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Abstract. We investigate theoretically the effect of nonparabolic band structure on the 
electron-confined LO-phonon scattering rate in GaAs-Al0.45Ga0.55As superlattice. Using 
the quantum treatment, the new wave function of electron miniband conduction of 
superlattice and a reformulation of the slab model for the confined LO-phonon modes 
has been considered. An expression for the scattering rates has been obtained. Our results 
show that, for transitions related to the emission of confined LO-phonon, the scattering 
rates are significantly increased in the band nonparabolicity case. 
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1. Introduction 

Recently there has been much interest in the study of 
electron-phonon interaction in III-V semiconductor 
quantum wells (QWs) and superlattices (SLs) [1-3]. This 
is because the phonon scattering determines the electron 
transport properties at room temperature and high 
electric fields as well as at low temperatures. For 
instance, the cooling of photoexcited carriers, carrier 
tunnelling and mobility high-speed heterostructure 
devices are primarily governed by the scattering of 
electrons by polar-optical-phonons. Some results in the 
Raman scattering, cyclotron-resonance and magneto-
phonon-resonance measurements show the dominance of 
electron interaction with LO-phonons and reveal an 
important information about the vibration modes in the 
layers forming SL [4-10]. The electron-LO-phonon 
interaction was found to be strongly dependent on both 
the geometrical shape and the parameters of the 
constituent materials [11-12]. The polaron effect in 
heterostructures of confined size is, however, quite 
different from that in bulk materials. Several models 
have been proposed to describe the electron-confined 
LO-phonon interaction in superlattices. Dielectric 
continuum models [13-14], microscopic lattice 
dynamical models [17-19], or slab model [20-21] are 
well known. Already the several theoretical studies 
reported on calculations of the relaxation time related to 
scattering of carriers in semiconductor heterostructures 
by optical phonons treated the case of single or multiple 
quantum wells [22-25]. 

 The purpose of this paper is to present a set of 
calculated results for scattering rates in superlattices, we 
have considered the carrier scattered by LO-phonon. The 
effect of band nonparabolicity on the calculated 
scattering rates has been analyzed. The organization of 
the present paper is as follows: Section II summarizes 
the theoretical framework used in the calculations, while 
Section III describes the discussion of numerical results 
presented graphically, then a brief conclusion is given.  

2. Theoretical model 

A. Miniband structure and envelope wave functions                                  

Using an effective-mass Hamiltonian and the transfer-
matrix method, the total energy of electron associated to 
the first miniband and analytically the exact normalized 
wave function [26] are:                                                                               
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B. Scattering rates                                                        

The interaction electron-phonon Hamiltonian in low-
dimensional systems depends on the specific phonon 
spectra of the system and differs from the Fröhlich 
Hamiltonian for a bulk phonon. The macroscopic 
dielectric continuum model [27-30] gives the functional 
form of the interface modes, confined and half space 
LO-modes. The electron-confined LO-phonon 
interaction Hamiltonian as derived from the Fröhlich 
interaction is given by [31, 32]  
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where a(q) and a+(q) are the creation and annihilation 
operators for a bulk phonon in the mode q , the even (−) 
and odd (+) confined phonon modes and n is the 
miniband index, while the coupling  

2λ = μiC  / qV , (13) 

where V is the volume. From [33] C can be written 
explicitly as  
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where ħωLO is the energy of LO-phonons in the n-th 
miniband, )(∞ε  and )0(ε  are the optical static dielectric 
constants, respectively, Ω is the volume and e is the 
electronic charge. For the slab model [27, 34] un,α(z) is 
defined as 
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The scattering rate fiw →  is obtained from the Fermi 
Golden Rule  
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With the Hamiltonian given by (14), we obtain  
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 A δ-function represents the energy conservation 
quantity     
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±  denote the absorption and emission processes. For 
optical phonon scattering                                            

(20)



 
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2005. V. 8, N 4. P. 60-64. 

 

 

© 2005, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 
 

62 

cte)–()cos(k2–– 2222 =+= ⊥⊥⊥⊥± Gkkkkkq f
z

i
z

fifi mθ . 
(22)                       

G is the reciprocal lattice vector of the SL. LON  is the 
LO phonon occupation number defined:               

1

B

LO
LO )1(exp −−=

Tk
N ωh .  (23)  

)(,
f

z
i
z

fi
n ,kkG →
α  is the overlap integral of the electron 

wave function and the z-dependent of the electron-
confined-phonon Hamiltonian 

)(,
f

z
i
z

fi
n ,kkG →
α = dzzuz *

inf )()(
l/2

l/2-
,

* ψψ α∫ , (24) 

where  iψ , fψ  are the electron envelope miniband 

wave function in the initial and final states, respectively 
[31]. L is the period of SL:  L = Lw+Lb. At 0=±U , fk⊥  

and ik⊥  terms must be equal.                

