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A theory for the Shubnikov—de Haas oscillations in the diagonal conductivity �xx of a 2D con-
ductor is developed for the case when electron states within the broaden Landau levels are local-
ized except the narrow stripe in the center. The standard Shubnikov—de Haas oscillations take
place only in the low-field region which at higher magnetic fields crosses over into peaks. In the
limit �� �� 1 peaks in the �xx became sharp and between them �xx � 0 (� is the cyclotron fre-
quency, � is the electron scattering time). The conductivity peaks display different temperature be-
havior with the decrease of temperature, T: a thermal activation regime, �xx /T� �exp( )� , which
holds at higher temperatures, crosses over into the variable-range-hopping regime at lower temper-
atures with �xx /T T /T� �1 0exp( ) (the prefactor 1/T is absent in the conductance).

PACS: 73.43.–f, 73.40.Gk, 75.47.–m

In spite of more than two decades of intensive exper-
imental research and large theoretical efforts, the quan-
tum magnetic oscillations of the conductivity in 2D
conductors still have some open questions. Even in the
most studied case of the integer quantum Hall effect
(IQHE) [1] a complete picture is missing, in particu-
lar, concerning different regimes in temperature and
magnetic field dependencies of the Hall, � xy , and lon-
gitudinal, � xx , conductivities. Although the origin of
the quantized plateaus in the � xy is well understood
[2] the transitional regions between them, where local-
ization and scaling [3] play an important role, needs a
deeper insight. The scaling properties of diagonal con-
ductivity � xx in the variable-range hopping (VRH) re-
gime of an IQHE were recently established experimen-
tally at low temperatures down to 60 mK in [4]. To
explain this universal scaling behavior as well as transi-
tions between different regimes in the IQHE is a theo-
retical challenge. At the moment there is no coherent
analytic description of the quantum magnetic oscilla-
tions of the diagonal conductivity � xx which takes into
account the localization effects at different temperature
regimes in the IQHE. In particular, it is not clear so far
why quantum oscillations in � xx do survive in spite of
the fact that most states within the broaden Landau

levels (LL) are localized (i); Why � xx � 0 between
the peaks in the limit �� �� 1, if at low fields it
displays a standard Shubnikov—de Haas (SdH) oscil-
lations (ii); Why with the decrease of temperature, T,
the peaks in � xx display first a thermal activation
behavior � xx /T� �exp( )� , which then crosses over
into the VRH regime at low temperatures with
� xx /T T /T� �1 0exp( ) (iii); Why the prefactor 1/T
is absent in the conductance (iv).

The well established fact is that localization in the
IQHE picture plays a crucial role. On the other hand,
nonzero conductivity is impossible without the extended
states. It is believed that extended states are within the
narrow stripe at the center of the broaden LL and all the
other states are localized [5]. One can not give a simple
physical picture for these localized states in general. At
high fields the presence of the localized states in the 2D
conductor means that Landau orbits drift along the
closed equipotential contours of the impurity potential.
At places where contours come close electrons can tun-
nel from one contour to another providing thereby a con-
ductivity mechanism through the extended states. The
diagonal conductivity � xx and the Hall conductivity
� xy are closely related in the IQHE. The peaks in the
� xx are exactly at the same fields where � xy transits
from one plateau to another. An ideal picture of the
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IQHE at T 	 0 assumes that � xx 	 0 within the plateaus
while the � xy ne /h	 2 is quantized (n is an integer). In
real experiments T 
 0 and � xx 
 0. In the low-field re-
gion � xx displays the SdH oscillations and plateaus in
the � xy are unresolved.

