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Abstract. The electric polarizability α  of ionized-donor-bound exciton D+X in bulk 
semiconductor is calculated for all values of the effective electron-to-hole mass ratio σ 
included in the range of stability (σ<σχ). The calculation is performed within the 
variational method by using 56-term wave function. An asymptotic behavior of  α  in the 
vicinity of the critical value σc is deduced. We have also calculated the limiting value σ 
for which the polarizability equals that of D− system. 
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1. Introduction 

The existence of ionized-donor-bound exciton in 
semiconductors was first predicted by Lampert [1] and 
confirmed later by experimental works [2-4]. For direct 
gap semiconductors with isotropic bands, the calculation 
of the ground state energy of such a complex is reduced 
in the effective mass approximation, to solve the 
Hamiltonian of three bodies system formed by one 
electron-hole pair (e,h) trapped by one donor centre D+. 
This system is labelled D+X. It is clear that when the 
energy 

XD
E +  is less than the neutral donor energy 

0D
E , the excitonic complex forms and may affect, to 

some extent, the optical spectra of the host material. The 
stability of such a complex depends on the electron-hole 
mass ratio he mm /=σ . Several works have been 
devoted to this question [5-9]. Particularly, Skettrup et 
al. [8] have shown that the D+X complex stabilizes for 
all σ  values lying lower than a critical point 

426.0=cσ . Recently, dos Santos et al. [10] have 
reconsidered again the question and calculated σc by an 
original adiabatic approach using hyperspherical 
coordinates and obtained 431.0=cσ . In the particular 
case of 2D system, Stauffer and Stébé [9] have shown 
that the range of stability extends to 88.02 =D

cσ . 
However, if one reviews the literature in the area, one is 
surprised by the insufficiency of works carrying on the 
effect of the electric field on D+X complex, in particular, 
the calculation of polarizability. To our knowledge, the 
unique work dealing with this question is that of 
Essaoudi et al. [11] in which the specific case of 
GaAs/Ga1−xAlxAs quantum well with the electric field 

applied parallel to the growth direction is studied. It has 
been shown in this work that the D+X complex is 
sensitive to the action of the field only for well widths 
higher than 10 nm. The numerical method used in this 
calculation cannot be generalized to the bulk limiting 
case because of the axial character of the used trial 
function inherent in the specific case of the 2D 
symmetry.  

Let’s recall that in a previous paper, we have 
calculated the polarizability of −X  and +

2X  complexes 
[12, 13]. But for these systems, the range of stability 
covers all σ-values whereas for D+X, the range of 
stability is limited. This is why we were interested in the 
present study. In what follows we calculate the electric 
polarizability of D+X complex in the framework of the 
variational method by using a trial function including 56 
terms which gives an accurate numerical result. 

This paper is organized as follows: in section II we 
outline our method to determine the polarizability of 
D+X, in section III we explain our numerical method 
using a 56 terms trial wave function. Finally, in the last 
section we discuss our results. 

2. The model 

In the effective mass approximation, the Hamiltonian of 
an ionized donor bound to an exciton in the presence of 
a constant electric field F directed along to the z-axis can 
be written as:                                                   

H = H0 + W , (1) 

where H0 is given by 

H0 = T + V .  (2) 
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Here, T is the kinetic energy and V is the Coulomb 
interaction between the particles of the system 

heT Δ−Δ−=
22

1 σ
,   (3) 

ehhe rrr
V

111
−+−= ,  (4) 

and W is the electric energy operator 

FzzW he )( −= .   (5) 

Note that in the previous expressions, we have used 
the atomic units (a.u.); 22 / ema eD hε=  as the unit of 

length, DD aeE ε/2=  as the unit of energy and 

DD eaEF /0 =  as the unit of electric field strength. ε is 
an appropriate dielectric constant taking into account 
possible polarization effects. The parameter 

he mm /=σ  defines the electron-to-hole effective mass 
ratio. re and rh are the distances from the ionized donor 
to the electron and the hole, respectively, while reh is the 
distance between the electron and the hole. ze and zh 
denote the coordinates of the electron and the hole along 
the electric field direction, respectively. eΔ  and hΔ  are 
the Laplacian operators with respect to the hole and 
electron coordinates. 