C. Nonparabolicity effect 

According to the Kane model [35-37], the eigenfunc-
tions of the Hamiltonian in the direction of the super-
lattice (with kx = ky = 0) associated with the conduction 
band electron [38, 39] with an energy 0 < E < Vb, are 
solutions of the Schrödinger equation [40]:  
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The corrective term reflects the nonparabolicity 
effect (via a4). The integration of Eq. (25) over the 
interface of a small arbitrary thickness provides the new 
boundary conditions:     
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This expression that ensures the continuity of the 
local current density generalizes that of Refs [41, 43] 
where a4 = 0. In case of nonparabolicity, the wave 
functions corresponding to the new condition (27) 

generalize those where the continuity of ( )
dz

zd
m

Ψ
∗

1  is 

used. As the latter Hamiltonian does not take 
parabolicity into account, the wave functions are given 
at the n-th well and barrier by Eqs (2) and (3). Due to the 
new conditions (27) on the derivative of the wave 

function, the analysis of the preceding sections can be 
used with λ replaced by μ, which we define as follows. 
From Eqs (4) and (25), expressions of  k, ρ and μ are 
given by:     
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When introducing the new expressions of wave 
vectors k and ρ in Eqs (1), (2), and (3), we obtained the 
new expressions for the dispersion relation and the wave 
functions in the barrier and wells of SL by continuation 
those of the times of relaxation and mobility. If the 
effect of the nonparabolicity becomes negligible (a4 = 0), 

*

*
   

b

w

m

m
=→λμ  as defined in the parabolic case. 

Expressions (28), (29) allow an explicit relationship of ρ 
in relation with k. For w

b
b EVE maxmax =−  (i.e., 

2
0

2
0 λρ=k ) insignificant values of ρ and k, we find the 

parabolic case given by the relation (4). 

3. Numerical results and discussion 

For numerical computation, we have chosen 
AsAlGa-GaAs xx–1  with x = 0.45 as a superlattice. The 

parameters pertaining to the system are: 0067.0 mm*
w = , 

0104.0 mm*
b = , where m0 is the free electron mass. The 

dielectric constant in the wells is taken equal to that in 
the barrier: 8.12=dε , 9.10=∞ε , lw = 108 Å, l b  = 38 Å, 
V b  = 495 meV, Ew,max = 2 eV, Eb,max−Vb = Ew,max, the 
energy of a bulk GaAs LO-phonon LOωh  = 36.8 meV, 
the static and high frequency dielectric constants for 
GaAs  35.12s =ε and 48.10=∞ε .    

In Fig. 1, we show the calculated rates for 
intraminiband transitions related to interaction electron- 
confined LO-phonons as a function of the SL well width. 
Note that the scattering rate does not qualitatively differ 
from that to the parabolic band approximation. In that 
approximation, the scattering rates related to confined 
LO-phonons become larger. It may be due to the overlap 
integrals given by Eq. (24), to the nonparabolic band 
approximation the electron wave function becomes more 
confined in the direction of SL, see Fig. 2.  
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Fig. 1. Scattering rates for intraminiband transitions in GaAs-
Al0.45Ga0.55As superlattice as a function of the well width. The 
solid line is drawn with account of nonparabolicity, the dashed 
line corresponds to the parabolic approximation. 
 

 
Z(Å) 

Fig.  2. Density of probability associated to an electron of the 
first miniband to the approximation of the binding forces. Link 
pace of potential  is to  indicate the positions of the barrier and 
well of superlattice. 

 
 

 
Fig. 3. Density of states calculated for superlattice GaAs-
Al0.45Ga0.55As. For nonparabolic (solid line) and parabolic 
(dashed lines) band approximations. 

 
Fig. 4. Ratio of the nonparabolic and parabolic scattering rates 
for intraminiband as a function of  the well width in super-
lattice. 
 

Another element that influences the scattering rate is 
the density of final states. In Fig. 3, we give the density 
of final states to the parabolic band approximation in 
comparison with that to the nonparabolic band one. 

We show that the density in the case of the 
nonparabolic band approximation is larger. In Fig. 4, we 
display the ratio of nonparabolic and parabolic scattering 
rates (wnp/wp). For the intraminiband for the narrow well 
(the well width is as small as 45 Å ) all nonparabolic 
scattering rates are close to those in the parabolic band 
approximation. For larger quantum wells, the transition 
rate with the band nonparabolicity is larger. 

In conclusion with the new analytic wave function 
associated to the electron in conduction minibands. We 
have evaluated the expressions for the relaxation time 
due to electron-confined LO-phonon, including band 
nonparabolicity. It is found that for transitions from 
higher energy states, the band nonparabolicity affects the 
scattering rate. The enhancement of the scattering rates 
with the inclusion of band nonparabolicity results from a 
larger electron-phonon overlap as well as from a larger 
density of final electrons states.  
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