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A new principle for a compact spin-based solid-state laser is proposed. It operates in the
1–100 THz regime, which is difficult to reach with small size lasers. Spin-flip processes in ferro-
magnetic conductors form a basis — the mechanism is due to a coupling of light to the exchange in-
teraction in magnetically ordered conductors via the dependence of the exchange constant on the
conduction electron momenta. The interaction strength is proportional to the large exchange en-
ergy and exceeds the Zeeman interaction by orders of magnitude. A giant lasing effect is predicted
in a system where a population inversion has been created by injection of spin-polarized electrons
from one ferromagnetic conductor into another through an intermediate tunnel region or weak
link; the magnetizations of the two ferromagnets have different orientations. We show that the
laser frequency will be in the range 1–100 THz if the experimental data for ferromagnetic manga-
nese perovskites with nearly 100% spin polarization are used. The optical gain is estimated to be
gopt � 107 cm�1. This exceeds the gain of conventional semiconductor lasers by 3 or 4 orders of
magnitude. An experimental configuration is proposed in order to solve heating problems at a rela-
tively high threshold current density.

PACS: 75.70.–i

1. Introduction

Conventional electronics, which is based on the
manipulation of electronic charge, has been in-
tensively studied for years and has enjoyed wide appli-
cations. It will suffice to mention such devices as se-
miconductor diodes and semiconductor lasers. An
appealing alternative is pursued in a new field of solid
state physics, the field of «spintronics» [1,2], where
one explores the possibility of controlling the spins of
conduction electrons and hence to further extend both
the area of scientific investigation and the field of ap-
plications. Spin-dependent tunneling of electrons has
already found commercial applications based on the
«giant» magnetoresistance of certain layered struc-
tures [1,2]. Other applications are bound to follow. In
this area magnetically ordered, layered conductors
with nearly 100% spin polarization of the conduction
electrons [3] show considerable promise.

A bias voltage applied to a magnetically ordered
conductor allows control not only of the energy but
also of the spin distribution of electrons that are in-
jected into the magnetic conductor. An example of
such a system is presented in Fig. 1, where the hatched
region corresponds to an equilibrium distribution of
(spin-up) electrons in a spin-polarized conductor. The
dotted area marks a nonequilibrium distribution of
«hot» (spin-down) electrons. Relaxation of the spin-
down electrons to an equilibrium configuration re-
quires spin-flip processes and is therefore completely
blocked if such processes are not allowed. In the pres-
ence of such a «spin-lock» against relaxation, highly
excited states in the material may have a long lifetime,
which, in turn, may make for novel «spintronics» ef-
fects in spin-polarized conductors.

The objective of this paper is to demonstrate how
electromagnetic radiation may remove the spin-lock,
resulting in a giant lasing effect. A short description
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of this effect has been published as a Letter [4]. It is
based on a new mechanism for creating spin-flip pro-
cesses due to a coupling of the radiation to the ex-
change interaction in magnetically ordered conduc-
tors. This comes about via the dependence of the
electron spin-magnetic moment exchange interaction
on the moment a of the conduction electrons. As a re-
sult, the lasing effect is shown to occur in systems
where an inverted electron population has been cre-
ated by the tunneling injection of spin-polarized elec-
trons from one ferromagnetic conductor to another
(the orientation of the magnetization being different
in the two ferromagnets). An example of such a sys-
tem is presented in Fig. 2.

Our estimates show that a laser with an optical
gain that exceeds the gain of conventional semicon-
ductor lasers by three or four orders of magnitude can
be built, and we argue that laser action can be
achieved provided care is taken to design the system so
that the active region is not overheated. This is en-
abled by the high efficiency of the electron spin-flip
mechanism described below and the possibility of
creating a very high inverted population of electrons
in the system under consideration. The frequency of
such a laser can be in a wide range that includes the
interval 1–100 THz, in which attempts to fabricate
small size lasers up till now have met severe technical
problems [5–10].

In Section 2 we present the above-mentioned spin
flip exchange mechanism and find the wave functions
of injected electrons in the absence of the electromag-
netic field. In Section 3 we calculate the rate of the
stimulated photon emission and present estimates of

the laser optical gain and the threshold current. In the
Conclusion we summarize the main results and esti-
mates of the paper, while a cursory description of the
laser action is presented in an Appendix for the conve-
nience of the reader.

