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This paper studies spectral-kinetic properties of Nal:Tl cathodoluminescence registered in
the region of A -band with maximum 425 nm within the time interval of 1078-1072 s,
A -luminescence of Nal:Tl crystal has been excited with an electron pulse (E, = 0.25 MeV, ¢, /2
=10 ns, W= 0.008...0.16 J/cm?) at temperatures in the range of 65-300 K. It has been
found that the cathodoluminescence kinetics of Nal:Tl crystal at 425 nm has beside the
exponential decay (t = 235 ns at T' = 295 K) also three more components: the fastest exponen-
tial decay (t = 12 ns at T = 78 K), post-irradiation rise on a submicrosecond time scale at
T > 128 K and slow exponential decay at T > 160 K. A model has been suggested according to
which A, -luminescence at 425 nm is caused by 1P1 - 1S0 electron transition of TI* ion. It has
been explained that the fast decay and post-irradiated rise components are caused by
3P1 - 1P1 and 3P0 - 3P1 electron transitions of TI* ion, respectively. The scintillation process
in Nal:Tl has been discussed.

Keywords: Thallium-doped sodium iodide; time-resolved cathodoluminescence; energy
transfer; intra-center transitions.

HccaenoBaHbl CHEKTPATBHO-KMHETHUECKHE CBOMcTBA A, -mojochl snomuHecrernuu Nal:Tl
¢ mMarcumymoM 425 M Bo BpemenHOM umHTepBase 1078-1072 c. A -TIOMUHECHeHIuA KpHc-
ramna Nal:Tl BosGy:xpamacs mmmymbcom aaexTtponos (E, = 0,25 MeV, by = 10 HC W =
0,003...0,16 J/cm?2) B Temmeparypuom muTepsase 65-300 K. YcTaHOBIEHO, UTO B KUHETIKE
UMITYJbCa KATOLOJIOMUHECIICHIINN, YTO PerucTpUpyeTcs B obgactu 425 HM, KpoMe 9KCIIOHE-
HIIMAJLHOTO KOMTIIOHeHTa 3aryxaHusa (T = 235 uc mpu T = 295 K), mabmaiomaerca emie Tpu
KOMIIOHEHTA: CAMBII OLICTPHIII 9KCIOHEHIIMAJNbHBIM KOMIIOHEHT 3aTyxaHusa ¢ T = 12 mc (upu
T = 78 K), mocrpaguanuoHHblii KoMIoHeHT Hapacranua (upu T > 128 K) B cyGmurpoce-
KYHIHOM [MAlla30He ¥ MeIJIEHHLIN DYKCIOHEHIMAJLHLIA KOMIOHEHT 3aTyXauua (mpu
T 2 160 K). IIpeanoxcena MoJeab, COTJIACHO KOTOpoi mojoca A, -TIOMUHECIEHIIUN ¢ MaKCH-
MyMOM B oGjactu 425 HM BLIZBaHA 1P1 — 180 BIeKTPOHHBEIM TepexogoMm [l*-menTpa. BrI-
CTPBLIMI KOMIIOHEHT 3aTyXAHWUA W IIOCTPANUAIIMOHHBIN KOMIOHEHT HAPACTAHUSA MHTEPIPETUPY-
I0TCA Kak o0ycCJIOBJEHHBbIE 3P1 - 1P1 u 3P0 - 3P1 BJIeKTPOHHBIMHU Iepexomamu 1|*-memrpa,
cooTBeTcTBeHHO. O0CyKIaeTcsi CUMHTUAIANNOHHLIN nponece B Nal:Tl.

Hocaimsxenns 3 uacosum posgirennam A -mominecuennii Nal:Tl npu immyascaomy
eJIeKTpOHHOMY onpominenHi. B kosxcs, JI.Tpepirosa, B.Anexcees, B.Kpachos.
Hocnimxeno cnexTpanbHO-KiHeTH4HI BaactusocTi A -cmyru mominecnernii Nal: Tl s mak-
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cumymomM 425 HM y uacoBomy imTeppami 1078-1072 c. A -mowminecnennia kpuctanxa NalTl s6yz-
JyBanaca iMIyJIbcoM eleKxTpoHiB (E, = 0,25 MeV, tyg = 10 me, W = 0,003...0,16 J/cm?)
y TemmepatypHoMy iHTepBasi 65-300 K. BcranoBseHo, mio y KimeTturni immysanca Katomo-
JIOMiHecIeHITil, 110 peecTpyeThed B ob6jacTi 425 HM, KPiM eKCIOoHeHIialbHOTO KOMIIOHEHTAa
saracanua (T = 235 uc mpu T = 295 K) cnocrepiraerncsa Ie Tpu KOMIIOHeHTa: HaiOGijabII
UIBUAKUY €KCIOHEHI1aJbHMI KOMIOHeHT 3aracanHa 3 T = 12 uc (umpu T = 78 K), moctpa-
piamiiauiih kommoueHT HapocramHsa (mpu T > 128 K) y cyOmikpocekyuaHoMy miamasomi i
HOBiIbHUI eKcIloOHeHIlanbHNM KoMIlOHeHT saracanuda (upu T > 160 K). 3anpomoHoBaHo mMo-
Aenb, BiATOBigHO A0 AKOi cMyra A -moMiHeceHIii 3 MaKcuMyMoM B obaacTi 425 HM cIpH-
YnHEeHa 1P1 - 1S0 enexTpoHHUM TepexogoMm TI*-memrpa. IIBUAKKUI KOMIIOHEHT 3aTacaHHS i
mocTpagiamifinuii KOMIOHEHT HAPOCTAHHSA I1HTEPIPETYIOTHCA AK 00yMoBJeHi 3P1 - 1P1 i
3P0%3P1 eJICKTPOHHUMHE Iepexojamu 1l*-menTpa, Bizmosimmo. OBroBOpOETHCA CIHHTH-