In this Letter a theory is developed for the mag-
netic quantum oscillations of the � xx in 2D conduc-
tors with localization which explains properties
(i)–(iv). The conductivity mechanism in this theory is
due to the electron hopping between Landau orbits
within the conducting plane. A similar mechanism for
the conductivity due to the electron tunneling be-
tween Landau orbits from the neighboring layers was
considered in [6] for the case of incoherent electron
hopping across the layers in organic conductor. This
hopping mechanism remains in effect if the Landau or-
bits lay within the same conducting plane or belong to
the different tunnel-coupled 2D conductors. The lat-
ter is important in view of recent observation of a typ-
ical IQHE behavior in the tunneling conductance of a
two coupled Hall bars reported in [7]. The tunneling
conductance in this experiment displays the same scal-
ing features as those usually observed in the bulk Hall
sample and, therefore, can not be explained by the
tunneling between the two counter-propagating edge
states. On the other hand, electron tunneling between
Landau orbits from different Hall bars and within the
same sample equally contribute into the total conduc-
tance. In view of that one can anticipate the standard
IQHE behavior in the tunneling conductance ob-
served in experiment [7].

According to [6] the tunneling SdH conductivity
can be written as a sum of the Boltzmann (�B) and
quantum (�Q) terms: � � �xx B Q	 � , where
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The variable � describes the LLs broadening by impu-
rities with the density of states (DOS) g( )� :

E n /n ( ) ( ) .� �	 � ��� 1 2 (4)

The electron velocity vx is related to the tunneling
matrix elements by [6]

v
t R

x( )
| |,� � �	
� 2

, (5)

where R and � 2/| |,t� � are correspondingly the dis-
tance and the time of tunneling. A strong point of the
above equations is that we can learn much about the
� xx B T( , ) without resort to the specific models for
the localization (B is the magnetic field). In any such
model the g( )� has a narrow band of delocalized
states where the vx( )� 
 0. It is generally accepted
[5] that only one state, precisely at the LL (� 	 0), is
delocalized. For the localized states vx( )� 	 0. Thus,
only one level, � 	 0, or a narrow stripe of delocalized
states, contribute into Eqs. (1), (2).

The scattering time � in general is a model-depend-
ent function of the energy which is inversely propor-
tional to the scattering probability for the conducting
(delocalized) electrons. The latter belong to a narrow
stripe in the g( )� while the rest of electrons are local-
ized and produce a reservoir of states stabilizing oscil-
lations in �. Thus, we can put � = const in Eqs. (1),
(2), which yield:
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The average of the velocity squared, is given by
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The integral in (10) is taken within the narrow stripe
of the delocalized states. The functions G EB( , )� and
G EQ( , )� are sharply peaked at E En	 and between
the LLs they nearly compensate each other, as shown
in Fig. 1. This demonstrates clearly that the Boltz-
mann term alone, G EB( , )� , is insufficient for the
correct description and only by taking account of the
quantum term, G EQ( , )� , one can explain why � xx
tends to zero between the peaks in the IQHE. The
width of peaks in Fig. 1 in the energy scale is of the
order of �/�. If T /�� � �, then the peaked function
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�� �f/ E is broader than, the G Exx( , )� 	 G EB( , )� �
� G EQ( , )� , and we can approximate the G Exx( , )� in
Eq. (6) by
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where � � 	 /2 . For �   1 Eq. (11) can be easily
proved analytically with the help of the identity [2]
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Thus, for high temperatures, T /�� � �, we have
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This sharply-peaked function of the �� is shown in
Fig. 2. The same function describes the quantum mag-
netic oscillations of the ultrasound absorption in met-
als [8]. A temperature dependence of the peaks in
� xx B( ) for different temperatures is plotted in Fig. 3.

Under the condition ��/T �� 1, the conductivity
� xx at maxima (i.e., when En 	 !) is given by
� � �xx / T	 �� 4 . At minima (i.e., when the chemical
potential ! falls between the LL) the conductivity � xx
is exponentially small:
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(E0 is a position of the ! between the LL). Such an
activation dependence is well established in the
� xx T( ) in the IQHE regime [5]. At lower tempera-
tures, T /  � �, one can approximate the �� �f/ E by
� !( ),E � to obtain

� � � ! � !�xx B QG G� �( [ , ( )] [ , ( )]).� � (14)
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Fig. 1. The Boltzmann, G S XB 	 ( , )� 2 (Fig. 1,a), and the
quantum, G S X /Q 	 ��� �  ��( , )2 (Fig. 1,b), contributions
into the conductivity �xx in Eq. (6), and their sum
G G Gxx B Q	 � (Fig. 1,c). X E/	 	��, .� 03.
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Fig. 2. The conductivity �xx [see Eq. (13)] in units of ��
as a function of the X 	 ��. The conventional energy
units accepted in which T = 0.2 and EF = 10.
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Fig. 3. The same as in Fig. 2 for three different tempera-
tures T = 0.2, 0.25, and 0.3 (from top to bottom).



