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We study the 2D Ising model on a square lattice with additional non-equal diagonal next-near-
est neighbor interactions. The cases of classical and quantum (transverse) models are considered.
Possible phases and their locations in the space of three Ising couplings are analyzed. In particular,
incommensurate phases occurring only at non-equal diagonal couplings, are predicted. We also an-
alyze a spin-pseudospin model comprised of the quantum Ising model coupled to XY spin chains in
a particular region of interactions, corresponding to the Ising sector’s super-antiferromagnetic
(SAF) ground state. The spin-SAF transition in the coupled Ising-XY model into a phase with
co-existent SAF Ising (pseudospin) long-range order and a spin gap is considered. Along with de-
struction of the quantum critical point of the Ising sector, the phase diagram of the Ising-XY
model can also demonstrate a re-entrance of the spin-SAF phase. A detailed study of the latter is
presented. The mechanism of the re-entrance, due to interplay of interactions in the coupled
model, and the conditions of its appearance are established. Applications of the spin-SAF theory
for the transition in the quarter-filled ladder compound NaV O2 5 are discussed.

PACS: 71.10.Fd, 71.10.Hf, 75.30.Et, 64.60.–i

1. Introduction

The role of competing interactions in ordering is a
fascinating problem of condensed matter physics. One
of the most canonical examples of such systems are
frustrated Ising models which demonstrate a plethora
of critical properties, far from being exhaustively
studied. (For a review see [1].) The frustrations* can
be either geometrical, like, e.g., in the Ising model on
a triangular lattice, or they can be brought about by
the next-nearest neighbor (NNN) interactions. Com-
peting interactions (frustrations) can, e.g., result in
new phases, change the Ising universality class, or
even destroy the order at all. Another interesting as-

pect of the criticality in frustrated Ising models is an
appearance of quantum critical point(s) (QCP) at
special frustration points of model’s high degeneracy,
and related quantum phase transitions [2].

Inclusion of a transverse field (�) brings an extra
scale into the game, giving raise to a new and compli-
cated critical behavior. The Ising models with � � 0
and � � 0 are also often called classical and quantum,
respectively. For a review on the Ising models in
transverse field (IMTF) see [3]. Most studies of the
frustrated quantum Ising models are restricted to their
ground states properties, when mapping of the d-di-
mensional quantum model at T � 0 onto its (d � 1)-di-
mensional classical counterpart helps to analyze the
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* We use the term «frustration» in a broad sense [1], meaning only that there is no spin arrangement on an elementary
plaquette which can satisfy all bonds.



ground state phase diagram of the former. For the
NNN 2D models we are interested in, there has been a
considerable effort on the quantum anisotropic NNN
Ising (ANNNI) model, reviewed in [3]. The studies of
some other 2D frustrated transverse Ising models have
appeared only recently [4,5].

Our interest in the subject comes from the earlier
work on a quantum Ising model coupled to the spin
chains [6]. This kind of coupled so-called spin-pseudo-
spin (or spin-orbital) models appear in context of the
phase transition in NaV O2 5, which has inspired a
great experimental and theoretical effort in recent
years. (For a review see [7].) Going deeper into analy-
sis, we came to realize that the Ising sector of the
problem is in fact the 2D transverse NN and NNN Ising
model on a square lattice. It turns out that even its
classical counterpart (� � 0) was studied only for the
case of equal NNN couplings J J1 2� [1]. The elemen-
tary plaquette of this lattice with the notations for
couplings is shown in Fig. 1. To the best of our knowl-
edge, this 2D NN and NNN Ising model in transverse
field is a complete terra incognita even at J J1 2� .

So, as the first step, we find the ground state phase
diagram of the classical (� � 0) Ising model at ar-
bitrary couplings J J J�, ,1 2. Along with the three
ordered phases found earlier by Fan and Wu [8] for
the case J J1 2� — ferromagnetic (FM), antiferro-
magnetic (AF), and super-antiferromagnetic (SAF) —
the model has a fourth phase which can occur if
sign ( )J /J1 2 1� � . We call it super-ferro-antiferro-
magnetic (SFAF) [9]. From mean-field-type argu-
ments we predict also the existence of an incommensu-
rate (IC) phase at T � 0 in this model. The 2D IC
phase is also called floating [10]. Similar phase is
known for the well-studied 2D ANNNI model
[1,10,11]. We present a qualitative temperature phase
diagram for the regions of the coupling space where
the IC phase is located. Note that the three phases —

SAF, SFAF, IC — can occur only in the presence of
competing interactions in the Ising model, and the lat-
ter two occur only if J J1 2� .

This analysis of the classical Ising model lays the
grounds for venturing into its study in presence of a
transverse field. The role of transverse field is subtle.
A more straightforward aspect is that its increase
above certain critical value can eventually destroy the
ordered state of the classical model, and in the ground
state the transverse field results in appearance of a
QCP. This is similar to the well-understood quantum
NN Ising model. Another particularly interesting as-
pect in the role of transverse field is that it can lift de-
generacy of the ground state and stabilize new phases
at finite temperature in a highly frustrated model,
like, e.g., the antiferromagnetic isotropic triangular
Ising model [4,5], which is disordered at any T � 0
when � � 0.

The behavior of the systems with infinitely dege-
nerated ground states (with or without a finite
ground-state entropy per spin) can be quite compli-
cated in the presence of transverse field. It lies beyond
the scope of the present work, and definitely cannot
be understood from the mean-field analysis we apply
in this study. For the NN and NNN Ising model we
only identify the lines (planes) in the space of cou-
plings (J J J�, ,1 2) where the model is highly degener-
ated, and in their neighborhood we expect some new
exotic phases generated by � � 0 to appear.

From mapping of the NN and NNN IMTF at T � 0
onto its classical 3D counterpart, we qualitatively
predict the (mean-field) ground-state phase bound-
aries of the quantum model in the coupling space
( , , )J J J� 1 2 . In particular, it follows from our analy-
sis that in the presence of transverse field the IC
ground-state phase can penetrate into some parts of
the FM, AF, SAF regions of the classical model
(� � 0).

Finally, we consider the coupled spin-pseudospin
model. It is proposed to analyze the transition in
NaV O2 5. This material provides a unique example of
a correlated electron system, where the interplay of
charge and spin degrees of freedom results in a phase
transition into a phase with coexistent spin gap and
charge order. NaV O2 5 is the only known so far quar-
ter-filled ladder compound. Each individual rung of a
ladder is occupied by single electron which is equally
distributed between its left/right sites in the disor-
dered phase. At Tc � 34 K this compound undergoes a
phase transition when a spin gap opens, accompanied
by charge ordering [7].

The problem of the electrons in NaV O2 5 localized
on the rungs of the 2D array of ladders is mapped onto
the coupled spin-pseudospin model on the effective
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Fig. 1. Couplings on an elementary plaquette in the NN
and NNN 2D Ising model (1). Ordering patterns in the su-
per-antiferromagnetic (SAF) and super-ferro-antiferromag-
netic (SFAF) phases.



square lattice. The Ising sector of this model is given
by the Hamiltonian of the NN and NNN IMTF, and the
Ising variables (called pseudospins for this case) rep-
resent physically the charge degrees of freedom. We
model the spin sector by the array of the XY spin
chains. The 2D long-range charge order in NaV O2 5 is
identified as the SAF phase of the Ising model, and we
restrict our analysis to the SAF region of the couplings
( , , )J J J� 1 2 . The coupled model is handled by com-
bining the mean-field treatment of its Ising sector
with the use of exact results available for the XY spin
chains. Since the SAF state is only four-fold degener-
ated, the mean-field predictions for the Ising sector of
the coupled model are expected to be at least qualita-
tively correct.