In order to calculate the polarizability α  of the 
system, we develop the wave function Ψ  and the energy 
E of the system in power series with respect to the 
electric field intensity. So we have 

...2
210 +Ψ+Ψ+Ψ=Ψ FF  ,  (6) 

...2
210 +++=

ΨΨ

ΨΨ
= FEFEE

H
E  , (7) 

where Ψ0, Ψ1 and Ψ2 are F-independent functions, Ψ0 
and E0 being the wave function and the energy of D+X in 
the absence of the field. Substituting H and Ψ in 
equation (7) and taking into account the spherical 
symmetry of the ground state in absence of electric field 
(F=0), we obtain: 

⎪⎩

⎪
⎨
⎧

−=

=

α
2
1

0

2

1

E

E
   (8) 

where the polarizability α is given by  

.8

)(422

2
00

2
10

0

00

10110101

ΨΨ

ΨΨ
+

+
ΨΨ

Ψ−Ψ−ΨΨ+ΨΨ−
=

E

zzEH he
α

 

       (9) 

One may ensure, as established in the appendix, 
that this entity is essentially positive for all σ  values, 
what proves the stability of the complex for any weak 
electric field. Furthermore, equation (9) shows that the 
polarizability α depends only on E0, Ψ0 and Ψ1, the 
terms including Ψ2 simplify. E0 and Ψ0 are the well-
known energy and wave function of the ground state of 
D+X in absence of electric field which are determined 
variationally by several authors [5-9]. As we can remark, 
the determination of the polarizability requires the 
knowledge of the wave function part Ψ1. On the other 
hand, since we are interested with the calculation of the 
polarizability, we consider that the electric field is 
sufficiently low, so, we can restrict the development of 
the energy to its quadratic form: 

E = E0 + E2F2.                                                            (10) 

Then it is convenient to use the variational method 
for calculating the energy E of the ground state of the 
system. With account of the symmetry of the problem, 
the trial function Ψ is chosen in the following way [12]: 

),,(),,,,(1 ehheheehhe rrrfzzzrrr =Ψ ,  (11) 

where 

z = ze – zh , (12) 

f is a function that contains the variational parameters. 
Hence, 

ΨΨ

ΨΨ
=

H
E min  .                                                 (13) 

Such a choice allows considerable simplifications. 
First, we can ensure that the integral 10 ΨΨ  

vanishes. In addition, we may establish the following 
relations whatever the choice of the function f(re,rh,reh): 

,)1()(

)()(

0
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fzHf
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fHzzfzzH
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hehe

∂
∂
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∂
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∂
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 (15b) 

frffzf eh
22
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=  , (15c) 
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In these conditions, the expected value of E2 is 
written as: 

00

2
0

3

2
min

ΨΨ

Ψ+
=

frfGf
E

eh
,  (16) 

where the operator G is given by  

eh
eheheh

r
rrEHrG

∂

∂
+−−= )1(2

00
2 σ  .  (17) 

The expression (16) shows that the calculation of 
E2 involves only the distances re, rh, reh. 

Next we use for Ψ0 the expression given by 
Stauffer and Stébé [9] : 

∑ −=Ψ ++

nml

nmlnml
lmn

ks
tuskCuts

,,
0 )

2
exp(),,(  . (18)    

The exponents l, m, n are positive or zero integers 
and the elliptical coordinates s, t, u are given by    

s = re + reh,  t = re – reh,  u = rh .                        (19) 
The scaling factor k and the linear coefficients Clmn 

are determined variationaly for each σ value in the range 
of stability. We choose the function  f in the following 
form: 

∑ −= ++

nml

nmlnml
lmnehhe

ks
tuskArrrf

,,

)
2

exp(),,(  , (20) 

where Almn are the linear variational parameters. 
Following the Hasse variational method [15], we use the 
values of k and Clmn that we obtain by minimizing the 
mean values of the Hamiltonian H0 in the absence of 
electric field. The variational parameters Almn are 
obtained by minimising the following expression (21) 
obtained after substituting equations (18) and (20) into 
(16). 