2. Population inversion in ferromagnetic
conductors and a new mechanism for creating

spin-flip processes

The Hamiltonian for the electrons in a magneti-
cally ordered conductor can be written as
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�
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H
p

m
0 0

2

2
� �� σΙ , (1)

where m* is the effective mass, �p is the momentum op-
erator, �σ are Pauli matrices, �0 is the 2 2� unity ma-
trix, and I is the exchange energy. According to
Eq. (1) the dispersion law for electrons with spins
up/down is
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We will deal with a system, schematically pre-
sented in Fig. 2, in which two potential barriers divide
the magnetic conductor into three parts; the magneti-
zation of two adjacent magnetic conductors (regions A
and B) are pointing in opposite directions. A bias volt-
age V is applied between regions A and C. We assume
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Fig. 1. Schematic representation of the band structure of a
magnetically ordered conductor. The hatched region corre-
sponds to an equilibrium distribution of spin-up electrons
in the lower band, while the dotted region indicates
nonequilibrium distribution of «hot» spin-down electrons
in the upper band. Arrows show electron spin directions in
the bands.
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Fig. 2. Schematic illustration of population inversion in a
magnetic conductor (region B). A bias voltage V is appli-
ed between magnetic conductors (A and C) which have
opposite directions of their magnetizations (the thick ver-
tical lines represent potential barriers). Arrows show the
electron spin directions in the electron energy bands; �0 is
the equilibrium chemical potential (in the absence of
bias). The inset shows a possible realization of the struc-
ture in which two magnetic conductors with opposite mag-
netization directions are coupled through a micro-bridge (B).



that the spin relaxation time 	 s
�1 [11], the time tE of

electron energy relaxation without changing spin di-
rection, and the electron tunneling time ttun obey the
double inequality t tE s

 

 �

tun 	 1. In the absence of
spin-flip processes, the energy relaxation of injected
spinpolarized electrons creates a nonequilibrium state
in which equilibrium is established only inside each
group of electrons with a fixed spinpolarization.
Therefore, in region B electrons inside the spin-up and
spin-down energy bands are in local equilibria de-
scribed by the different chemical potentials �� and
�� , while the system as a whole is far from equilib-
rium.

According to Eq. (2) the energy conservation law
for vertical transition of electrons with emission of
photons of frequency � does not depend on the elec-
tron momentum:

�� � � �� �E p E p I( ) ( ) 2 . (3)

It follows that for � � 2I/� all «hot» electrons are in
resonance with the electromagnetic field, and hence
stimulated emission of light due to transitions of elec-
trons from filled states in the upper band to empty
states in the lower band is possible for all electrons in
an energy range ��–�� . As is seen from Fig. 2, the
population inversion needed for lasing requires a bias
voltage V I/e� 2 (e is the electron charge).

The conventional Zeeman term � ( ) �H g /Z B� � 2 Hσ
describing interaction between the (hot) electrons and
an electromagnetic field does provide a mechanism for
stimulated radiative transitions between the energy
bands containing electrons with opposite spin direc-
tions. However, it is relatively small in magnitude and
it is not the most important mechanism. For ferro-
magnets, we would like to suggest a much more effec-
tive mechanism of interaction between light and con-
duction electron spins. This mechanism is based on the
dependence of the exchange energy I on the momen-
tum p of the conduction electron. The momentum de-
pendence has to do with the overlap of the wave func-
tions of the conduction electron and the magnetic
subsystem (see, e.g., [12]). It is determined by the
value of pa/�, where a is the characteristic size of the
orbital (that is, one may estimate   �I/ p a/ I( )� ,
where a is an atomic-scale length). That is why it var-
ies with the momentum of the conduction electron. In
the absence of an electromagnetic field the Hamil-
tonian that describes this situation can be written as
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In the presence of an electromagnetic field de-
scribed by a vector potential A, the momentum opera-
tor �p in Eq. (4) must be changed to � ( )p A� e/c (c is

the light velocity), and one obtains an effective
Hamiltonian � ( � ( ) ) � ( � ( ) )H e/c e/ceff � � � �� p A p AσΙ .
Expanding in powers of ( )e/c A, one gets an effective
Hamiltonian of the form

� ( �) � ( )H Heff eff� �� p 1 , (5)

where the perturbation Hamiltonian [13] is
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In Eq. (6) we have omitted the term
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0� �� A p , (7)

which does not flip spins; summation over repeated
indices is implied: a bi i � ab.

If the injected electrons are prepared in such a way
that their spins are not parallel to the magnetization
in the active region B (see Fig. 2), the Hamiltonian
(6) produces spin-flips and hence stimulates the nee-
ded radiative transitions of hot electrons in the upper
band to the lower energy band. This process is illus-
trated in Fig. 3, where an electron (with its spin par-
allel to the magnetization) is impinging on the bound-
ary from the left, passes through the boundary and is
scattered into a quantum superposition of spin-up and
spin-down states in the active region B to the right of
the boundary.

