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Abstract. A spherical semiconductor nanoheterostructure of cubic symmetry is studied 
in the paper. Accurate solutions of the Schrödinger equation for S1/2, P1/2, P3/2, D5/2, and 
D7/2  states of particles are found in the framework of the Luttinger-Baldereschi-Lipari 
Hamiltonian and the finite value of the band disruption on the boundaries of the media is 
ascertained. Specific calculations of the quantum dot radius dependence of the hole state 
energy were performed for the GaSb/AlSb heterostructure. The obtained results were 
compared to the data obtained using the infinite potential well model as well as the 
model of simple bands for heavy and light holes. The electron energies and electron 
wavefunctions were found within the isotropic effective mass model taking into account 
a discontinuity of the conduction bandgap on the heterostructure boundary. Probabilities 
of GaSb/AlSb heterosystem interband transitions were analyzed using the obtained 
formulae. 
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1. Introduction 

The heterostructures with quantum dots (QDs) are 
considered to be very promising as luminescent sources 
[1, 2]. In addition, such structures are also of interest 
from the viewpoint of their physical properties, as the 
current carriers (electrons, holes) are characterized by 
the restrictions of their motion over all three dimensions. 
Therefore, there are many theoretical publications 
concerning the investigation of electron, hole and 
exciton spectra in the quantum dots of various 
configurations [3-6]. 

Some authors investigating quasi-particle energy 
states do not take into account the complex structure of 
the valent band in semiconductors constituting the 
heterosystem [5, 6]. They use the effective mass 
approximation, and the finite value of the band 
disruption at the boundaries of the media; in addition, 
the non-uniform change of the quasi-particle effective 
mass in the intermedium transition is taken into account. 
One can see from calculations that two latter specifi-
cations of the theoretical model are extremely important 
for small quantum dots (of an exciton radius order). 

Another series of theoretical works is based on a six-
band model for hole states. The state degeneracy, 
corresponding to the top of the valent band, is taken into 
consideration in studying the hole, impurity and exciton 
states in the nanoheterostructures, particularly in the 
publications [8-10]. However, they used the infinite 

potential well model for the calculation of the 
heterostructure quasi-particle spectra that obviously does 
not include the direct calculation of the energy bandgap 
as well as the possibility of the particle to tunnel outside 
the quantum well.  

The purpose of this work is to study how the 
complex structure of the valent band and the finite value 
of the band splitting at the interface influence on the hole 
states. The dependence of various hole states on the 
quantum dot radius was investigated. The results 
obtained for different models of hole states and quantum 
wells were compared. The possibility of the interband 
optical transitions was analyzed.  

2. Statement of the problem. Basic formulae. 

We consider a semiconductor nanocrystal of spherical 
shape placed into a semiconductor matrix. The potential 
energy of a hole inside a QD with a radius R is given by: 
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We assume that both QD and matrix semiconductors 
have cubic symmetry, therefore, their valent bands are 
quasi-isotropic, and the Luttinger parameters γ1 and γ2  
are about the same [11, 12]. In this case, the Hamiltonian 
of the hole is presented by the following expression 
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22
γ
γμ = , ( )2P  is a second rank 

tensor of momentum, ( )2J  is a second rank tensor of 

angular momentum that corresponds to the spin 
2
3 , ε0 is 

the dielectric susceptibility of the semiconductor. The 
Hamiltonian (2) takes into account that QD and matrix 
semiconductors have big values of the spin-orbital 
splitting ∆so, which is larger than the bandgap at the 
interface. As seen from [2] when the effective spin-
orbital interaction is considered, the hole behaviour is 

described as that of the particle with the spin 
2
3  inside a 

spherical potential well. Matrix elements of the 
interaction are not equal to zero only for the states with 
the spin L = 0, ± 2. 

Taking into account that the conservation law is valid 
for the total angular momentum 

JLF
rrr

+= , 
the wavefunctions for the first six states can be written 
as [9] 

( ) ( ) zzh FrgFrfS ,
2
3,

2
3,2,

2
3,

2
3,0 00

2
3 +=⎟
⎠
⎞

⎜
⎝
⎛Ψ , 

( ) zh FrfP ,
2
1,

2
3,11

2
1 =⎟
⎠
⎞

⎜
⎝
⎛Ψ , 

( ) ( ) zzh FrgFrfP ,
2
3,

2
3,3,

2
3,

2
3,1 22

2
3 +=⎟
⎠
⎞

⎜
⎝
⎛Ψ , 

( ) ( ) zzh FrgFrfP ,
2
5,

2
3,3,

2
5,

2
3,1 33

2
5 +=⎟
⎠
⎞

⎜
⎝
⎛Ψ , (3) 