CSCk

ARCAGA
E ~~~

3

~~~
2

~~~
min

22 +

++ +
=  ,  (21) 

where A
~

( C
~

) denotes the column matrix of the 
coefficients Almn(Clmn) and +A

~
( +C

~
) its transposed 

matrix. G
~

, R
~

and S
~

 are the squared matrices of the 
coefficients defined by: 

,'''))1(

)((

2

0
22'''

nml
r

rk

EkVTkrlmnG

eh
eh

eh
nml

lmn

∂

∂
+−

−−+=

σ
  (22a) 

'''2''' nmlrlmnR eh
nml

lmn =  ,  (22b) 

'''''' nmllmnS nml
lmn = .                                             (22c) 

The basic functions lmn  are given by 

)
2

exp(
s

tuslmn nml −=  . (23) 

Equalling to zero the derivative of the expression 
involved in equation (21) with respect to A

~
, we find the 

following secular equation for Almn,  

CRAGG
~~~

)
~~

(
2
1

−=++  , (24) 

which yields 

CSC

ARC

k
~~~

~~~

3
2 0
2 +

+
−

=α , (25) 

where 0
~
A  is the solution of the equation (24). 

3. Numerical steps 

The calculation of the scaling factor k, the coefficients 
Clmn and the energy E0 is derived from the solution of the 
generalized eigenvalue problem [9] 

CQkCP
~~~~

=   (26) 

with 

STQnmlVlmnP nml
lmn

~~~
and'''''' β+=−= ,  (27) 

where 

CSC

CTC
nmlTlmnT nml

lmn ~~~

~~~

and''''''
+

+

== β  .  (28)  

Starting from 4/)2/1(0 σβ +=  that corresponds 
to the asymptotic behavior, we calculate the upper 
eigenvalue k, and then we deduce the corresponding 
vector C

~
 which gives the next value of β and so on until 

the desired convergence on β, k and C
~

. Consequently, 
the energy E0 is deduced from the relation 

2
0 kE β−= [9]. Let’s note in passing that the solution of 

equation (26) requires to solve the eigenvalue problem 
of the real symmetric matrix 2/12/1 ~~~~ −−= QPQM . This 

calculation is performed by using the Jacobi numerical 
method [14]. The system of linear equations (24) is 
solved numerically by using the LU-decomposition 
method [14]. Practically, we have limited the 
development of the functions Ψ0 and Ψ1 to 56 terms 
corresponding to the condition 5≤++ nml . Within this 
approximation, we obtain a rather good value of the 
critical mass ratio σc= 0.367.  

4. Results 

The variations of the polarizability of D+X versus the 
mass ratio σ is presented in Fig. 1 (solid line). It is seen 
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that the polarizability increases with increasing σ up to 
the critical value σc in the vicinity of which an 
asymptotic behaviour is observed. Such a result may be 
interpreted physically by the weak bonding of the hole to 
the neutral donor in this point. Indeed, it is well known 
that the binding energy of D+X decreases with increasing 
σ in the absence of the electric field [8]. In the presence 
of a weak field, the hole is removed far from the electron 
along the direction of the field. This behaviour is 
confirmed by the variations of the electron polarizability 
(αe) and the hole polarizability (αh) defined by 〈ze,h〉 = 
αe,hF for weak electric field. This result is illustrated in 
Fig. 1 (dashed lines). The polarizability of D+X is then 
given by α = αh − αe. This asymptotic trend attests the 
consistency of our method because it is compatible with 
physics of such systems. 