In order to find the probability amplitude for a ra-
diative transition of an electron caused by pertur-
bation Eq. (6) we obtain the zero-approximation
wave function of the electron as a solution of the
Schrödinger equation �( �)| |p � �〉 � �E , neglecting the
dependence of the exchange interaction I on �p. Taking
into account the fact that the electron wave-function
is a two-component spinor,
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and using Eq. (4), one can write the Schrödinger
equation as
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(9)

Here the x axis is perpendicular and the y and z axes
parallel to the boundary (see Fig. 3), and we assume
that in the left-side ferromagnet (x 
 0) the direction
of I is along the z axis (i.e., I � ( , , )0 0 I ) while in the
right-side ferromagnet (x � 0) its direction is differ-
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ent and all three components of I are present: I �
� ( , , )I I Ix y z , I I I Ix y z

2 2 2 2� � � , and I I iIx y� � � .
We also assume that the width of the intermediate
layer between the left and right ferromagnets d (the
width of the «domain wall») satisfies the inequality
d v /IF

 � (vF is the electron Fermi velocity). In
this case an electron passes this region without chang-
ing spin direction and hence one may solve Eq. (9)
considering I to be constant in the injecting region
(left-hand side of Fig. 3) and in the active region (the
right-hand side of Fig. 3) and matching the wave
functions at the boundary x � 0.

Considering the case of an electron incident from
the injection region with its spin parallel to the mag-
netization direction, one readily finds the wave func-
tion of the electron in the injection region (x 
 0) to be
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while in the active region (x � 0) the wave function is
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Here the projections of the electron momentum and
the coordinate on the boundary are denoted by
p� � ( , , )0 p py z and r� � ( , , )0 y z , while p12, �

� ! � �2 2m E I p*( ) . Matching the wave functions
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3. Stimulated emission rate and giant laser
effect in ferromagnetic conductors

The characteristics of lasers can be described by
rate equations which are obtained by considering the
time evolution of the number of photons and the num-
ber of nonequilibrium electrons in the active region
(see, e.g., [16,17]). The simplest form of the set of
rate equations for the density of photons Np and the
density of electrons N� in the upper band can be writ-
ten as

� ( )
� ( )

N G N N N

N J/eV N G N N
p p p p

s p

� �
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�
�
#

�#
�
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$ 	0
(14)

(See Section 3.3.6 in Ref. 17). Here G N( )� and the
stimulated emission rate Rst are related, Rst �
� �G N Np( ) ; 	p is the photon relaxation rate; J is the
injection current; $ is the internal efficiency: the frac-
tion of the injection current that generates electrons
in the upper band of the active region; V0 is the vol-
ume of the active region.

With the electron wave functions defined we can
find the rate Rst of radiative electronic transitions by
assuming the vector potential A r( , )t in Eq. (6) to be a
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Fig. 3. Schematic illustration of how electrons are in-
jected into the active region for the case that the adjacent
ferromagnets have different magnetization directions
(shown with long arrows; electron spins, σ, are shown
with short arrows with black dots at the end). An electron
from the left-side ferromagnet with its spin parallel to the
magnetization direction passes through a sharp boundary
(shown as a vertical thick line) between the ferromagnets
without changing spin direction. In the right-side ferro-
magnet it emerges with its spin in a superposition of the
spin-up and spin-down states. The classical precession of
the spin is indicated by a dashed-line ellipse.



plane wave of the form A i t0 exp ( )� �kr � and using
Fermi’s Golden Rule:

R H f f f fst � � � � �%
2

1 121
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2 1 1 2
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2 1 32
p p
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Here

( (H H H df i f i21
1 1 3� � %� � � �� ( ) � ( )( ) * ( )

eff effr r r (16)

is the matrix element corresponding to the transition
from the initial state �i ( )r (which belongs to the ini-
tial energy Ei in the upper band) to the final state
�f ( )r (which belongs to the final energy Ef in the
lower band); functions f12, are the Fermi functions of
electrons in the upper and lower bands:

f
E kT12

1
1,

,exp ( ) /
�

� �� ��
. (17)

Using Eq. (6) and Eq. (11), one sees that the ma-

trix element ( (� �f iH� ( )
eff
1 (the probability amplitude

for a radiative electron transition between the unper-
turbed energy bands) is non-zero if p E p Ei f1 2( ) ( )� .
From here it follows that the difference between the
initial and the final energies should be

E E Ii f( ) ( ) ( )p p p� � 2 .

