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A self-consistent statistical method is used to calculate the Gibbs free energy of vacancy formation in

heavy rare gas crystals at high temperature. It is shown that the vacancy formation free energy rapidly falls

in the vicinity of the melting point of the crystal. Such behavior is attributed to approaching the anharmonic

instability point of vibrational subsystem of the solid.
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1. Introduction

Point defects in rare gas crystals (RGC) have been ex-

tensively studied both theoretically and experimentally

for about fifty years. Indeed, the RGC remain popular re-

search objects of the condensed matter physics because

the many-body interactions in these systems may be ef-

fectively described by a sum of two-body interactions,

approximated by various empirical potentials [1] (though

explanation of some fine effects requires many-body in-

teractions to be invoked [2]).

Since there is a great bulk of experimental data accu-

mulated on various physical properties of the RGC, they

are ideal systems for testing various microscopic theories.

For instance, it appeared that the classical lattice dynam-

ics failed in description of strongly anharmonic atomic

motion in the RGC at high temperature [3]. Realization of

this fact became a challenge that stimulated attempts to

work out some methods for adequate self-consisting de-

scription of strongly anharmonic solids. At present, exist-

ing theoretical models [4–7] predict well enough thermal

and elastic properties of the bulk RGC in a wide range of

temperature and pressure, in agreement with the experi-

mental data available.

However, as for properties of point defects in the RGC,

the picture is not so fair. Since the RGC form closed-packed

structure (fcc), vacancies represent the predominant thermal

defect in these solids. To determine directly the equilibrium

concentration cv of vacancies in the RGC, the most accurate

and reliable experimental method is simultaneous measure-

ment of length and x-ray lattice parameter of a specimen

[8,9]. Some authors extracted cv data from comparison of

measured bulk properties of the crystal (length, density,

thermal expansion coefficient) [10–14] with corresponding

x-ray data [8,15–17]. Even measured values of the vacancy

concentration show remarkable divergency. For instance,

reported values of cv near the triple point are for Ar: � �10 3

[12], � � �2 10 4 [9], � � �3 10 3 [15], 10 10 2. � � [14]; for Kr:

7 4 10 3. � � [14], 3 2 10 3. � � [8], 2 9 10 3. � � [13]; for Xe:10 2� [16],

1 2 10 1. � � [14].

Thermodynamical parameters of vacancies, such forma-

tion enthalpy, entropy, volume, etc., are extracted from the

observed data by indirect methods. Vice versa, microscopic

calculations deal with direct evaluation of energetic parame-

ters of the vacancy. At present, there is a variety of theoreti-

cal predictions of vacancy formation parameters made by

different authors via various methods, including Monte

Carlo calculations [18,19] (see, e.g., Refs. 9, 20, 21 where

results of various calculations are compared). Numerous

calculations of vacancy properties have been made, taking

such factors into account as static lattice relaxation, change

of vibrational frequencies, lattice anharmonicity, quantum

and many-body corrections [20]. In spite of some discrep-

ancy between the calculated values of the vacancy parame-

ters reported by different authors, we may, in principle, as-

sert that there is qualitative agreement between calculated

and observed values. For example, the computed values of
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the vacancy concentration in Ar near the triple point are

10 4� –10 3� in order [21–24]. It is generally agreed that the

Gibbs free energy of vacancy formation decreases nearly

linearly with temperature, though the idea that it can de-

crease rapidly near the triple point was suggested to explain

anomalous behavior of isohoric specific heat of argon [25].

The aim of the present study is calculation of vacancy

parameters in the RGC at high temperature by means of

the self-consistent statistical method for determination of

thermodynamical properties of anharmonic solids devel-

oped in Ref. 6. The basics of this method are briefly out-

lined in Sec. 2 in relation to the subject of this work. In

Sec. 3 we substantiate the high-temperature approxi-

mation to the self-consistent statistical method. Then in

Sec. 4 we set out the procedure of calculation of the Gibbs

free energy of vacancy formation in the RGC at high tem-

perature. The results of our studies for Ar are presented in

Sec. 5, and in Sec. 6 a brief conclusion is given.