aaniinnit npomec y Nal:Tl.

1. Introduction

Nal:Tl crystals have been widely applied
in the scintillation engineering for more
than half a century and therefore intensely
investigated to understand the mechanisms
behind the formation of TI* center scintilla-
tions under irradiation [1-9]. In spite of
voluminous literature, there are still debat-
able questions left in the physics of the lu-
minescence phenomena in Nal:Tl crystals. It
is still not clear what processes cause the
rise and decay components of the scintilla-
tion pulse at room temperature and what is
the nature of the state responsible for the
Tl-related emission. This paper aims to give
answers to the debatable questions by offer-
ing the obtained experimental results.

2. Experimental

A Nal: Tl boule was grown by the Stock-
barger technique in an evacuated quartz
ampoule. A sample with dimensions of
10x8x2 mm?3 was cleaved from the boule in
a dry air box. Tl concentration in the sam-
ple was chemically determined and
amounted to 2:1072 mol %. The lumines-
cence was excited with an electron pulse
(0.250 MeV, 10 ns, 0.003...0.16 J/cm?)
generated by a GIN-600 accelerator at tem-
peratures within 65—-300 K. The sample was
cooled down to 65 K by evacuating nitrogen
vapor from the internal container of the
cryostat. The cathodoluminescence pulse was
registered by a pulse optical spectrometer
equipped with an MDR-8 monochromator,
FEU-106 photomultiplier and INSTEK GDS-
2204 oscilloscope in a spectral range of 350—
1100 nm with a time resolution of 7 ns.
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3. Results

3.1. Spectra and decay kinetics of the
cathodoluminescence at 78 K

Pulse cathodoluminescence spectra of
Nal: Tl sample right after the electron pulse
depletion (1) and in 100 ns (2) at 78 K are
shown in Fig. 1. One can see that the inten-
sity of the cathodoluminescence after
100 ns decreases about tenfold without af-
fecting the spectrum which fits a Gaussian
with parameters E, = 2.9210.005 eV and
FWHM = 0.3940.005 eV. The luminescence
of TI* centers has a complex decay owing to
its wvarying kinetics throughout nano-,
micro- and millisecond time scale. This com-
plex decay is illustrated in Fig. 2 and
Fig. 3, where the kinetic curves of TI* cen-
ter emission are presented in log and log-log
scales, respectively. An oscillogram inserted
in Fig. 1 demonstrates the fastest decay
component with t = 1241 ns.

As for the emission decay kinetics on a
microsecond time scale at 78 K, it fits the
sum of an exponent and hyperbola (Fig. 2a):

I, (1)

I)=1y /D4 — 2
=1y e L+ )2

where I;, I — the exponential and hyper-
bolic component intensities at ¢+ = 0; T and

o — time constants.

As we can see in Fig. 2a, the exponential
component intensity peak I; is much
greater than the hyperbolic component in-
tensity peak I,.

3.2. Temperature dependences

We found that with an increasing tem-
perature from 65 to 300 K the time con-
stant of exponential decay of Nal.Tl emis-
sion decreases, whereas its intensity I; in-
creases (Fig. 8). Moreover, in the kinetics of
the cathodoluminescence pulse at tempera-
tures over 128 K there appears also a post-
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Fig. 1. Cathodoluminescence spectra of Nal:Tl
measured at 78 K after the depletion of elec-
tron pulse at t = 0 ns (I) and ¢ = 100 ns (2).

irradiation rise component which peaks
faster with the increasing temperature, and
at temperatures over 180 K there appears
one more exponential decay component with
the time constant t,;,, considerably longer
than that of the exponential one T which we
can see in the expression (1). Further 1 will
be referred as Ty;q-

According to [10] the post-irradiation
emission rise of Csl:Tl crystal fits a funec-

tion Iy(1 — €/ Tise). Similarly the same func-
tion can be used for Nal:Tl sample but with
the sum of components: £; — fast rise and
ko — post-irradiation rise, where £y + kg = 1.
Thus, the rise of Nal:Tl cathodoluminescence
pulse fits the following function Iy(k; +
kz(l - e_t/rrise ).