After calculating the polarizability, we have 
deduced the binding energy of the complex in the 
presence of a weak electric field, which is defined as  

W = E(D0) – E .                                                   (29) 
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Fig. 1. The polarizability of D+X complex (in a.u. = 3
Daε ) as a 

function of the electron-to-hole effective mass ratio (solid 
line). Electron and hole polarizabilities in D+X  (dashed lines). 
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Fig. 2. The variation of ionization electric field (in a.u.) 

versus σ.  
 

 
The calculation was made in the weak field 

approximation: F<<FI, where FI is the ionization field 
defined by 

000 2
1

EWFr Ieh −−== .                       (30) 

As an illustration, the variations of FI versus σ are 
reported in Fig. 2. 

In this condition, the neutral donor energy can be 
written as follows: 

20

4
9

2
1

)( FDE −−=  (31)  

and in the same way: 
2

0 2
1

FEE α−= .  (32) 

Practically, we have restricted our calculation to the 
strength field value F = 0.3FI which may be considered as 
consistent with the quadratic approximation in calculating 
the binding energy. Recall that it has been shown [16] that 
the perturbative calculation of the binding energy of the 
exciton for the strength field values up to 0.5FI  gives 
good results. In Table, we report the values (in a.u.) of α, 
W0, and W for the strength field value F = 0.3FI in the 
range of σ values between 0 and σc.  
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Table. Listing of α, W0, and W for the strength field value F 
= 0.3FI, in the range of σ values between 0 and σc (in a.u.) 

 
σ α F = 0.3FI W0 W 
0 22 0.01381 0.08378 0.08545 

0.05 39 0.00832 0.05767 0.05886 
0.1 77 0.00496 0.03946 0.04035 
0.15 143 0.00285 0.02618 0.02674 
0.2 289 0.00153 0.01645 0.01678 
0.25 630 0.00074 0.00941 0.00958 
0.3 1488 0.00029 0.00444 0.00450 
0.35 4483 0.00005 0.00096 0.00096 

σc ∞ 0 0 0 

 
As an indication, we have calculated the value σD 

of σ for which the polarizability equals that of D− 
system. To do that, analogy of D− with the negative 
hydrogen ion [17] is made and gives 1765.0=Dσ  with 
the corresponding polarizability α = 206 (a.u.). That 
means that for this limiting value of σ, the shift of both 
D− and D+X  lines in the optical spectra when a weak 
electric field is applied is the same. Hence, for 
semiconductors with Dσσ < , the D+X shift is lower than 
that of D− while the situation is inverted for Dσσ > .  

In summary, we have presented a variational 
calculation of the polarizability of D+X as well as the 
binding energy in the presence of a weak electric field. 
This study shows an asymptotic behaviour of the 
polarizability in the vicinity of σc. This behaviour is 
principally due to the contribution of the hole which is 
weakly bound to the neutral donor D0. It has been 
established also that the effect of a weak electric field is 
more pronounced for σ values lower that σ = 0.3. As a 
comparison, confrontation of the polarizability of  D+X  
with D− system is made and shows that it is possible to 
range the semiconductors in two classes following the 
relative shift of D+X and D− lines.  

Appendix 

We establish in what follows the effect of the 
stabilization of  D+X complex in the presence of weak 
electric field. The expansion in power series of the 
dipolar electric moment in terms of the electric field 
strength yields: 
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By identifying to α  as given by Eq. (9), we obtain: 
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Substituting then (A2) in (9) gives 

.8

2

2
00

2
10

0

00

110101

ΨΨ
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ΨΨ
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E
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                    (A3) 

It is evident that the first term in (A3) is positive 
because of the variational principle, and regarding to the 
negative value of  E0, the sign of α  is always positive 
which asserts the property of the stability of the complex 
as advanced above. 
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