The mean-field equations for the coupled model
are, with some minor modifications, the same as we
have obtained earlier [6]. A striking feature of the
coupled model is that it always orders from the
charge-disordered spin-gapless state into the phase of
co-existent SAF charge order and spin gap. We call
this the spin-SAF transition. By always we mean that
the critical temperature of the spin-SAF transition is
non-zero for all Ising couplings within the whole con-
sidered SAF region. In other words, the QCP of the
IMTF is destroyed, and this is due to the spin-charge
(-pseudospin) coupling. This property of the spin-SAF
transition and the parameters of the spin-SAF phase
were studied earlier [6], so in this work we only rein-
state some points and stress the distinctions pertinent
to the present model.

The other remarkable feature of the coupled mo-
del’s phase diagram is re-entrance, which was not well
understood in our earlier work [6]. Now we carry out
an analytical study of the re-entrance and establish
the conditions when it can occur. This analysis allows
us to understand the detailed mechanism of this inter-
esting phenomenon generated by competing interac-
tions.

The rest of the paper is organized as follows. Sec-
tion 2 contains our results on the ordering in the 2D
NN and NNN Ising model at � � 0 and � � 0. The re-
sults on the spin-SAF transition in the coupled model
are presented in Sec. 3. The final Sec. 4 presents the
summary and discussion.

2. 2D nearest- and next-nearest-neighbor Ising
model

We consider the 2D Ising model on a square lattice
with the Hamiltonian

H J Jx x x x� �
� � �� ��
	 	1

2
1
2�

i j
j kl

k l
k l

, ,

T T T Ti , (1)

where the bold variables denote lattice vectors, the
first (second) sum includes only nearest neighbors
(next-nearest neighbors) of the lattice, respectively.
Spins along the sides of an elementary plaquette in-
teract via the NN coupling J� , while spins along
plaquette’s diagonals interact via the NNN couplings
J Jkl � 1 2, (see Fig. 1). The way we defined the
Hamiltonian corresponds to antiferromagnetic cou-
plings for J� � 0 and ferromagnetic for J� 
 0.

Ground state phases

There is no exact solution of the model (1). Its pos-
sible ordered phases and critical properties have been
studied within various approaches for equal diagonal
couplings J J1 2� (see [1] for a review and references
on the original literature). We will consider arbitrary
Ising couplings ( , , )J J J1 2 � , so the model (1) can be
either frustrated or not (see footnote on the first page
of this article). The ground state phase diagram can be
found from energy arguments, as was first done by
Fan and Wu for J J1 2� [8]. (Their phase diagram is
shown in Fig. 3,c.) From direct counting of the
ground state energies of possible spin arrangements we
construct the phase diagram for J J1 2� . Along with
the phases found by Fan and Wu — ferromagnetic,
antiferromagnetic, and super-antiferromagnetic —
there is a fourth phase which can occur if J1 and J2
have opposite signs. The name of the SAF phase comes
from viewing it as two superimposed antiferromag-
netic lattices (one lattice of circled sites and another
of squared sites in Fig. 1). In the SAF state there are
two frustrated bonds J� per plaquette and its energy
is four-fold degenerate, since each of the superimposed
lattices can be flipped independently. In addition to
the two SAF states with alternating ferromagnetic or-
der along the horizontal chains (one of these is shown
in Fig. 1), there are two states with the vertical ferro-
magnetic order.

The new fourth phase shown in Fig. 1 can be
viewed as two superimposed lattices each of which
is ordered ferromagnetically along one side (e.g.,
J2 0
 ) and antiferromagnetically along the other
(e.g., J1 0� ). So we will call it super-ferro-anti-
ferromagnetic (SFAF) [9]. The SFAF state also has
two frustrated plaquette’s bonds and four-fold degen-
eracy. The ordering pattern shown in Fig. 1 changes
only by a lattice spacing shift over flipping of the
sublattices. The direction of the ferromagnetic order is
determined by the ferromagnetic diagonal.

The ground state phases in the space ( , , )J J J1 2 �
are shown in Fig. 2. In order to facilitate perception of
this picture, we also present in Figs. 3, 4 several plane
projections of the 3D Fig. 2. In the first quadrant
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( ,J J1 2 0� ) in the region J J J1 2� � | |� lying between
two frustration planes (FP)

J J J1 2� � | | :� FP (2)

the ground state of the model is SAF. A continuous
transition from the paramagnetic (PM) to the SAF
phase occurs at some critical temperature Tc � 0.

From the arguments known for the case J J1 2� [12]
(see also [13] for a more general symmetry analysis of
the Ginzburg–Landau functional) this transition is
non-universal: the critical indices continuously de-
pend on the couplings J J J�, ,1 2.

In the region J J1 � � of the fourth quadrant
( ,J J1 20 0� 
 ) lying between the other pair of frus-
tration planes FP�

J J1 � �| | :� FP (3)

the ground state is SFAF. The same arguments [12,13]
suggest non-universality of the PM � SFAF transi-
tion.

In the regions lying above (beneath) the frustration
planes FP and FP’, and above (beneath) the basal
plane J� � 0 in the third quadrant, the ground state
is a usual AF (FM), respectively. The transition
PM � AF (FM) belongs to the 2D Ising universality
class. The second quadrant J J1 20 0
 �, , not shown
in Fig. 2, is obtained by a reflection over the plane
J J1 2� . In the AF (FM) state the number of frus-
trated (diagonal) bonds per plaquette is two in the
first quadrant, one in the second and the fourth, and
zero in the third.

Transitions at finite temperature should be absent
on the frustration planes FP/FP’ where the model is
highly degenerate. We are not aware of studies of the
ground state in these cases and cannot say at the mo-
ment whether the system possesses some kind of a
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SFAF
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1

AF

ATI (AF)

AF

Fig. 2. Phase diagram of the ground states (GS) of the
model (1). For visualization purposes it is drawn within
( , ) ( , ) ( , )�  �  �11 11 2 2 parallelepiped. The SAF GS lies be-
tween the frustration planes J J J1 2� � | |� . The SFAF GS
lies between the frustration planes J J1 � | |� . The AF GS
(FM GS) lies above (beneath) the frustration planes and
above (beneath) the basal plane in the third quadrant, re-
spectively. The second quadrant (not shown) is obtained
by a reflection over J J1 2� plane. Different sectors shown
by hatched and twiggy lines on the exactly-solvable planes
J� � 0 are explained in the text.

a b c

Fig. 3. Plane projections of the 3D diagram shown in
Fig. 2. (a): Upper part J� � 0, view from the top. (b):
Lower part J� 
 0, view from the top. (c): Compactifica-
tion of 3D Fig. 2 in the special case J J J1 2� � � [8].

Fig. 4. Plane phase diagram for the ratios of the coup-
lings, corresponding to the 3D Fig. 2 at J� � 0. The phase
boundaries (thick solid lines) correspond to the frustra-
tions planes FP and FP’ . The thick dashed lines (online)
indicate the boundaries of the incommensurate global min-
ima locus (y / x / y / x� � 
1 2 1 2 1 4, , ) discussed in the
text. The case J� 
 0 can be obtained by the substitutions
J /J J J12 12, , /| |� �� , AF � FM in this figure.



long-range order at zero temperature or not, except a
rather trivial line J J J� � � 
1 20 0, of the FP’
planes crossing where the model becomes a set of de-
coupled Ising chains, and four special lines on the FP
planes where it becomes the exactly-solvable isotropic
triangular Ising (ITI) model. The latter case will be
discussed momentarily.

Exactly-solvable limits

In the 3D space (J J J1 2, , �) beside the frustration
planes FP and FP’, there are three special planes
where one of the couplings is zero. On these planes the
model (1) reduces to the exactly solvable cases.