( ) ( ) zzh FrgFrfD ,
2
5,

2
3,4,

2
5,

2
3,2 44

2
5 +=⎟
⎠
⎞

⎜
⎝
⎛Ψ , 

( ) ( ) zzh FrgFrfD ,
2
7,

2
3,4,

2
7,

2
3,2 55

2
7 +=⎟
⎠
⎞

⎜
⎝
⎛Ψ , 

where zFFJL ,,,  is the eigenfunction of F̂  operator. 
The radial functions ( )rfi  and ( )rgi  are given as the 
solutions of the following equations: 
 

where coefficients Ci are determined by the particle sta-
te. For the states under consideration they are equal to: 
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To find the energy of the corresponding states, one 
needs to solve the system of differential equations for 
the unknown functions if  and ig  (і = 0, 2, 3, 4, 5). The 
exception is )(

2
1PhΨ  state, its wavefunction being 

expressed as the only one radial function ( )rf1 . The 
analysis of Eqs (4) shows that the system has accurate 
solutions, however the functions if  and ig  are rather 
cumbersome and are expressed in terms of the Bessel 
and McDonald functions. Particularly, the functions 

( )rf2  and ( )rg2  for the state )(
2
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where ( )rJl  is the first order Bessel function, ( )rKl  is 
the McDonald function,  
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The if  and ig  functions have to satisfy the standard 
boundary conditions: 
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where ( ) ( ) ( )j
i

j
i

j
i Cgf ,,  are the wavefunctions and 

coefficients of j-th medium. 
For the model of the infinite boundary potential 

( ∞=0U ), the boundary conditions (7) are simplified: 

( )( ) ( )( ) 011 == RgRf ii . 

From the equations (3)-(7) one can see, that a set of 
energy levels can be obtained for every value of L and F. 

For the case of finite 0U , the number of levels is finite 
and depends on the radius R, meanwhile Eq. (4) has an 
infinite number of solutions in the case of the infinite 
potential 0U . 

The degeneracy of the valent band in some points of 
the Brillouin zone is very often neglected in calculations 
of the hole and exciton spectra [5]. The hole energy are 
calculated without considering the valent band complex 
structure, the different mass of the holes (light and heavy 
holes) being taken into account only, and the respective 
laws of dispersion are chosen to be parabolic. The hole 
energy is found in the same way as the energy of 
electrons in a simple band. Then, the wavefunction of 
the particle in a spherical QD is given by 
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The radial part of the wavefunction ( ( )rf ) of j-th 
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( )ϕθ ,m
lY  is a spherical function [13]. The function 
( )( )rf j  satisfies the boundary conditions (7) with the 

substitution of ( ) ( )( )jC1
1

1 1+γ  for *
1

jm
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Fig. 1. The lowest level (nr = 1) hole energy dependence upon 
the dimensionless nanocrystal radius R~ . The solid line shows
the energy obtained in the model of the finite potential well 
(Ес), the dashed line refers to the model of the infinite potential 
well (Еb): Curves 1,1' – L = 0 (state S3/2); 2, 2' – L = 1 (state 
P1/2); 3, 3' – L = 1 (state P3/2); 4, 5' – L = 2 (state D5/2); 5, 4' – 
L = 1 (state P5/2); 6,6' – L = 2 (state D7/2). 

 
Fig. 2. The R

~
dimensionless nanocrystal radius dependence of 

the hole energy E. A solid line shows the energy obtained in 
the model of the finite potential well according to formula (9) 
for the heavy hole ( *

hm ), a dashed line refers to the light hole 

( *
lm ), dotted and dash-dotted lines correspond to formula (4): 

curves 1,1' – l = 0 (s-state); 2, 2' – l = 1 (p-state); 3, 3' – l = 2 
(d-state); 4 – l = 3 (f-state); 5 – l = 4 (g-state); 6 – L = 0 (state 
S3/2); 7 – L = 0 (state S3/2) in the infinite model. 

3. Hole energy spectrum of GaSb/AlSb 
heterostructure 

Specific calculations have been performed for the 
heterostructure where a spherical nanocrystal GaSb is 
placed into the matrix of AlSb crystal. Then we have 
[11]: 

( ) 80.111
1 =γ , ( ) 15.42

1 =γ , ( ) 03.41
2 =γ , ( ) 01.12

2 =γ , 

U0 = 0.47 eV, ( )1
0SΔ  = 800 meV, ( )2

0SΔ = 750 meV, 

( ) 23.01* =hm , ( ) 04.01* =lm , ( ) 4.02* =hm , ( ) 12.02* =lm . 