2. Self-consistent statistical method

To describe thermal properties of equilibrium vacan-

cies in a crystal, we should first write down the Gibbs free

energy of vacancy formation as a function of temperature

T and external pressure P,

g T P G T P G T P( , ) ( , ) ( , ),� �1 0 (1)

where G0 and G1 are, respectively, the Gibbs free energies

of a hypothetical perfect crystal and a crystal containing

one vacancy at a fixed lattice site. If the vacancies are as-

sumed to be noninteracting, their equilibrium concentra-

tion is given by

c T P g T P k TB( , ) ( , ) / ]� �exp [ . (2)

Microscopic calculation of g T P( , ) requires both eval-

uation of the Gibbs free energy of a perfect crystal at

given temperature and pressure and proper description of

the system response on creation of a defect. Since the

number of vacancies becomes appreciable near the melt-

ing point only, it is worthwhile to restrict the consider-

ation of their properties with the high-temperature range,

incorporating properly effects of anharmonicity of atomic

vibrations. For this purpose, we follow a recently pro-

posed self-consistent statistical method for calculation of

thermodynamical properties of solids [6]. According to

this approach, the Gibbs free energy of a simple perfect

crystal consisting of N atoms of mass m is written in the

form of the Gibbs–Bogoliubov functional corrected for

the cubic anharmonicity,

G F U U F PVH H0 3� � � � � � � , (3)

where FH and � �U H are, respectively, the Helmholz free

energy and the average potential energy of a reference

harmonic crystal, F3 is a correction for the cubic

anharmonicity of atomic vibrations evaluated within the

second-order perturbation theory, and

U u rij

i j

N

�
�
�1

2
1

( )

,

(4)

is the potential energy of interatomic interaction which is

assumed to be central and pairwise and is approximated

by an empirical potential u r( ). As in Refs. 26, 27, we em-

ploy here a hybrid potential of interatomic interaction.

The interaction of nearest neighbors is described by the

exponential Morse potential,

u r A
r R r R

( ) [ ]
( ) ( )� �� � �

e e
2 0 02
	 	 (5)

which is especially convenient for the possibility of ana-

lytical calculations of average values. However, it does

not provide the proper long-range asymptotics of the van

der Waals attraction of atoms in the RGC (� � �r 6), so we

use the attractive part of the Lennard–Jones potential

u r r( ) ( / )� � 4 6
 � to approximate interactions of atoms

that are not nearest neihgbors of each other.

The parameters A, 	, and R0 were determined in

Ref. 27 so that the present model reproduced the observed

values of sublimation energy, interatomic distance, and

bulk modulus of the RGC at T � 0. The parameters 
 and �
were obtained in a similar way within the model using the

Lennard–Jones (12–6) potential only [6]. The values of

the parameters A, R0, 	, 
 and � for the RGC are listed in

Table 1.

Table 1. Parameters of the Morse and Lennard–Jones potentials

and the de Boer parameters � for the heavy RGC

RGC 	, �
–1

A, K R0 ,� �,� 
, K �

Ar 1.63 117 3.83 3.37 132.52 0.165

Kr 1.52 172 4.09 3.61 182.85 0.088

Xe 1.38 226 4.46 3.92 257.34 0.055

The average potential energy � �U in (3) is calculated

over correlated Gaussian distribution function of atomic co-

ordinates. The parameters of this distribution are deter-

mined by the phonon spectrum of the crystal parametrized

by a single dimensionless parameter c of effective quasi-

elastic bond of neighboring atoms [6]. For the Morse poten-

tial, the average potential energy of interaction of two neigh-

boring atoms can be expressed analytically as

� � � �� � � �u A b q b q[ ]/ /e e2 42 2

2	 	 , (6)

where b R R� �	( )0 is a reduced lattice expansion, R is

the nearest-neighbor distance,  is the inverse square of a

width of the distribution, and q is a dimensionless factor
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representing a contribution of the correlations to the en-

ergy of interatomic interactions (q � 2 in the absence of

correlation).

The explicit formulae for FH ,U H , F3, and for the distribu-

tion width function of atomic displacements are given in Ref. 6.