Let us start with the upper part (J� � 0) of the
SAF region

J J J� 
 �1 2 . (4)

On the SFAF–SAF boundary J2 0� the model is
equivalent to the anisotropic Ising model on a trian-
gular lattice (ATI), for which exact results are avail-
able [14–17]. The antiferromagnetic (J J�, 1 0� ) ATI
model with one strong bond J J1 � � is disordered
at any non-zero temperature [17]. It orders only at
T � 0, i.e., it is quantum critical (QC). The highly
degenerated ground state (however with a vanishing
zero-temperature entropy per site) can be viewed as a
2D array of antiferromagnetically ordered (along the
strong bond J1) correlated chains. The oscillating
(with a period of four lattice spacings) power-law de-
cay of the spin-spin correlation function along J� -di-
rections [17] indicate on the preference of the ferro-
magnetic order along the «missing» diagonal J2. This
resembles the SFAF state, however any couple of ad-
jacent J1-chains is uncorrelated. We label this state
occurring on two sectors of the J J1 2 0( )or � planes
as ATI (QC) on the phase diagram (Fig. 2). Since the
critical behavior of the ATI model with two equal
weak ferromagnetic bonds | |J J� 
 1 is equivalent to
the totally antiferromagnetic ATI model [17], the
ATI (QC) state smoothly continues into the lower
(J� 
 0) part of the SFAF-SAF boundary.

The sectors J J2 10 0� �, (and1 2� ) above the FP
J J J1 2� � � correspond to the antiferromagnetic ATI
model with one weak bond J J1 
 � . It is known [17]
to have only two phases and to order at finite tempera-
ture. Tc(PM� AF) as a function of couplings is also
known exactly. The sectors J J J2 10 0 0� 
 �, , �
(and 1 2� ) correspond to the antiferromagnetic
ATI model which is even not frustrated, and
Tc(PM� AF) > 0 at any J� � 0. The PM� AF tran-
sition in the ATI model belongs to the 2D Ising class.
So, except the SFAF-SAF boundary, the ordered
phase on the exactly-solvable «triangulation» planes

J J1 2 0( )or � is the same as the AF ground state in the
interior in this region of the phase diagram.

The situation on the «triangulation» planes in the
lower part (J� 
 0) of the phase diagram is exactly
analogous to the upper part, with an obvious replace-
ment AF � FM.

Note that the ground states change on the lines
where the triangulation and frustration planes cross.
To put it differently, these are the lines of quantum
phase transitions. The AF (FM) phase disappears in
the limit J J1 0� �| |� (J2 0� ). Also, the zero-tem-
perature AF in-chain order (ATI (QC)) described
above disappears in the limit J J1 0� �| |� (J2 0� )
as well. The ITI model J J1 � � is disordered at any
non-zero temperature (indicated as ITI (QC) in
Fig. 2). Its ground state, albeit having finite entropy
per site, possesses periodical (with a period of three
lattice spacings) long-range order [16].

The basal plane J� � 0 in Fig. 2 corresponds to the
case when Hamiltonian (1) represents two decoupled
identical NN Ising models residing on two superim-
posed lattices (shown by circles and squares in
Fig. 1). Diagonal couplings J12, are the NN couplings
of these Ising models. This is the only exactly-solvable
limit (labelled by 2 2 DI in Fig. 2) within the SFAF
(or SAF) region of the phase diagram. In this limit the
PM� SAF (or SFAF) phase transition enters into the
2D Ising universality class.

Incommensurate (floating) phase

So far we have discussed the ground-state phases of
the model and the critical behavior on the boundaries
of these phases with the disordered phase, as well as
on the special planes (lines). However, there is also a
possibility that ordering into the ground-state phases
of Fig. 2 happens not necessarily from the PM phase,
but from some other one(s) occurring at non-zero tem-
perature. A very simple analysis indicates that this in-
deed can take place in our model. Fourier-transform-
ing the Hamiltonian (1) we obtain (we set the lattice
spacing to unity)

H J T T

J J q q

J q

x x

x y

x

� �

� � �

�

	 ( ) ( ) ( ) ,

( ) (cos cos )

cos (

q

q q q

q �

1 � � �q J q qy x y) cos ( ) ,2

(5)

where q runs within the first Brillouin zone | |,qx y � �.
At mean-field level, a minimum of J( )q in q-space
defines the wave-vector q0 of the critical freezing
mode Tx( )q0 , i.e. the order parameter
� � � �Tx

m q mcos ( )0 � below a certain critical tempe-
rature Tc. In different regions ( , , )J J J1 2 � of the
ground-state phase diagram (Fig. 2) we find mini-
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mum at qF A/ /� ( , ) ( , )0 0 � � giving the FM/AF order
parameter and two minima q12 0 0, ( , ) ( , )SAF � � �/ giving
two components of the SAF order parameter. (The
latter represent two possible ordering patterns of the
SAF phase and via some transformation can be related
to magnetizations of the superimposed sublattices
[12].) The important point is that the positions of the
commensurate (C) extrema q � �( � F, A, SAF) of
J( )q do not depend on couplings.

There are however two other pairs of extrema �q s a,

which exist if

| | | | | |J J / J� 
 2 21 2and or . (6)

These extrema lie on the diagonal of the Brillouin
zone. q s a, are generically incommensurated (IC) and
depend on couplings as

q q
J

J

q q
J

J

x
s

y
s

x
a

y
a

� � � �
�

�
��

�

�
��

� � � �

arccos

arccos

�

�

2

2

2
,

1

�

�
��

�

�
�� .

(7)

(8)

In Fig. 5, we show the positions of all extrema of J( )q
within the Brillouin zone. In the SFAF ground state
region (e.g., in the fourth quadrant J J1 20 0� 
,
shown in Fig. 2) the pair of extrema �qa (8) gives
global minima of J( )q (the other pair of solutions (8)
�q s when exists, corresponds to its maxima), and
| | | |q q /x

a
y
a� � � 2. As we see, two IC modes �qa

could give components of the SFAF ground state or-
der parameter’s wave vectors � � � �qSFAF ( , )� �/ /2 2
only if J� � 0. (In the second quadrant of the SFAF
region when J J1 20 0
 �, , the vectors q s and qa ex-
change their roles. Because of the J J1 2� symmetry,
in the following we will always discuss the fourth
quadrant for concreteness.)

The locus of the IC global minima does not coincide
with the SFAF ground state region, but overlaps with
the neighboring FM, AF, and SAF phases. The mini-
mum J a( )�q is located between two planes | |J J� � 2 1
in the fourth quadrant, and in two regions of the half
of the first quadrant (J J2 1
 ): (i) between J J� � �2 1
and J J J� � �2 1 2 ; (ii) � �� . The regions of the IC
minima in the other half (J J2 1� ) of the first quad-
rant (as in the second quadrant) are obtained from the
described above by J J a s

1 2� , q q� . On the plane
phase diagram shown in Fig. 4 this locus is restricted
by the lines y / x / y / x� � �1 2 1 2 1 4, , , shown by the
dashed lines.

So we can conclude that at finite temperature the
model possesses an IC phase and there is an IC–C
phase transition where the IC wave vector qa locks
into one of the (commensurate) ground-state phase
vectors. As in 2D the IC phase has only an algebraic
long-range order, it is called floating [10]. The origin
of the IC floating phase in our model is frustration
(competing interactions). Such phase is well known
from another example of frustrated Ising model, i.e.,
the ANNNI model which was intensively studied in the
past [1,10,11]. In that model the floating phase locks
into the antiphase which has the wave vector
q � ( , )0 2�/ . (The antiphase is analogue of our SFAF
phase.) The ANNNI model also provides an example
showing that the mean-field (minimization) analysis
does not work well in defining boundaries between the
floating and commensurate phases in 2D, and the ex-
tend of the IC phase is less than the mean field sug-
gests*.