It is convenient to perform calculations using 
dimensionless quantities, which are introduced as 
follows 

0

~
a
παα = , 

0

~
a
πββ = ,

0

~
a

RR π
= , 

where 0а  is the GaSb lattice parameter . 
The results of the calculations of the lowest level 

energy dependence upon the dimensionless radius R~  are 
depicted in Fig. 1. The figure shows that for L = 0 (S-
states) the increase of radius R~  is accompanied with a 
monotonic decrease of the hole energy for each value of 
the radial quantum number (nr). Comparing the results 
for the hole ground state energy (nr = 1) in the finite (Ес) 
potential well model with those for the hole in the 
infinite (Еb) potential well model, one obtains that 
Ес < Еb. These results are entirely explained by the 
Heisenberg uncertainty principle. For the numerical data, 
the calculations show that for the given heterosystem in 
the region of R~  > 60 the relative uncertainty is  

≤
−

=
b

cb
E

EE
η 22 %. 

For R~  = 40, η  = 34.6 %, but for R~  = 20, 
η  = 48.4 %. The values of the energy of the excited 
states (nr = 2, 3,...), calculated within these models show 
even larger discrepancy. Even though we obtain a finite 
number of bound states for U0 = 0.47 eV, and an infinite 
number for the infinite well model, the relative 
uncertainty at given R~  increases in comparison to that 
for nr =1, i.e., for nr = 2 at R~  = 40, η  = 35.5 %, and for 

R~  = 20, η  = 59.3 %. 
Let us compare the values of the energy Ес with 

those calculated using the formula (9), which does not 
include the complex structure of the valent band. The 
results of the energy calculations for the particles with 
effective masses *

hm  and *
lm  are presented in Fig. 2. 

The figure shows a good agreement between the energy 
results for the hole with *

hm  in the region R~  > 20 
(calculated using the equation (9))  and the energy of the 
particle with L = 0, S = 3/2 and n r= 1 (calculated using 
the equations (4) and (6)). For R~  < 20, the decrease of 
R~  leads to an abrupt increase of the discrepancy 
between the corresponding values of energies. The 
energy of the particle with the effective mass *

lm  is 

much larger for all values of R~ , and it can be compared 
with the excited states of the hole for nr = 3. It should be 
mentioned that the number of states at given R~  is also 
finite in this approach. According to (4), the bound state 
spectrum is richer than that obtained from (9) for 
particles with two effective masses. Particularly, 
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Fig. 3. The R

~
 dependence of Е R

~ 2 for states S3/2 (L = 0) 
shown by a solid line, P3/2 (L = 1) by a dashed line: curves 1, 
1' – nr = 1; 2, 2' – nr = 2; 3, 3' – nr = 3; 4, 4' – nr = 4. 
 

according to (4) at R
~  = 5, we obtain one bound state 

with the energy Ес = 214 meV, while using the equation 
(9) we also obtain one root for the particle with a larger 
mass, but its energy is E = 427 meV. For R~  = 30, the 
first approach gives four roots for the bound states (44, 
88, 176 and 316 meV), meanwhile, the second approach 
gives only one root for the lighter particle (129 meV) 
and three roots for the heavier one (27, 149, and 
335 meV). For R

~  = 80, from Eq. (4) we obtain 14 bound 
states and either three or eight roots for the light and 
heavy holes, respectively. 

Our analysis of the Ес = Ес( R
~ ) dependence shows 

that the curvature of the graphs depends on the values of 
R
~ , which is easy to see from Fig. 3, where R

~  is a 
dependence of R~ 2Ес( R

~ ) for different states is presented. 
The figure shows that at certain R

~  the function 
R~ 2Ес( R~ ) is constant and almost does not depend on R~ . 
This means that the function Ес( R

~ ) itself is a hyperbola 
of 2~соnst

R
 type. At small R

~ , this function has αR
1 –

dependence on R
~ , where α < 2. 

4. Probabilities of optical transitions 

Let us consider optical transitions from the valent to 
conduction band for the given heterostructure. The hole 

wavefunction zFFL
2
3  in Eq. (3) can be written in the 

form of the expansion [9, 13]   
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MM
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where 1LM  is the eigenvectror of 2L̂  operator: 
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2

1
2 1 LMLLLML += h ,  (11) 

223 M ( )2
3,2

1
2 ±±=M  is the Bloch vector of the 

particle state with the spin J = 3/2, which corresponds to 
the fourfold degenerated valent band 8Γ : 
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2
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2
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2
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2
3 ,

( )[ ]↓+↑−−=− ZiYXi 2
62

1
2
3 , 

( )zFFMML 212
3  are the Klebsh-Gordon сoefficients. 

The electron wavefunction is presented in a simpler 
form: 

( ) σSlmrf ee =Ψ ,  (12) 

where ( )rfe  and |lm〉 are the solutions of the equations 
(9) and (11), respectively, and σS  is the Bloch state 
vector of the electron at the conduction band bottom 
with σh=zS (where 2

1±=σ ) as the z-component of 
its spin: 

↑= iSS
2
1 , ↓=− iSS

2
1 . 