Minimization of the functional (3) with respect to the parameters

c and b allows us to compute thermodynamical properties of the

perfect crystal at arbitrary T and P. A limit temperature Tc ,

above which the minimum of G0 with respect to c does not ex-

ist anymore, defines the point of the instability of the solid due to

the strong vibrational anharmonicity. For the perfect heavy

RGC, T Ac � 0 716. at P � 0, i.e., Tc is slightly higher than the

observed melting point.

3. The high-temperature limit

Now let us write down the Gibbs free energy of va-

cancy formation,

g T P u r F Pvi

i

R( , ) ( ) ,� � � � � �
�
�1

2
0

0

� (7)

where the first term describes a change of the crystal en-

ergy due to creation of a vacancy without any regard for

atomic relaxation around it, v is a vacancy volume (as-

sumed to be equal to the atomic volume, R 3 2/ in the fcc

lattice), and �FR is a change of the crystal free energy due

to medium relaxation around the vacancy, including lattice

distortion and changes of atomic vibrational frequencies.

To evaluate the first term in (7), we need the parame-

ters of the perfect crystal only, so it may be considered as

a first-order approximation to the true g T P( , ). However,

the atomic relaxation may contribute substantially to (7),

especially in the vicinity of the point of the high-tempera-

ture instability of the crystalline state. To estimate �FR ,

we should allow for a change of the vibrational spectrum

due to the vacancy formation, which is, generally, rather

complicated.

Since we are concerned with the vacancy properties at

high temperatures, it seems reasonable to benefit from the

one-particle approximation which is known to provide a

good description of vibrational and thermodynamical

properties of solids in this temperature range [20]. It was

shown in Ref. 6 that a contribution of the interatomic cor-

relations to the average potential energy of the crystal can

be discarded at high temperature (q � 2 in (6)), so that we

can use a one-particle distribution function of atomic

displacements, represented by a Gaussian function

f qi i( ) exp ( )

/

q � �

�
�

�

�
� �



�


3 2
2 , (8)

with q i being a displacement of the atom from its site. The

inverse square of the distribution  can be presented as a

power series [6]
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Here c is the parameter of effective quasi-elastic bond of

neighboring atoms, � � k T AB / is reduced temperature, and

� �
�	

mk AB

(10)

is the de Boer parameter for the Morse potential, m is

atomic mass. The condition c� / � �� 1 defines the range

of applicability of the high-temperature approximation.

The coefficients n l2 in (9) are determined by integration

over the phonon spectrum of the crystal, and in the case of

the fcc lattice the first four of them are n0 2� , n2 5 6� / ,

n4 0 475� . and n6 0 296� . [6].

In the high-temperature approximation the average po-

tential energy (6) of interaction of neighboring atoms

takes on the form

u
u

A

b b* / * / *�
� �

� �� � � �e e2 2 1 22  (11)

with   	* /� 2, while the long-range van der Waals in-

teraction of other pairs of atoms is taken into account

without thermal averaging. Hereafter we will preferably

represent energy in units of A.

The other contributions to G T P0( , ) in the high-tem-

perature limit appear as [6]

� �
�

�
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where the dimensionless coefficient a3 2 2� . describing

effective cubic anharmonicity contribution is chosen so

that the calculated instability temperature at P � 0 lies

close to the triple point. Thus, the Gibbs free energy of the

perfect crystal at high temperature is written as

G

AN

z
u

A R

p R
HT

s
0 1

6

3

3

2 2
� � �

�
�

�

�
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( )
"


 �
� �

	
, (14)

where z1 12� is the coordination number, " � 4 91. for the

fcc lattice [28], and p P A� /( )	 3 is reduced pressure.

A test of this model shows that it provides an excellent

description of thermodynamical properties of essentially

classical Xe crystal (� � 0 055. ), even at � � 0 15. . (Note

that the instability point � c � 0 72. for all the heavy RGC.)

Moreover, the classical approximation � � 0 appears in

that case satisfactory, too. On the other hand, for Ar

( . )� � 0 165 the high-temperature approximation becomes

valid only at � � 0 45. .
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4. Vacancy

The high-temperature approximation to the self-con-

sistent statistical method gives us a tool for description of

thermodynamical properties of the vacancies in the heavy

RGC. The following assumptions will be made in consid-

eration of the atomic relaxation around the vacancy.