We will not attempt to locate exactly the phase
boundaries at finite temperature in this study. Follow-
ing Domany et al. [13] in classification of the ordered
phases by commensurability p, i.e., the ratio of super-
structure’s period and lattice spacing along a given di-
rection, we can label the phases as follows: F � 1 1 ;
AF � 2 2 ; SAF � 1 2 (or 2 1 ); SFAF � 4 4 **.
From mapping of the 2D IC-C phase transition to the
Kosterlitz-Thouless problem, it is established that
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* The well-studied ANNNI phase diagram with the FM and antiphase ground states [1,10,11] is an analogue of the lower
part of the fourth quadrant (FM–SFAF) of our diagram in Fig. 2.

** According to this notation, the antiphase of the 2D ANNNI model is ( )1 4 . For the same reasons we give for our case, the
floating phase of that model exists only within the antiphase ground state region.

Fig. 5. Positions of extrema of J( )q (5) in the Brillouin
zone. Open symbols connected to their bold counterparts
by a reciprocal lattice vector. Incommensurate extrema
�qa s, (7), (8) (shown for the case J J1 20 0� 
, ) exist if
conditions (6) are satisfied.



there is no such (continuous) transition for commen-
surate phases with small p2 8
 [10,18]. From this re-
sult with the proviso of continuity of phase transi-
tion(s) in the model, we conclude that the IC floating
phase cannot «spill» beyond the SFAF (p � 4)
ground-state region of the phase diagram, even if a na-
ive (mean-field) analysis suggests that within the F,
AF, and SAF regions there are some parts where it
could be possible (see Fig. 4). The only high-tempera-
ture phase the latter three regions have a common bor-
der, is the disordered PM.

Combining this with the known exact critical prop-
erties of the model on the special planes discussed
above, we end up with the qualitative finite-tempera-
ture phase diagram shown in Fig. 6. Since on the plane
J� � 0 the model (1) is just two decoupled Ising lat-
tices, the floating phase must be absent. Mean-field
arguments suggest that the floating phase disappears
exactly at J� � 0 giving rise to a Lifshitz point (L).
Note that the floating phase does not appear if the di-
agonal couplings are equal even at the mean-field
level (see Fig. 4), which agrees with known more so-
phisticated analyses of this case [1].

The model in transverse field

Now we turn to the analysis of the NN and NNN
Ising Hamiltonian H (1) in the presence of a trans-
verse field. The total Hamiltonian of the Ising model
in transverse field (IMTF) reads

H H i
z

i
IMTF � � 	� T . (9)

The Ising operators are normalized to satisfy the spin
algebra

[ , ]T T Ti j ij ii� �
���

�� �� . (10)

There is no exact solution of the transverse 2D Ising
model even for the case of NN couplings only
(J J1 2 0� � ). The ground state phase diagram of the
Hamiltonian (9) can be analyzed from the known

mapping of the d-dimensional IMTF at zero tempera-
ture onto the ( )d � 1 -dimensional Ising model at a
given (non-zero) «temperature» [3]. In our case the
2D NN and NNN IMTF maps onto the 3D Ising model
comprised of the 2D layers (1) coupled
ferromagnetically in the third (Trotter) direction
with the coupling JT � � 
ln coth � 0. For such
( )2 1� -dimensional model a mean-field analysis gives
a qualitatively correct diagram of the ground state
phases of the 2D IMTF [3]. The new coupling JT
does not bring any additional frustration to the 2D
NN and NNN model. Analysis of J q q qx y T3( , , ) �
� �J q J q qT T x ycos ( , ) where J q qx y( , ) is given by
(5), shows that JT does not modify the domains of
the global minima in the ( , , )J J J1 2 � -space, adding
only a trivial qT � 0 third component to the two-di-
mensional vectors q � discussed above (cf. Fig. 5.)
The temperature phase diagram of the 3D Ising model
with the spectrum J q q qx y T3( , , ) (if we label the
phases according to the in-plane ordering pattern de-
fined by the 2D vectors q �) looks similar to that
shown in Fig. 6, with one very important distinction:
the above-mentioned argument related to phase’s
commensurability p does not apply in 3D, so the IC
region is not restricted to lie above the SFAF phase,
but can spill into the neighboring regions of the
( , , )J J J1 2 � -space. From the mean-field arguments,
the IC region is given by the locus of the IC minima
J a/s( )�q defined in the previous section. So, the IC
phase instead of being locked between the special
planes FP’ and J2 0� as shown in Fig. 6,a and b, re-
spectively, can spread up to the locus boundaries
shown by the crosses. From the equivalence between
the zero-temperature d-dimensional IMTF (quantum
Ising) and the ( )d � 1 -dimensional classical Ising
model, we infer that the ground-state phase diagram
of the former on the plane (�/J J, �) should have the
same structure as the described above (T J, �) diagram
of the latter. So we expect the transverse field to gen-
erate the IC ground-state phase not only in the SFAF
region of the Ising coupling space, but also in the
neighboring parts of the F, AF, and SAF regions.
From minimization arguments the latter are restricted
by the dashed lines on the plane diagram in Fig. 4
and by the crosses in Fig. 6.

From analogies with the ANNNI model, we rather
expect this «IC region» to be filled with infinitely
many commensurate phases with different p [10,11],
but detailed analysis of this question, as well as the
full finite-temperature phase diagram of the trans-
verse model (9) need a separate study.

In the rest of the paper we will be particularly in-
terested in the SAF region of the coupling space, and
restrict ourselves to the couplings
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Fig. 6. Qualitative temperature phase diagram. The IC
floating (Fl) phase lies beneath the dashed lines. Crosses
indicate the borders of the IC minima locus. (a): For
fixed J J1 20 0� 
, . On the plane J� � 0 the floating phase
must be absent. We assume that it smoothly disappears at
J� � 0 resulting in a Lifshitz point (L). (b): The same for
fixed J J J1 10� 
, | |� .



J J J J J�
2

1 2 1 24 0
 �, ( , ) . (11)

According to Fig. 4, it means that we choose the cou-
plings to lie above the hyperbole y / x� 1 4 . The first
condition in (11) ensures that the couplings lie in the
region where q1,2

SAF � ( , ) ( , )0 0� �/ provide a global
minimum of model’s spectrum, so the phase with the
IC solutions qa/s does not intervene. The second in
the above conditions stipulates that even if J� � 0 we
stay away from the planes where our model becomes
the triangular Ising. A transverse field can generate
exotic temperature phases in that model. Such phases
were found [4,5] in the particular case of the isotro-
pic (antiferromagnetic) transverse triangular Ising
model*.

From mapping between the quantum and classical
Ising models we conclude that at zero temperature our
IMTF with the couplings satisfying (11) possesses a
single QCP which separates the SAF and PM ground
state phases. The mean field predicts a two-phase
PM/SAF diagram. The critical temperature Tc of the
second-order PM–SAF phase transition evolves smoo-
thly from the QCP T J/c( )�cr � 0 to the asymptotic
limit Tc( ) of the classical model (see dashed curve in
Fig. 8, where g J J /� �( )1 2 �). It is also known that
the mean field gives a qualitatively correct phase dia-
gram for the IMTF when d ! 2 [3]. Thus we argue that
the mean-field result shown by the dashed curve in

Fig. 8 does represent the phase diagram of the IMTF
(1), (9), (11), while its quantitative aspects, e.g., the
exact value of the QCP, should be corrected via more
accurate treatments.
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a b

Fig. 7. 2D effective lattice of coupled ladders. A vertical line and a represent dot a single ladder and its rung where
pseudospin T mn and spin Smn (not shown) reside. In the region encircled by the dashed line the Ising couplings between
pseudospins are indicated. Two pseudospins from ( )m �1 -th and ( )m �1 -th ladders are coupled not only by J2 (bold dashed
line), but also via the dimerization constant �. The Tmn

x -ordering pattern shown corresponds to the SAF phase (a). The
same after mapping on a square lattice (b).