As the dependence of I( )p on the electron momentum
p is relatively weak, the dependence of the argument
of the '-function in Eq. (15) on p is also weak. This
can result in a divergent integral under the resonance
condition �� � � �p E p E Ii f1 2 2( ) ( ) ( )p . As is often
the case, the amplitude of the resonance is cut off by
the finite electron lifetime in a given state. We as-
sume the energy '-function to be broadened due to the
spin-flip processes and rewrite Eq. (15) as
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Taking the wave functions of Eq. (11) as the initial
and final states and performing standard calculations
using Eqs. (6), (16), and (18), one readily finds the
stimulated transition rate.

i) Under the assumption that | |I pF s
)

� 
 �	 (pF�
is the Fermi momentum of electrons in the upper
band), that is the additional dispersion caused by the
dependence of I on the electron momentum (see
Eq. (4)) is smaller than the broadening of the electron

energy due to spin-flip processes, the stimulated tran-
sition rate per unit volume of active material is
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Here � and n are the magnetic permeability and the
refractive index of the medium, respectively, N� and
N� are the densities of electrons with spin up and
down, Np is the photon density, � is the photon fre-
quency, the constants b1 and b2 are of order unity, the
unit vectors º a and º i are directed along the mag-
netizations in the active (right-hand side of Fig. 3)
and injection (left-hand side of Fig. 3) regions, re-
spectively, while ºdr is parallel to the vector
I I) �  e / pi i , where e is the unit polarization vector
in the direction of the vector potential A.

ii) In the opposite limit, | |I pF s
)

� �� �	 one has
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2 2 , (20)

where the constants b3 4 1, � .
As is seen from the set of rate equations Eq. (14)

(see also the Appendix), one of the necessary condi-
tions for the lasing effect to be realized is

R Np pst � 	 . (21)

We consider the case when damping of electromag-
netic waves is mainly due to absorption by free charge
carriers, the frequency of the photon relaxation being
	 �p k /n� 2 [18]. For estimating the parameters of the
problem we use standard formulae for the refractive
index n and the absorption coefficient k for metals sub-
ject to electromagnetic fields [19],
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, (22)

where �( )0 is the static conductivity of the conductor
and t0 is the transport electron relaxation time.

Using Eq. (19), Eq. (22), and the estimate
| |I I/p) � 0, one can rewrite Eq. (21) as
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where p /a0
1910� � �

� erg·s/cm.
It seems that to achieve the lasing effect the most

favorable materials are ferromagnetic manganese pe-
rovskites with nearly 100% spin polarization of the
conduction electrons [3,20,21]. The high degree of po-
larization of the carriers permits the creation of a pop-
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ulation inversion of the energy bands in the active
region B (see Fig. 2). Here and below we use experi-
mental values of the needed parameters: the mean free
path l0

71 4 10� � �. cm, the Fermi velocity vF * 108

cm/s, t0
1510* � s, and m me

* .� 0 3 , where me is the
free electron mass, the number of carriers * �3 4 1021. ,
the resistivity + � �10 4–10 3� , � cm [22]. Inserting
these values into Eq. (23), one finds this lasing condi-
tion to be

N N

N N I
s� �

� �

�

�
* 5

�	
.

For the case | |I pF s
)

� �� �	 (see Eq. (20)), the
lasing condition Eq. (21) is

N N

N N
� �

� �

�
�

�
* �

2 3 2 3
7 10 5 10

/ /

. cm .

It follows from these equations that the lasing con-
dition R Ns pst � 	 is easily satisfied, since one needs
�	 s/I to be less than 10 1� , while theoretical estimate
of the spin relaxation rate 	 s gives the value 10 2� for
this ratio. Estimations based on the above experimen-
tal values of the parameters show the optical gain to
be g n/c Ropt st� �( ) 107 cm�1 and the threshold cur-
rent density j el Nsth � ��	 107–108 A/cm2 for the
length of the active region l � �10 5 cm. Estimations
for Ne � 1018 cm–3 show the optical gain and the
threshold current to be gopt � 103–104 cm�1 and
jth � 105 A/cm2.