1. The vacancy is assumed to be at the origin of the

crystal. The relaxation of the atomic distribution in four

coordination spheres of the vacancy is taken into account.

The parameters of the other atoms are assumed to be un-

changed in comparison with those of the perfect crystal.

2. An equilibrium position of each of the relaxing at-

oms is shifted radially by a distance �Rn , where n is the

number of the coordination sphere. We assume �Rn � 0

for outward relaxation.

3. The distribution function of an atom of the va-

cancy’s nth coordination sphere is axially symmetrical

and is written as

f x y z C c x c y zn
n n n

( )( , , ) exp[ ( , ) ( , ) ( )],� � � � �  �1
2

2
2 2

(15)

where cn1 and cn2 are variational parameters characterizing

longitudinal and transverse widths of distribution, respec-

tively, and the x axis is chosen so that is passes through the

site of the atom and the vacancy. The functional form of the

 �( , )c is assumed to be given by Eq. (9).

4. Only pairs of neighboring atoms are assumed to

contribute into the change of the potential energy of inter-

atomic interaction in the vacancy’s surrounding.

Changes of the average vibrational amplitudes of at-

oms around the vacancy affect the potential energy of in-

teratomic interaction (through the parameter ), the en-

tropy term � s , and the cubic correction � 3. A change of

the entropy term is evident,

�� � � �s
n

n

s n s n s

z
c c c� � �

�
� 3

2 3

1

4

1 2 0[ ( ) ( ) ( )] , (16)

where z n is the number of atoms in the nth coordination

sphere of the vacancy, � s c( ) is given by (12), and c0 is the

quasi-elastic bond parameter for the perfect crystal.

A change of the average potential energy of interaction

between two neighboring atoms belonging to the nth and

mth coordination spheres of the vacancy is determined by

angles and sides of a triangle formed by the sites of these

atoms and the vacancy,

�u unm
b bnm nm nm nm* / *� � �� � � �

e e
2 4

2
# #

, (17)
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is a changed distance between the atoms, � �n nR R� / is

a reduced shift of an atom from the vacancy’s nth coordi-

nation sphere,
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and cos ( ) /2 21 4$nm n m n� � � . Then the reduced poten-

tial energy contribution to the free energy of the medium

relaxation is given by
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where z nm is a number of atoms belonging to the mth coor-

dination sphere of the vacancy that are the nearest neigh-

bors of an atom from the nth sphere.

Finally, we have to allow for a cubic anharmonicity

contribution to the vacancy formation free energy. Gener-

alizing Eq. (13) on the situation when atomic vibrational

distributions are not isotropic, we write

�� � � �3

1

4

3 0

1

4

3� � �
� �
� �z c zn

n

nm

m

nm[ ( , ) ] , (19)
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/

%
�

��( )c c cni

ijk

nj nk

1

3
2, (20)

with c cn n3 2& .

We should keep in mind that Eq. (13) was derived in the

high-temperature limit from a general expression for the cu-

bic anharmonic contribution to the vibrational part of the

free energy of a perfect crystal [29], with the factor a3 deter-

mined by the phonon spectrum of the perfect crystal. Since

presence of a vacancy distorts substantially the vibrational

spectrum of the crystal, we can use Eq. (19) only for a quali-

tative estimation of the cubic contribution to the free energy

of an imperfect crystal.

Thus, within the present model, the Gibbs free energy

of vacancy formation in the RGC is a function of twelve

variational parameters cnl and � n and is written as

g p

A

z
u

R

( , )
*

�
"



'

�
� � � �

�
�

�

�
� �1

6

2

� � � �
p R

U s

( ) *	
� �

3

3
2

� � � . (21)
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5. Results and discussion

We calculated the equilibrium value of the Gibbs free en-

ergy of vacancy formation for Ar and Xe, minimizing g p( , )�
with respect to a set of variational parameters. It turned out

that inclusion of a contribution of the nearest neighbors of the

vacancy to the cubic anharmonic correction (19) results in

disappearance of the minimum of g with respect to c11 and

c12 at temperature slightly below the bulk instability point � c .