* By analogy with the triangular Ising case of Refs. 4, 5, we expect the transverse field to bring about new exotic phases
near the frustration planes FP, FP’, where the ground state of our model is also infinitely degenerate.

1.8 2 2.2 2.4 2.6g
0

0.1

0.2

0.3

0.4

J=0, "=1.0, �=0.1
J=0, "=1.0, �=0
J=0.75, "=1.0, �=0
J=0.75, "=1.0, �=0.1
J=0.8, "=0.1, �=0.17

Tc

Fig. 8. Critical temperature of the PE-SAF phase transi-
tion as a function of the Ising coupling g at different val-
ues of J, ," � from the numerical solution of Eqs. (21). The
dashed line corresponds to the pure IMTF (J � � �" � 0).
Two stars on the abscissa show the positions of critical
couplings g" � 20627 26366. ( . ) for " � 01 10. ( . ), respectively.
Large empty circles on the curves with � � 0 indicate the
right boundary of the exponential BCS regime (25). At
large values of g (not shown) all curves T gc( ) approach
the asymptotic line T g/c � 4.



3. Coupled spin-pseudospin model

Now we turn to the analysis of the IMTF (1), (9)
coupled to the quantum spins (S) residing on the same
sites of the lattice as the Ising spins do. The latter we
will call pseudospins from now on. Such coupled
spin-pseudospin (or spin-orbital) models emerge in
various contexts, most notably the Jahn-Teller transi-
tion-metal compounds [19] or many kinds of low-di-
mensional quantum magnets. For a recent short over-
view and more references, see [6].

Models of the type we study in the present work
appear in analysis of the quarter-filled ladder com-
pound NaV O2 5. The Hamiltonian of this material can
be mapped onto a spin-pseudospin model with spins
and pseudospins residing on the same rung of a ladder
[20–22]. The ladders form a 2D lattice. The
long-range pseudospin order � � �Ti

x 0 represents phys-
ically the charge disproportionation between
left/right sites on a rung below Tc.

This system was analyzed on the effective triangu-
lar lattice shown in Fig. 7,a by solid lines [20,22].
However, in the case of NaV O2 5 the Ising couplings
generated by Coulomb repulsion are antiferromag-
netic and J J1 � � . Since the triangular Ising model
with one strong side is disordered [17], one needs an
extra coupling (J2-diagonal) to stabilize the observed
SAF long-range order. In our earlier study [6] we ex-
plicitly took into account J1, while the other diagonal
J2 was effectively generated via the spin-pseudospin
coupling*.

In this work we take into account the Ising cou-
plings J J J�, ,1 2 between neighboring sites of the ef-
fective lattice, as shown in Fig. 7,a. Then such effec-
tive lattice can be mapped onto the square lattice
shown in Fig. 7,b with the NN and NNN Ising cou-
plings. For NaV O2 5 all J� � 0, so the model is frus-
trated. As follows from geometry of the original
NaV O2 5 lattice, J2 is the weak diagonal and J1 is the
largest coupling:

J J J2 1
 
� . (12)

We assume J� to be small enough not only to lie be-
neath the frustration plane (2), but to satisfy a more
stringent condition (11). Then according to the above
analysis, the IMTF with these couplings has a
two-phase (PE–SAF) diagram with a QCP**. In the
literature on NaV O2 5 its charge order is called the
«zig-zag phase», what characterizes the antiferro-
electric order in a single ladder only. In fact, the
two-dimensional long-range charge order in NaV O2 5
is SAF. For a detailed explanation of this point, in-
cluding interpretation of the experimental crystallo-
graphic data on the charge order [23] in terms of the
Ising pseudospins, see [24].

In the following we will work with dimensionless
quantities: Hamiltonians H � H/�, temperature
T T/� � and Ising couplings g J /� �� �. With site
labelling shown in Fig. 7, the IMTF Hamiltonian is:

H T T T T T Tx
IMTF � � � � �� � �mn

z
mn
x

m n
x

mn m n
x

mg x g
1
2 1 1 1 1[ ( ), ,� n

x
m n
x

mn
x

m n
x

m n

gT T T, ,
,

]� � ��#
$
%

&
'
(

	 1 2 2 1 . (13)

For the decoupled spin sector of the total Hamiltonian we take into account only the strongest coupling be-
tween spins on the NN rungs of a ladder. In terms of the effective lattice (cf. Fig. 7) this translates into a set of
decoupled Heisenberg chains with the usual antiferromagnetic spin exchange J. These parallel chains are ori-
ented along the J1-diagonals.

As we infer from our previous work on a simpler version of the IMTF Hamiltonian [6], there are two
spin-pseudospin interaction terms resulting in two qualitatively distinct aspects of model’s criticality: the
inter-ladder spin-pseudospin interaction � �, and the in-ladder spin-pseudospin interaction � ". The former, in
terms of the equivalent square lattice, linear over difference of the charge displacement operators T x on the
NNN sites along the weak J2-diagonal, is responsible for the simultaneous appearance of the SAF order and the
spin gap, as well as for the destruction of the IMTF QCP***. The latter, quadratic over the NNN charge opera-
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* A linear coupling � �( )T T1 2∓ with some Gaussian mode � results in an effective anti-/ferrro-magnetic interaction be-
tween T1 and T1. Such terms can create or renormalize the couplings of the Ising effective Hamiltonian. In his context
the Ising model with two NNN couplings of different signs is less academic than it might appear.

** Since in applications to NaV O2 5 the Ising pseudospins T represent charge displacements, the appropriate names for the
phases are «paraelectric» (PE) and «super-antiferrolelectric». We keep the same abbreviation SAF for the latter.

*** This type of coupling is allowed by the symmetry of the original NaV O2 5 lattice [6]. Numerical estimates of � from a mi-
croscopic Hamiltonian are given in [25]. Note also that � effectively couples the spin chains.



tors along the J1-diagonal, is responsible for the re-entrance. With all these terms the total effective
Hamiltonian reads:

H H T T T� � � � �	 � � � �IMTF S Smn
m n

m n m n
z

m n
z

m n
xJ

,
, , , ,[1 1 1 1" �) T m n

x
�1, ]* . (14)

The dimensionless couplings J, ," � in the Hamil-
tonian (14) are positive, and the spin operators sat-
isfy the same algebra (10) as the pseudospins (while
S and T commute). The sums above run through
1 � �m M and 1 � �n N . For brevity we will use the
notation Dmn mn m n� �S S , 1. In this study we consider
the model with the XY spin sector:

D S S S Smn mn
x

m n
x

mn
y

m n
y� �� �, ,1 1 . (15)

The range of couplings under consideration will be re-
stricted to

( , ) , ,J g J" � "� �1 max . (16)

Spin-SAF phase transition

We treat the Hamiltonian (14) following conven-
tional wisdom of molecular-field approximations
(MFA) [26]. In the present version of MFA the
pseudospins are decoupled and averaged with the den-
sity matrix + �T � �exp( )hmn mnT , where hmn is the
Weiss (molecular) field, while the spin sector is
treated exactly via a Jordan-Wigner transformation.
The details are presented in [6]. Similar to the pure
IMTF with couplings (11) we assume the possibility
of the SAF order in the coupled model (14). So we
take the following Ansätze for the Ising pseudospin
averages (i.e., the charge ordering parameters in terms
of the real physical quantities)

� � �

� � � � �

T

T

mn
z

z

mn
x m n

x

m

m

,

( ) .1

(17)

(18)

It is easy to see from the Hamiltonian (14) that
ansatz (18) creates a dimerization in the spin sector,
therefore a natural assumption for the dimerization
operator average is

� � � � � � �D tmn
m n[ ( ) ]1 � . (19)

With the new coupling

g g g� �1 2 (20)

the molecular-field equations and results derived in
[6] for the case g g2 0� �� (i.e., g g� 1) can be ap-
plied here. Some of them we reproduce in this paper
in order to make it more self-contained, and for the
use in what follows as well.