The � xx in (14) is sharply peaked function of the
� �( )! !	 2 /� as shown in Fig. 1. The Boltzmann
and the quantum terms in Eq. (14) nearly compensate
each other between the peaks which in the limit
�� 0 become narrow Lorentzians of Eq. (11). The
temperature dependence of the � xx at T /  � � in
Eq. (14) comes only from the � � due to the VRH
mechanism. The VRH concept in the IQHE problem
is now well established [4,9]. It was introduced in
[10] and well describes the scaling properties of the
peaks in the � xx within the plateau-to-plateau transi-
tion region. The diagonal and the Hall conductivities
in this region are related by the «semicircle» law
[11]. In samples with mobilities ~ ( )106 2cm V s/ " at
a few tens mK the best experimental fit yields [4]:

� � 	 �
A
T

T /Texp( ).0 (15)

The above equation describes a well-known Mott
hopping conductivity [12] in which the square root
T /T0 in the exponent means that the system is a

one-dimensional. For two and three dimensions there
should be ( )T /T0

# with # 	 1 3/ and 1 4/ , corre-
spondingly. Since the system in question is a 2D, the
authors of the [10] derived Eq. (15) with # 	 1 2/ as-
suming a strong Coulomb interaction between elec-
trons. In that case the temperature T Ce /0

2 4	 ( º ) $
is proportional to the Coulomb energy at the localiza-
tion length $ %( ), º is the dielectric constant, and
C ~ 1. Numerous experiments and calculations testify
in favor of a universal (i.e., independent on the Lan-
dau-level index) critical behavior of the localization
length $ % % % &( ) | |� � �

c near the LLs [2,3,5]. Here
% 	 N /B�0 is the filling factor, % c is the critical fill-
ing factor, and & � 2 35. is a universal critical expo-
nent. The divergency of the $ %( ) at % c means that this
is a critical point for the transition from the dielectric
to the conducting state.

The explanation of the # 	 1 2/ in Eq. (15) by the
Coulomb interaction is inconsistent at least for the
case of IQHE which is known to be a free-electron
phenomenon. The coherence length as well is calcu-
lated for free electrons without Coulomb interaction.
Also, this approach encounters with some difficulties
in the experimental interpretations, like, for example,
a divergency of the dielectric constant at the critical
point [13].

On the other hand, in our approach Eq. (15) di-
rectly follows from (9) and (10). In the spirit of the
VRH concept, we can estimate the | |,t� �

2 as a quantity
proportional to the electron hopping probability be-
tween the two 1D closed equipotential contours at
which Landau orbits are localized. If R is a distance of
hopping, then
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In this equation we take account of the thermal activa-
tion which helps the tunneling if the initial and final
levels are separated in energy by a stripe of the order of
1 0/RN( ). Here N( )0 is some one-dimensional DOS at
the closed equipotential contours averaged over a
random potential and taken near the Fermi level. The
optimal hopping distance is R / N T	 $ 2 0( ) and
Eqs. (10),(16) yield � � � �v /T T /Tx

2
01 exp( ). There-

fore, in view of Eq. (9) and that T /N0 8 0	 ( )$, we ar-
rive at the VRH conductivity (15). In fact, the quan-
tity T0 is a fitting parameter which can be found only
from the experiment. The quantity N( )0 determines the
average energy separation (or the gap) between the ini-
tial an final states in the electron hopping. In the case
when the Coulomb repulsion between electrons plays a
dominant role this gap can can be estimated as
Ce / R2 4( º ) which yields T Ce /0

2 4	 ( º ) $ as in [10].
By taking effective DOS in the form1/Neff 	
	 �1 0 42/N Ce /( ) ( º ) one can qualitatively take ac-
count of the Coulomb effect in the Mott hopping mech-
anism. We see that the resulting VRH conductivity is
the same as without Coulomb interaction with the only
difference in the DOS N N( )0 � eff which is unimpor-
tant since the DOS is a fitting parameter. In the IQHE
regime Coulomb interaction does not play any signifi-
cant role and can be discarded without change in the
shape of the hopping conductivity given by Eq. (15).