To override this artefact, we had to discard the cubic anhar-

monic contribution of the first coordination sphere of the va-

cancy. We suppose that for the vacancy’s nearest neighbors,

located in essentially nonspherical potential wells, the cubic

correction to g p( , )� is of more sophisticated form than that

given by (19) and (20). Thus, the value of the vacancy forma-

tion free energy calculated with this contribution discarded

represents the upper limit of g p( , )� . However, our estimation

showed that g p( , )� is only slightly sensitive to inclusion of

the anharmonic contribution of the first coordination sphere,

though this may be not a case in the vicinity of the instability

point.

In Fig. 1 we plotted the temperature dependence of the

vacancy formation free energy g at zero pressure calculated

for Ar and Xe (solid lines). In the same plot we show g T( )

computed for a quasi-harmonic crystal, i.e., with a3 0�
(dash lines), and for an anharmonic crystal, but without the

cubic contribution (19) included to the vacancy formation

free energy (dot lines). Near the melting point the calculated

vacancy concentration in both crystals is about 1 6 10 4. � � .

This value agrees with the results of some experimental [9]

and theoretical [18,22,23] studies, though it is less by the or-

der of magnitude than that of others [14,15,21,23]. To com-

pare our results for the vacancy parameters in Ar with others

available in the literature, we collected some experimental

and calculated data in Table 2.

The central result of this study is a drastic reduction of the

vacancy formation free energy near the melting temperature

due to approaching the point of the solid state instability.

Table 2. Vacancy parameters for Ar near the triple point: forma-

tion enthalpy, entropy, Gibbs free energy, and concentration.

Ref. h, K s kB, g , K 104 cv Method

[9] – – – < 2.5 Simultaneous measurement of bulk

and lattice expansion

[15] – – – 30
Measurement of x-ray lattice pa-

rameters along the melting line;

comparison with bulk data

[14] 943.6 6.72 392.6 108
Measurement of coefficient of ther-

mal expansion; comparison with

x-ray data

[22] 957.5 4 – 5.5 Two-body quasi-harmonic model

[18] – – – 4 Monte Carlo two-body simulation

[24] 857 2 689.4 3.5 Self-consistent Einstein model

[23] 805.4 – – 18.6 Correlative method of the unsym-

metrized self-consistent field

[21] 802.3 – 529.4 18.1 Statistical theory of mixtures

This

work

1225 5.9 733 1.6 Self-consistent statistical method

This is also indicative of sharp increase of the vacancy

formation entropy s g T P� � ( (( / ) from about 2 k B at

� � 0 45. to 5 6. k B at � c . At the same time, the vacancy for-

mation enthalpy h g Ts� � also increases near the insta-

bility point, from h �1000 to 1216 K in the considered

temperature range. The idea that the vacancy formation

enthalpy can rapidly increase near the triple point of a

crystal was suggested by Crawford et al. [25] for expla-

nation of anomalous high-temperature behavior of the

isohoric specific heat of Ar. They also presumed that such

behavior of vacancy parameters may be attributed to the

vicinity of the solid state instability point.

In Fig. 2 we show spatial distribution of the equilibrium

values of longitudinal (l �1) and transverse (l � 2) parameters
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cnl in Ar at different temperatures. Note that cn1 and cn2 de-

termine the average amplitudes of radial and tangential vib-

rations of atoms around the vacancy, respectively (the

mean-square average displacement � � �q c2 2
� [6]). As one

may expect, the presence of a vacancy affects mostly the dis-

tributions of displacements of its nearest neighbors, which

appear to be substantially elongated towards the vacancy. The

distributions of the other atoms around the vacancy remain

almost spherical. Unfortunately, our model does not repro-

duce properly the behavior of parameters c11 and c12 near the

instability point, since we ignored the contribution of the va-

cancy’s first coordination sphere to the �� 3. One should

expect that these parameters decrease more steeply as temper-

ature approaches Tc , thus providing additional reduction of

the free energy of vacancy formation.