The average quantities are determined by the sys-
tem of four coupled equations

m
tm

z
z�

�1
2

1 2

2

" �

�

�
tanh , (21a)

m
m g

x
x�

�

2
2

2
�, �

�

�
tanh , (21b)

t d t

/

n� �-
1 1

0

2 2

�
�

�

. �
�. �

�
�

�
cos

( )
~ ( ) ( , ~)tanh / ,

(21c)

,
�

�
�

. �
�. �

�
, �

�

� �-
/ /

/
m

d
mx

/

x
n

0

2 2sin
( )

~ ( ) ( , ~)tanh ,

(21d)

where � � �h hx z
2 2 is the absolute value of the Ising

molecular field

h tm

h gm
z z

x x

� �

� �

1 2

2

"

��

,

.
(22a)
(22b)

The other auxiliary parameters are defined as follows:

� , 0

. � � �

�

"

�
�

"

�

� �

�
�

� �

m

m

J m

J m

x

x

z

z

( ) cos sin ,

,

~ (

2 2 2

2

2

2

2

/

/

) .

(23a)

(23b)

(23c)

(23d)

At some critical temperature Tc the coupled model
undergoes the phase transition. It is of the second
kind, with the thermodynamic behavior of the physi-
cal quantities as the Landau theory of phase transi-
tions predicts [6]. With the spin-pseudospin
(-charge) coupling � present, the SAF charge order
mx � 0 and the spin gap /SG � 2�mx appear simulta-
neously below Tc. By analogy with the spin-Peierls
transition, when the Peierls phonon instability (freez-
ing) creates the spin gap, it is natural to call this type
of transition the spin-super-antiferroelectric
(spin-SAF) transition.

It is worth to point out an important property of
the Hamiltonian (14): in the other domains of Ising
couplings (not considered in our analysis of the cou-
pled model) where the Ising sector of (14) can order
into, e.g., FM, AF, or SFAF phase, the dimerization
(gap) in the spin sector does not occur.

The behavior of T gc( ) in the coupled model (14)
shows two new striking features comparatively to the
pure IMTF: re-entrance and destruction of the QCP
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[6]. In the absence of the spin-charge coupling �, the
model (14) has a QCP at

g"
"
�

� ��

�
�

�

�
�2 1 , (24)

where Tc vanishes (see Fig. 8). " renormalizes the
QCP comparatively to the pure IMTF value g � 2.
The coupling �, responsible for the spin gap genera-
tion also destroys the QCP, resulting in the exponen-
tial behavior of Tc in the region g g� ", where the
model would have been disordered at any temperature
if � � 0. This constitutes an important feedback from
the spins on the charge degrees of freedom, allowing
the very possibility of the model to order at all. Ap-
proximate analytical solutions for T gc( ) in the re-
gimes of strong Ising couplings and the BCS- are: [6]

T

g
g g

J J
g g

c 1

��

� �
2

3
4

5

6
7

#
4

2 4 2

, ,

~ ~
( ) ,

"

"
�

�

A
exp BCS regime ,

$
8
8

%
8
8

(25)

where A � � 18 1 16685/[ .� �exp ( )] , � 1 0 5772. is
Euler’s constant, and

~J J� �
"
4

. (26)

The boundary where the low-temperature BCS regime
sets in and the related formulas are applicable, is
given approximately by the condition

BCS regime: ~g g
J


 �"
�

�

4 2
. (27)

The BCS regime has many analogies with the stan-
dard theory of superconductivity, apart from the ex-
ponential dependence of Tc on couplings. In particu-
lar, several physical quantities (order parameter,
BCS ratio, specific heat jump) manifest certain «uni-
versal» behavior near Tc, similar to that known from
the BCS theory [6].

Another particularity of T gc( ) found earlier [6]
from the numerical solution of Eqs. (21), is re-en-
trance in the intermediate regime g g9 ". The re-en-
trance occurs in the coupled model with the QCP
(� � 0), while when � � 0 the critical temperature can
even manifest a double re-entrant behavior before it
reaches the BCS regime (see Fig. 8). A detailed ana-
lysis of the coupled model in the regime of re-entrance
was not done previously. We will address this in the
next subsection, mainly analytically, in order to get
more insight on the underlying physics and, in partic-
ular, to establish conditions when the re-entrance can
occur.

Re-entrance

Let us first reproduce some earlier formulas [6] for
reader’s convenience. At T Tc� one equation from the
pair (21a,b) can be written in a form

m g
J m

t T Tz
z

n n c
� � �

�
� �1

2

2

4 2�

� "
,

"
�( )

, . (28)

At T Tc� we have Eqs. (21a) as

m
m

tz
c z

n� �
1
2 2

1
2

tanh
� "

�
( ) , (29)

and parameters tn n,, are given by Eqs.(21c,d) with
/ � 0. The latter two functions have the following ex-
pansions: [6]
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(30)

and

,

�

�n x

x x x x

x
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/x

( , )
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(31)

Case � � 0; re-entrance with QCP

As one can easily see from Eqs. (28), (29) there is
no re-entrance when " � 0. This is a well-known fact
for the pure IMTF, as on the mean-field level, as well
as beyond MFA [3,26]. To study the re-entrance ana-
lytically and in particular, to establish whether there
is some minimal value of " when it appears, we should
distinguish between two asymptotic regimes of the
mean-field equations. Let us first consider the regime
(it can occur only if ~J 
 1) when (T /c c� 1 � )

1
2

1
2

~J Tc
 
 . (32)

(In all regimes of couplings the re-entrance occurs at
T /c 
 1 2.) By carrying out the leading-term expan-
sions of the functions in Eqs. (28), (29) we obtain

g /T
J
Tc

c
� � � �2 4 1

4
exp ( )

~"
(33)

for a single-valued function g Tc( ). The non-mono-
tonic (i.e., re-entrant) behavior of T gc( ) is related to
the existence of an extremum of g Tc( ). The coupling
gmin which defines the minimal value of g for the or-
der in mx being possible (in the pure IMTF with " � 0
this was the QCP), and in the same time the left bor-
der of the re-entrant region
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g g gmin 
 
 " , (34)

is defined from the minimum of the function g Tc( )
(33). This point corresponds to the critical tempera-
ture

T
J

* ln , ~� ��
: :

1 16
; ;

"
(35)

for which

gmin 1 � �
:

:2
4

1
;

;( ln ) . (36)

The consistency of the solution (35) with (32) im-
plies the condition

2
2


 
:ln ~;
J

. (37)

The other regime corresponds to the case when

T / J/c 
 min { , ~ }1 2 2 . (38)

Proceeding in the same way as above, we obtain for
g Tc( ) in this case:

g g g / T
J

Tc c� � � �" "
"�

4 2
3 2

2exp ( ) ~ . (39)

Let us point out that the conditions (32), (38) de-
termine two different regimes (x 
 1 or x � 1) of the
asymptotics (30), (31) we apply in order to obtain
g Tc( ) as (33) or (39). So if ~J 
 1 there are regions of
Tc where condition (32) is satisfied, then the approxi-
mation (33) applies. However at sufficiently low tem-
peratures (T J/c 


~ 2) we inevitably enter the other re-
gime (38) where the asymptotics (30), (31) change
(x x
 �1 1� ), and the function g Tc( ) crosses over
from (33) to (39). If, on the contrary, ~J is large, then
condition (32) never applies, and the approximation
(39) describes the whole region T /c 
 1 2.