The VRH concept based on this equation was origi-
nally applied to the problem of the conductivity peak
broadening �% in [10]. It was shown that the tempera-
ture, current, and frequency dependencies of the �%
can be well described within this paradigm. Here we
derived a prefactor A/T which also have been ob-
served in the � xx T( ) [4,9]. However, it should be
noted that the prefactor A/T is absent in the experi-
ments in which a conductance was measured [14,15].
The difference is because the conductivity in Eqs. (1),
(2) is proportional to the v R /Tx

2 2 1� � . The con-
ductance � � �xx

c T e / t( ) ( )| |,� 2 2
� and has no factor

R /T2 1� . Therefore, at the same conditions as in
Eq. (14) the conductance is

� � � ! � !�xx
c c

B QG G� �( [ , ( )] [ , ( )]),� � (17)

� �
c

cA T /T	 �exp( ).0 (18)

Since T / c0 1� � �$ % % &| | the function � %�
c( ) has a

fixed maximum value � �
c

cA	 at % %	 c for different
temperatures. This remarkable property of the
conductance is firmly established in the VRH regime
at low temperatures [11,14,15].
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So far we assumed that the chemical potential is a
constant. In 2D conductors !( )B is an oscillating func-
tion [14] satisfying the equation [6]:
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The sign (–) here stands for the direct and (+) for the
inverse sawtooth. The amplitude of these oscillations
is of the order of the �� which is small compared to
the Fermi energy EF . It was shown in [6] that in a
quasi 2D layered conductor the peaks in the magnetic
conductivity across the layers are split in the case
!( )B is an inverse sawtooth function. The very same
effect holds for the � xx , as shown in Fig. 4, which
displays the � xx B( ) according to Eq. (14) with the

!( )B given by Eq. (19). We also take account of the
spin-splitting which is easy to incorporate by the sub-
stitution ! ! !� - eB into the right-hand side of
Eq. (19) and average it over two spin configurations
(! e is the magnetic moment of electron). The
spin-splitting parameter s B/e	 2! �� can be rewrit-
ten in terms of the g factor and the effective mass to
the electron mass ratio s gm /m	  * . In GaAs g � 0 44.
and m /m* .� 0 068 which yield s � 0 093. . This value
gives a pronounced splitting in the peaks in Fig. 4,a,
but it is much less noticeable in Fig. 4,b for !( )B . The
shape of peaks in the absence of splitting (s 	 0) is
shown in Fig. 4,c. The origin of correlations between
the shapes of the function � xx B( ) and the !( )B is the
same as in layered conductors [6].

In conclusion, we suggested a model of the hopping
conductivity which describes different regimes in the
diagonal conductivity � xx , stated above in (i)–(iv). It
explains why the square-root exponent (corresponding
to a 1D system) appears in the VRH conductivity � xx
of a 2D system. The tunneling-conductance oscillations
in a two coupled Hall bars observed in [7] display a
standard IQHE behavior which can not be understood
as a tunneling between the two counter-propagating
edge states. The puzzle resolves naturally in our model.
A Hall line tunnel-junction couples Landau orbits
across the junction which does not change the hopping
mechanism of the model which remains basically the
same as in the bulk of the sample. It is also worthy to
note that the peak-split shape in Fig. 4,a is typical for
the IQHE conductors with the high mobility of elec-
trons. The quantum term (2) in the � xx plays an im-
portant role in our theory. This term is of the same ori-
gin as that in the conductivity across the layers in
organic conductors [6,17,18]. The principal new point
of the model is that Eqs. (1), (2) incorporate a localiza-
tion into the description. The approach is open for a
more specific models of localization, such, as models for
the levitation of extended states [19]. This effect would
be considered within the above model elsewhere.
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