We predict an extremely large optical gain in sys-
tems with a high density of charge carriers. The price
to be paid for the gain exceeding what can be achieved
in semiconductors by 3 or 4 orders of magnitude is the
high currents needed for an effective tunneling pumping
of the system. The current value j � 106–108 A/cm2

seems to be very large for homogeneous bulk metals
because of the accompanying Joule heating. Special
measures are needed to avoid heating the active, lasing
region. One solution to that problem is to arrange
for the current injection to be inhomogeneous in
space. This can be achieved if the magnetic conductors
are electrically connected through an electric point
contact. In such systems the spreading of the current
far from the narrow point contact provides for an effi-
cient dissipation of heat [24]. A current density
j � 108 A/cm2 can be reached without significant
heating of the contact region [24,25]. On the other
hand, the extremely large optical gain gopt � 107cm�1

means that it is enough to have a small volume of ac-
tive lasing region. Such a structure can be prepared on
the basis of the technique suggested in Ref. 26 for fab-
rication of biepitaxial films of La Sr MnO07 03 3. . with
45- in-plane rotated domains. In this case the sug-

gested laser is a series of point contacts in a thin film
of the ferromagnetic metal with the resonator cavity
above it.

4. Conclusion

We have proposed a new principle for a compact
solid-state laser working in the 1–100 THz regime.
The proposed laser is based on a new mechanism for
creating spin-flip processes in ferromagnetic conduc-
tors. The mechanism is due to the interaction of light
with conduction electrons; the interaction strength,
being proportional to the large exchange energy, ex-
ceeds the Zeeman interaction by orders of magnitude.
On the basis of this interaction, a giant lasing effect
was predicted for systems where a population inver-
sion can be created by tunneling injection of spin-po-
larized electrons from one ferromagnetic conductor to
another — the magnetization of the two ferromagnets
having different orientations. Using experimental
data for ferromagnetic manganese perovskites with
nearly 100% spin polarization we showed the laser fre-
quency to be in the range 1–100 THz. The optical gain
was estimated to be of order 107 cm�1, which exceeds
the gain of conventional semiconductor lasers by 3 or
4 orders of magnitude. An experimental study based
on a point contact geometry to avoid heating by the
necessarily large injection currents was proposed and
discussed.

We thank L.Y. Gorelik, V. Kozub, G.D. Mahan,
and R. Gunnarsson for helpful discussions. We are
also grateful to T. Claeson for fruitful discussions and
critical reading of the manuscript. A.K. acknowledges
the hospitality of the Theoretische Physik III Institut
at the Ruhr-Universität, Bochum, Germany.

A.K. gratefully acknowledes financial support from
the Royal Swedish Academy of Sciences (KVA) and
SFB 491. M.J and R.S. acknowledge the financial
support from the NANODEV SSF center and from the
SSF programme on Magnetoelectronic Nanodevice
Physics.

Appendix

The set of differential nonlinear equations (14) al-
lows two types of steady-state solutions (see, e.g.
[16,17]):

N N
J

eVP
s

� �
�

0 0

0
; ( ) $

	
(24)

and

G N N
J eV N

p p
s

p
( ) ;

/
( ) ( )

( )

�
�� �

�
las las

las

	
$ 	

	

0

(25)
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(for the case under consideration, the explicit forms
of G N R /Np( )� � st are easily found from Eq. (19)
and Eq. (20)).

The steady-state solution Eq. (24) exists for any
value of the injection current, while the steady-state
solution Eq. (25) is nonphysical (Np

( )las 
 0) until the
value of the injection current exceeds the threshold
J( )th at which the right-hand side of the second equa-
tion in Eq. (25) becomes positive. As follows from
Eq. (25) the value of the threshold current is

J
e V Ns( )

( )
th

las

� �
	

$

0
. (26)

The steady-state solution (24) describes a state of
the system in which the lasing effect is absent: pho-
tons are not emitted and the number of electrons in
the upper band is controlled exclusively by the injec-
tion current and the nonradiative relaxation 	 s . One
can see from Eq. (14) that this state is stable in the
range of injection currents J J
 ( )th .

When the strength of the injection current exceeds
the threshold (J J� ( )th ) this nonradiative state be-
comes unstable, and the system spontaneously
switches to a new stablestate which is described by
Eq. (25): the population of electrons in the upper
band is clamped to the threshold value N

�
( )las while

the number of photons in the system increases with an
increase of the injection current. Figure 4 schemati-
cally shows the phase plane (N tp ( ), N t� ( )) of
Eq. (14) for the case J J� ( )th . The thick dots are the
stable fixed point ( ( )Np

las , N
�
( )las ) and the saddle point

(Np
( )0 , N

�
( )0 ), whose separatrices are shown by thick

lines (the separatrix lying in the nonphysical part of

the plane is shown by a thick dashed line); thin lines
in the figure represent trajectories of the system which
start from various initial states and finish in the stable
fixed point (Np

( )las , N
�
( )las ); arrows show the direction

of motion along the trajectories.
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