Once having the electron wavefunctions in the valent 
and conduction bands, one can determine the probability 
of the interband transition accompanied with creation or 
absorption of a photon. It is known [9] that the 
probability is expressed through a square modulus of the 
matrix element of the momentum operator: 

heeh peP ΨΨ= ˆr , (13) 

where ev  is a light polarization vector. 
As we can see from (3), the function hΨ  has two 

terms (except for ( )2/1PhΨ ), the angular parts of which 
differ by the value of the orbital quantum number L. 
Thus, let us consider the angular part of the matrix 
element (13): 
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( ) z
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MM
z
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∑

∑
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σ

 (14) 

In (14), we took into account the orthogonality of 
spherical functions: 
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Fig. 4. The overlapping integral І versus the nanocrystal radius 
R
~

. The straight lines stand for the choice of ∞=0V , curves 

refer to the model of finite 0V . 1,1' correspond to the transition 
1,1' – s, nr = 1 – S3/2, nr = 1, 2, 2' – s, nr = 2 – S3/2. 

1,,1 MmLlLMlm δδ= . 

If we take (14) into account, ehP  will be expressed 
through one of the two terms of the function hΨ , 
because the other one will be orthogonal to the 
wavefunction of the electron in the conduction band: 

( ) ( ) zzheeh FFpelmIFFpelmrfrfdrrP ˆˆ*2 rr
== ∫ . 

For a crystal of cubic configuration and linearly 
polarized light it is convenient to expand the scalar 
product pe ˆr  in the form of sum 

zzyyxx pepepepe ˆˆˆˆ ++=
r

. 
Let us determine the contribution of the angular part 

of the matrix element to the probability of interband 
transitions for various light polarizations. We take into 
account the properties of Klebsh-Gordon’s coefficients. 
For the conduction band electron with the “up” spin and 
“down” spin we get the following non-zero matrix 
elements 

22
22

2
1ˆ

2
1

2
3

2
3ˆ

2
3

2
300 PxpSpSp xxx ≡=↑= , 

2
22

2
1

2
3

2
3ˆ

2
3

2
300 PpSp xx =−↓=− , 

62
1

2
3ˆ

2
1

2
300

222
PpSp xx =−↑=− , 

62
1

2
3ˆ

2
1

2
300

222
PpSp xx =↓= . 

The total probability of light polarization along the 

ОХ axis is 2
3
4 P . We obtain the same values of matrix 

elements also in the ОY direction. The probabilities 
determined by the operator zp are as follows 

22
22

3
2ˆ

3
2

2
1

2
3ˆ

2
1

2
300 PzpSpSp zzz ≡=↑= , 

2
22

3
2

2
1

2
3ˆ

2
1

2
300 PpSp zz =−↓=− . 

The sum of these two probabilities is also equal to 
2

3
4 P , as it is expected in a cubic crystal since all 

directions in space are equal. 
Calculations of the overlapping integral of the radial 

wavefunctions I for the finite and infinite potential of 
QW show that the nanocrystal radius dependence of I 
strongly depends on the chosen model of the potential. 
Fig. 4 shows, for ∞=0V , the overlapping integral does 

not depend on R
~ , even though its value depends on the 

type of transition. Particularly, for s transition, nr = 1 – 
S3/2, nr = 1, we obtain I = 0.595, while for s transition, 
nr = 2 – S3/2, nr = 1, we have I = 0.51, and for p 

transition, nr = 1 – P3/2, nr = 1, I = 0.95 is obtained. One 
can see that the possibility of both 0=Δ rn , and 

0≠Δ rn  transitions is obtained. The received results are 
in good agreement with the data [9, 12], where other 
heterostructures were considered. 

More interesting results are obtained for the finite V0  
model. In this case, the overlapping integral I depends 
on R

~ . The function І = І( R
~ ) depends on the type of 

transition. For large R
~

, for each transition the functions 
І = І( R

~
)asymptotically tends to their values as V0→∞. 

Another common feature of the mentioned functions is 
that they decrease monotonically for small R

~
. 

Therefore, the consideration of the finite value of the 
band splitting at the boundaries of the heterostructure 
results in decreasing the possibility of optical transitions 
with decreasing the QD radius. 

Therefore, in the paper the energy of hole states of 
GaSb/AlSb spherical nanoheterostructures is found by 
using the isotropic valent band approximation for the 
Luttinger Hamiltonian with the consideration of the 
finite band disruption. It is shown that in the range of 
small radii the consideration of both degeneracy of hole 
states and the finiteness of a quantum well essentially 
influences numerical values of the hole energy. 

On the basis of the formulae obtained for the 
wavefunctions of hole states, the probabilities of 
interband transitions have been analyzed in absorption 
and illumination of the mentioned heterostructures.   
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