujol, J.-L. Raggazzoni, H. Rakoto, M. Rheinstäadter, and H.M. Ronnow, *Europhys. Lett.* **70**, 237 (2005).
- Yu. Savina, O. Bludov, V. Pashchenko, S. Gnatchenko, P. Lemmens, and H. Berger, *Phys. Rev. B* 84, 104447 (2011).
- G. Meunier, J. Darriet, and J. Galy, J. Solid State Chem. 6, 67 (1973).
- 8. А.С. Боровик-Романов, *Антиферромагнетизм*, Серия «Итоги науки», Изд-во АН СССР, Москва (1962).
- L. Capogna, M. Mayr, P. Horsch, M. Raichle, R.K. Kremer, M. Sofin, A. Maljuk, M. Jansen, and B. Keimer, *Phys. Rev. B* 71, 140402R (2005).
- A.A. Gippiusa, E.N. Morozovaa, A.S. Moskvinc, S.-L. Drechslerd, and M. Baenitz, *J. Magn. Magn. Mater.* **300**, e335 (2006).

Specific features of magnetic properties of the β -TeVO₄ quasi-one-dimensional magnet at low temperatures

Yu.O. Savina, O.M. Bludov, V.A. Pashchenko, S.L. Gnatchenko, P. Lemmens, and H. Berger

The influence of the magnetic field on magnetic susceptibility $\chi(T)$ and the temperature of three magnetic phase transitions in the β -TeVO₄ single crystal hase been investigated at low temperatures. The phase H-T diagram for $H \parallel b$ and $H \perp b$ has been restored. The tricritical point with coordinates $H^* = (3.2 \pm 0.1)$ T and $T^* = (3.0 \pm 0.1)$ K for $H \parallel b$ has been found.

PACS: 73.30.Cr Saturation moments and magnetic susceptibilities;

- 75.30.Kz Magnetic phase boundaries;
- 75.50.Ee Antiferromagnetics;
- 75.40.Cx Static properties.

Keywords: quasi-one dimensional magnet, magnetic H-T phase diagram, trictical point, magnetic susceptibility.