Extrema T* of the function g Tc( ) (39) are deter-
mined by the transcendental equation

exp ( )� �g / T
g J

T"
"

"�
2

3 2
3

* *~ . (40)

This equation always has a trivial solution T*� � 0 cor-
responding to the (local) maximum of g Tc( ). This is
the QCP, and the curve T gc( ) approaches the QCP
normally to the abscissa (see Fig. 8). Two non-trivial
solutions of (40) exist if the couplings satisfy the con-
dition

~ ,J g/� C1
1 2" " (41)

where

C1

3

24 3
0 3121� �

�
�
�

�
� 1

� e
. . (42)

There is only one solution within the validity region
of the approximation (39), and it corresponds to the
minimum of g Tc( ). If the couplings satisfy (41) then

u a
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and the minimum can be found analytically as

T
g

u
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6
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2 (44)

For the left border of the re-entrant region we obtain

g g
J

T
g J

Tmin � � �"
"

"� "�

3

4

32
2

2
3

~ ~* * . (45)

The above equations agree well with the numerical
solutions of the MFA (21) at different values of cou-
plings (from comparison of the asymptotics (33),
(39) and the numerical curves at various couplings
and temperatures we found the deviations 9 5% at
most). More importantly, the analytical results of
this subsection allows us to understand in details the
interplay of the scales provided by model’s couplings
and the temperature, resulting in the re-entrance. Let
us explain this on the example of two characteristic
numerical curves shown in Fig. 8.

The curve shown for J � � �0 1 0, ," � (~ .J � 0 25)
corresponds to the case of small ~J. At T J/c �

~ .2 0125�
it is well described by the equations for the regime
(32). Its re-entrant behavior and, in particular, the
minimum gmin is due to the last term on the r.h.s. of
(33). At lower temperatures Tc � 0125. the asymp-
totics (33) is not applicable, the curve is described by
(39). Note that since C1

1 2 0 8229" "
/ g 1 . , the condition

(41) for the minimum is broken, and the asymptotics
(39) describes the featureless low-temperature evolu-
tion of this curve towards the maximum at the QCP.

The second curve in Fig. 8 with J � � �0 75 1 0. , ," �
(~J � 1) corresponds to the case of large ~J. The whole
re-entrant region (Tc 
 0 4. ), including the position of
the minimum gmin (C1

1 2 0 8229" "
/ g 1 . ) is described

by the interplay of the last two terms on the r.h.s. of
Eq. (39). Comparison of Eqs. (36), (45) allows also
to understand a more pronounced re-entrant behavior
for the case of smaller J.

As we see from our analysis of Eqs. (33), (39) in
the both regimes (32), (38), the re-entrant behavior
on the phase diagram occurs at any " � 0.

Ordering in two-dimensional Ising models with competing interactions

Fizika Nizkikh Temperatur, 2005, v. 31, Nos. 8/9 963



Case � � 0; double re-entrance, no QCP

The absence of re-entrance at " � 0 can be proven
rigorously. Indeed, combining Eqs.(28), (29) we ob-
tain the equation

m g
J

J m

mz n
z

z

� � �
�

�

�

�
��

�

�
��

1
24

0
2

1 2

1 2
�
�

, , ln (46)

which has one and only one solution m /z < [ , ]0 1 2 for
a given value of g. This solution in its turn provides a
unique value of Tc via Eq. (29), thus no re-entrance.

At " � 0 continuous evolution of T gc( ) between
the regimes of strong Ising coupling and BCS (cf.
Eq. (25)) can occur either with a double re-entrance
(i.e., with one minimum and one maximum of g Tc( ))
within the re-entrant region

g g gmin max
 
 , (47)

or without re-entrance. In the latter case the function
T gc( ) (or g Tc( )) has only an inflexion point (see
Fig. (8)).

Following the analysis given in the previous sub-
section, we obtain for the case of small ~J in the regime
(32)

g /T
J

Tc
c

� � � �
�

2 4 1
2

4

2
exp ( )

~" �
. (48)

Again, the re-entrant behavior is conditioned by the
existence of a minimum of g Tc( ). It exists if, at least

� " "
 1
1

2
0 7071~ . ~J J . (49)

The unique minimum of g Tc( ) (48) defines the left
border of the re-entrance region gmin and corresponds
to the critical temperature T* given by Eqs. (35),
(36) with ; ;: � , and

;
" �

�
�

16

2 2~J
. (50)

The consistency imposes the constraint analogous to
(37), more stringent than the «minimal requirement»
(49).

The other regime (38) is described by the approxi-
mation

g g g / T

T

J
J

J

J
T

c

c

� � � �

� � �

" "

�
" �

�

�

4 2

3

4
2

2

3
2

2

exp ( )

~ ( ~ ) ~ ln
~A
c

.
(51)

As we have explained in the previous subsection for
the case � � 0, the asymptotics (48) is applicable only
for small ~J at the intermediate temperatures (32),
while (51) can be applied at arbitrary low tempera-
tures, including the BCS region. The latter, given by

the exponential dependence in (25), can be recovered
if we retain only the first and last (leading) terms on
the r.h.s. of Eq. (51).

In the regime (38) the re-entrance occurs if the
equation for extrema of (51)

exp ( ) ~ ( ~ )
~

*
*

*� � � �
2

3
4
4

5

6
7
7

g / T
T

g J
J T

J
"

"

�
" �

�

�
2

3

6
3

2 2
2 2

2 (52)

has non-trivial solutions. Note in making comparison
of Eq. (52) to its counterpart (40) at � � 0, that cou-
pling � destroys the QCP [6], as immediately seen
from (51). So the trivial solution T* � 0 of Eq. (52)
corresponds to the unphysical singularity of g. As fol-
lows from (52), (38), non-trivial solutions are possi-
ble if, at least

�
�

�
" "


�
1

2 6

1

1 24
0 8357

2/
J J~ . ~ . (53)

If this condition is satisfied, the transcendental equa-
tion (52) has at least one solution, corresponding to
maximum of g Tc( ). To leading order in �, it occurs at
the temperature

T
J

/

*

~
� 1

�

�
�
�
�

�
�
�

6
1 2

� "
� (54)

and the coupling

g g
J

J
max 1 �"

�

�

� "

�

4

2 6

2

~ ln
~A

. (55)

If the couplings meet both the conditions (41) and

�
"

"

�

�
��
�

�
��C2

1 2

g
J

/

~ ,

(56)

where

C2 2
47 13 13

36
0 0936�

�
1

�
. , (57)

then a second solution of (52) (T*
� �), corresponding to

minimum of g Tc( ) exists. This minimum, located be-
tween

T T
g

* *
� � �
 
 "

6
(58)

is given approximately by Eq. (44) where u in (43) is
modified by a a: � , and

a
J

g J
�

�

24 3

2 2

~

( ~ )� " �"

. (59)

For validity of expansion (44) we assume u � 1.
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The analytical results of this subsection allows us
to describe the behavior of the coupled model at � � 0,
following from the MFA equations (21), both qualita-
tively and quantitatively. In Fig. 8 two counterparts
( .� � 01) of the numerical curves discussed in the previ-
ous subsection are shown. For this case of small �,
re-entrance is possible, according to conditions (49),
(53). The re-entrant behavior at the temperatures
T Tc � *� is not modified essentially by the presence of
new coupling � comparatively to the case � � 0, and is
in fact controlled by couplings J g, ," . Since we have
already discussed it in detail for the case � � 0, we will
not dwell on it any more. In the low-temperature re-
gime (51) coupling � changes drastically the behavior
of g Tc( ) at T Tc � *�, creating a maximum at g T( )*� de-
scribed well by the approximation (54) and turning
g Tc( ) away from the QCP towards the BCS region.
For the BCS regime Eq. (25) provides a virtually ex-
act solution.