Figure 3 represents spatial distribution of relative shifts

� �n nR R� / of the equilibrium positions of Ar atoms

around the vacancy at different temperatures. The shifts of

atoms are negative within the considered temperature range,

i.e., the atomic relaxation is inward. A contribution of the

spatial medium relaxation to the vacancy formation energy

varies from 1.6% at � � 0 4. to 4% near � c in comparison

with the value of g calculated taking into account changes of

the amplitudes of atomic vibrations only. These results are

quite consistent with that of Glyde [20,30].

We also considered influence of external pressure on

vacancy formation in the RGC near the melting line. Par-

ticularly, we checked the assumption that the vacancy

concentration is constant along the melting line [31]. We

successfully tested the present high-temperature approxi-

mation to the self-consistent statistical model by calcula-

tion of the equation of state for perfect Ar crystal at 293 K

up to 80 GPa. The agreement with observed data is quite

good within the considered pressure range.

At low pressures ( � 8 kbar) the calculated tempera-

tures of the solid state instability are only slightly higher

that the observed melting point, but at higher pressures

the instability line lies much above the melting line.

Therefore, the condition cv � const along the melting line

is valid at least at low pressures where the curves T Pc ( )

and T PM ( ) almost coincide.

Due to the assumptions we adopted in the present study,

we consider our results for the vacancy formation free en-

ergy as an upper limit for the true g T P( , ). First, to improve

the present model, we should take proper account of the cu-

bic anharmonic contribution of the nearest neighbors of the

vacancy. Second, we used a rather simple model to describe

the long-range interaction of atoms which can also contrib-

ute to the potential energy of the medium relaxation. It is

also worthwhile to seek for the equilibrium value of cv si-

multaneously with that of the bulk variational parameters c

and b, as it was made in Ref. 24. Moreover, an analysis of

this problem suggests that the calculated thermodynamical

properties of the vacancies are much more sensitive to the

input parameters and assumptions than the bulk crystal ther-

modynamics. For example, the long-range many-body ef-

fects are known to decrease the vacancy formation enthalpy

by 6% for Ar and Kr at T � 0 and by 8% for Xe [32].

Another point is that perturbation of the phonon spectrum

due to creation of vacancies is, indeed, more complicated

than that described by the one-particle approximation.

These and other effects may be of crucial importance in the
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premelting temperature range, so that the role vacancies

play in the melting transition cannot be discarded.

6. Conclusion

To conclude, let us discuss the role the vibrational

anharmonicity plays in formation of structure defects in a

crystal. An emphasis will be placed on the cubic vibrational

anharmonicity, which is of crucial importance for the evolu-

tion of instability of the phonon subsystem of the crystal. To

get an insight into the nature of such instability, we should

keep in mind that the odd order anharmonicity corresponds

to effective attraction between phonons. In a crystal with the

cubic anharmonicity, the phonon subsystem can be consid-

ered as a nonideal gas of attracting particles, with the num-

ber of particles being an internal parameter of the system.

On the contrary, the even order anharmonicity corresponds

to effective repulsion of phonons and, as known [33], is re-

lated to another type of instability at temperatures much

higher than the melting point of the solid.

At high temperature, the cubic anharmonicity is respon-

sible for the nonlinear reduction of the quasi-elastic bond

parameter c0( )� with temperature, especially in the vicinity

of the critical temperature � c . Such behavior of c0( )� mani-

fests itself in increasing of the widths of atomic distributions

and, as a result, in a nonlinear rise of the average potential

energy of the interatomic interaction. Since creation of

structural defects in the crystal, such as vacancies, is accom-

panied by rupture of a part of interatomic bonds, a dramatic

drop of the binding energy near the instability point paves

the way for the structural disordering of the medium, i.e., for

the melting transition. In our previous works [6,26,27,34]

we show that the premelting effects in the RGC (nonlinear

rise of isobaric specific heat, coefficient of thermal expan-

sion etc.) are associated with the evolution of the solid state

instability. Up to concentrations cv � 10 2� , vacancies have

only little influence on the crystal’s thermodynamical prop-

erties. However, in the direct vicinity of the instability tem-

perature, the vacancy contribution to the system thermody-

namics is comparable with the bulk one [34]. Finally, note

that steep temperature dependence of the free energy of the

vacancy formation near � c can be responsible for large

divergency of observed values of the vacancy concentration

in the RGC [8,9,12–16].
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