As follows from the inequalities (49), (53), (56) an
increase of � can suppress the re-entrance even at " � 0.
The necessary conditions (49), (53) for extrema of the
two asymptotics (48), (51) are close, albeit with a
rather small mismatch of the coefficient. Conditions
for re-entrance are more stringent, since they require
the consistency between the solutions for extrema and
the validity ranges of the appropriate asymptotics.
The (overrated) critical value � ": 9 0 7. ~J gives a good
simple estimate for the boundary where the re-en-
trance disappears from the whole curve g Tc( ), whe-
ther ~J � 1 or ~J 
 1. An example of the curve T gc( )
without re-entrance is shown in Fig. 8.

To summarize our analysis of the re-entrance for the
cases � � 0 and � � 0: it reveals the robustness of this
phenomenon in the coupled model (14) and its under-
lying mechanism, namely, competition between differ-
ent scales defined by the couplings J g, , ," � and the
temperature. These competing scales (interactions)
are not related to the Ising frustration which is present
in the model as well (( , , )J J J� 1 2 0� ), since the lat-
ter is not accounted for explicitly by our mean-field
equations. This competing mechanism for the re-en-
trance appears to be robust and not being an artifact
of the MFA. Re-entrant phases due to competing in-
teractions are known also, e.g., from exact solution of
the Ising model on the union-jack lattice [27], or from
analyses of decorated Ising models [28].

It is not clear for us at the moment how the pro-
posed re-entrance can be observed. NaV O2 5 is, up-to-
date, the only known compound with the spin-SAF
transition and does not show re-entrance. This is in
agreement with our estimates for the parameters for
the effective Hamiltonian for this compound. They
give its g located on the disordered side of the (de-

stroyed) QCP, and the re-entrance on the whole curve
T gc( ) would be only very weak (i.e., localized near
g g9 "), if any. It appears experimentally that, e.g.,
external pressure cannot modify the in-plane parame-
ters of NaV O2 5 strongly enough, such that re-en-
trance would be generated. The variations of the
interlayer couplings under pressure, on the other
hand, generate various types of order (including
devil’s staircase) with regard to the plane stacking,
while the in-plane SAF order remains unaffected
[24,29].

4. Summary and discussion

We study the 2D Ising model on a square lattice
with nearest-neighbor (J�) and non-equal next-near-
est neighbor (J12, ) interactions. The cases of classical
and quantum models are considered.

We find the ground state phase diagram of the clas-
sical Ising model at arbitrary J J J�, ,1 2. Along with
the three ordered phases — ferromagnetic, antiferro-
magnetic, and SAF — known for J J1 2� [8], in a
more general case J J1 2� there is a region of the cou-
pling space with the super-ferro-antiferromagnetic (or
( )4 4 ) ground state phase and an incommensurate
phase at finite temperature, not reported before. The
three phases — SAF, SFAF, IC — can occur only in
the presence of competing interactions (frustrations)
on the Ising model’s plaquette.

A particularly interesting conclusion from the anal-
ysis of the quantum model’s phase boundaries is that
transverse field � can stabilize the IC ground-state
phase (located for � � 0 in the region with
sign ( )J /J1 2 1� � ) in some parts of the AF and SAF
regions of the coupling space where ( , )J J1 2 0� , but
J J1 2� . These regions, along with vicinities of the
special planes of degeneracy (triangulation and frus-
tration) in coupling space, are good candidates for the
quantum model to demonstrate a very non-trivial crit-
ical behavior. Leaving this for a future work, we hope
that our findings will inspire additional interest in
this model. Taking into account only one simple exam-
ple of a mapping shown in Fig. 7, it is clear the model
with J J1 2� is not so exotic.

We analyze the IMTF coupled to the XY spin
chains in the restricted (SAF) region of ( , , )J J J� 1 2
where the IMTF has a simple two-phase (disor-
dered-SAF) diagram with a QCP, similar to that of
the transverse NN model. Our interest in this model is
motivated by the problem of the phase transition in
the quarter-filled ladder compound NaV O2 5. The pre-
dictions of the mean-field equations for the critical
properties of the coupled spin-pseudospin model do
not differ essentially from our earlier results for a sim-
pler Hamiltonian [6]. Due to the spin-pseudospin cou-
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pling �, the QCP of the NN and NNN IMTF is de-
stroyed, and in the whole SAF region (11) of Ising
couplings the spin-pseudospin model undergoes the
spin-SAF transition. We should point out, that albeit
the exponential BCS regime (25) on the disordered
side of the IMTF QCP g g
 " formally extends up to
g � 0, decreasing g, i.e. J J1 2� , will eventually re-
move us from the coupling region (11) where the SAF
pseudospin solution of the MFA equations is appli-
cable.

We perform a detailed analytical study of re-en-
trance in the coupled model. In particular, we estab-
lish the conditions when it can occur. The analytical
results not only agree well with the direct numerical
calculations in various regimes, but allows us to un-
derstand the physical mechanism of re-entrance due to
interplay of competing interactions in the coupled
model.

In this work we gain more insights on the transition
in the spin-pseudospin model, and we can sharpen our
previous statements concerning the applications to
NaV O2 5 [6]. The present analysis of Ising sector al-
lows us to identify the 2D long-range charge order in
that compound as the SAF phase. As follows from
known results on the ordering of the frustrated 2D
Ising model into the SAF phase [1], the spin-SAF
transition has non-universal coupling-dependent criti-
cal indices. Experiments indicate rather wide regions
of the two-dimensional structural (charge-ordering)
fluctuations characterized by the critical index � 1
1 0.17–0.19 [30–32], close to � � 1 8/ of the 2D Ising
model. Due to known difficulties in extracting critical
indices from experimental data, it seems problematic
to diagnose the deviations from universality caused
by 0 11
 
J /J� . (Note that in the limit J� the
PM-SAF transition enters into the 2D Ising universal-
ity class, and for NaV O2 5, due to its geometry, the ra-
tio J /J� 1 should be small.)

On the theory side, the critical indices of the
PM-SAF transition as functions of couplings in the
NN and NNN Ising model have been calculated by vari-
ous methods only at J J1 2� [1]. The critical expo-
nents are unknown for the case J J1 2� , and it appears
to be an interesting problem to study.

Another very interesting issue we addressed re-
cently in a separate study [24], is the 3D nature of the
transition in NaV O2 5. According to the correlation
lengths measurements [30], upon approaching
Tc � 34 K the 2D crossover of the pretransitional
structural fluctuations occurs somewhere at T 9 50 K.
The model considered in the present work deals with a
single plane, leaving aside the question of charge or-
dering along the third (stacking) direction. The phase
transition in NaV O2 5 quadruples the unit cell in the

stacking direction, and the recent x-ray experiments,
carried out deep in the ordered phase [23,33] revealed
peculiar stacking ordering patterns of the super-anti-
ferroelectrically charge-ordered planes. In addition,
the pressure can change these patterns and even gener-
ate a multitude of higher-order commensurate super-
structures in the stacking direction (devil’s staircase)
[29]. To explain these phenomena we proposed a 3D
extension of the Ising sector with additional compet-
ing couplings between the nearest and next-nearest
planes [24]. In the limit J� the Ising sector reduces to
two identical interpenetrating decoupled 3D ANNNI
models. Although inclusion of the competing
interlayer couplings accommodates the explanation
for the observed stacking charge order in the frame-
work of the spin-SAF (in-plane) mechanism of the
transition in NaV O2 5, a deeper understanding of the
critical properties of a very complicated model with
the 3D Ising sector warrants a further work.
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