As for the emission decay kinetics at
temperature over 180 K, it fits the sum of
two exponents:

I(t) = Il ' e_t/Tf‘lSt + Iz : e_t/Tsluuv

(2)

We also found that the time constants
Trastr Tsiow and Tpg remain unchanged in
spite of the increase of electron beam power
density from 0.003 to 0.16 J/cm2. It means
that the rise and decay of the cathodolumi-
nescence pulse are caused by monomolecular
processes whose thermal activation energy
is determined by the angle of temperature
dependences for Tp,g, Ty, and T time
constants which straighten in the Arenius
coordinates as shown in Fig.4 and
amounted to E,(T,,) = 0.0710.005 eV,
E(Tp451) = 0.026 £ 0.002 eV and E(t
0.29 + 0.01 eV, respectively.

slow) =
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Fig. 2. Cathodoluminescence decay curves of
Nal:Tl at 430 nm under 78 K (a) and 236 K
(b). Broken lines — experimental curves;
dash lines — fitting curves; solid lines — the
sum of fitting curves.
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Fig. 8. Cathodoluminescence pulse at A = 425 nm
under temperatures 128 K (1), 167 K (2) and
252 K (3). Broken lines — experimental
curves; solid lines — fitting curves.
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Fig. 4. Kinetics parameters of an emission
pulse at A =425 nm vs. reciprocal tempera-

ture: I — rise time constant, 2 — decay time
constant of fast component, 3 — decay time
constant of slow component. 4 — 425 nm

emission yield vs. reciprocal temperature.

4. Discussion

4.1. The origin of the 425 nm emission in
Nal:T|

Almost all researchers [1-9] claim that
this 425 nm emission of Nal:Tl is caused by
a single TI* ion transiting from sp to s2
electron configuration. According to [1], the
electron transition of TI* ion from 3P1 to
1S0 level is responsible for the 425 nm
emission, and the electron population of 3P,
from 3P0 level occurs with 0.026 eV activa-
tion energy.

Although this inter-combination transition
3p,—18, is forbidden by the selection rules, it
is partially allowed in heavy s2-ions, and
therefore the luminescence must have a
long decay. In fact, the experimentally
found as well as theoretically calculated life
time of 3P1 state of isolated TI* ion are
39 ns [11] and 36+81 ns [12-17], respec-
tively. However, according to our results,
about 90 % the initial emission intensity
decays with a 12 ns time constant at 78 K.
The time independent emission pulse spec-
trum as well as the fast decay component
with time constant about 12 ns under non-
selective excitation argue that the 425 nm
emission is caused by an allowed radiative
electron transition of TI* ion.

The presence of the fast and slow decay
components in the emission band of TI* ions

Functional materials, 23, 4, 2016
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Fig. 5. Scheme of levels for TI* emission cen-
ter in Nal:Tl crystal.

excited in the activator absorption region is
usually explained within the framework of
the three-level electron transition model
[18, 19], where 1S,, 3P, and 3P; are
ground, metastable and radiative levels, re-
spectively, with 3P; — 1S, transition being
assumed completely allowed. However, such
an explanation also contradicts the results
of authors [6, 20] who studying the photolu-
minescence of Nal: Tl found that at T <5 K
the 425 nm emission would not arise in the
region of 1S0 - 3P1 transition (A-band ab-
sorption). These contradictions can be over-
come within the framework of another
model of interlevel transitions of TI* emis-
sion center whose graphic expression in con-
figuration coordinates is shown in Fig. 5.
According to the suggested model, the
425 nm emission is caused by an allowed
transition 1PI—ISO, whereas the transitions
3p,-18, and 3Py,-1S, are forbidden. The
population of the three P levels of TI* cen-
ter in Nal'Tl is initiated by ionizing radia-
tion. The nanosecond decay component is
caused by 1P,-1S, transition, the microsec-
ond decay component is caused by a phonon
assistant 3P1—1P1 transition which popu-
lates 1P1 level with 0.026 eV activation en-
ergy. As for the sub-microsecond rise com-
ponent at about 130 K, it is caused by pho-
non assistant 3P0—3P1 transition which
populates 3P1 level with 0.07 eV activation
energy. These transitions are shown in Fig.
5 by arched arrows.

Thus, the presence of the three compo-
nents in the cathodoluminescence pulse ki-
netics with the same spectra is due to the
excited TI* ion intracenter transitions which
eventually populate 1P; level.

4.2. Nal: Tl recombination emission

The appearance of another slow exponen-

tial decay component with ty,, 6 at T >
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160 K argues for a presence of another
thermally activated process responsible for
the formation of TI* centers in lPl state. In
spite of the fact that the initial intensity of
the slow decay component is considerably
lower than that of the fast decay compo-
nent, the emission yield of the slow decay
component becomes higher than the emis-
sion yield of the fast decay component at
temperatures within 180-250 K (Fig. 2b).
The total emission yield at various tempera-
tures is shown in Fig. 4 (curve 4). One can
see that with an increasing temperature
from 170 K, the total emission yield in-
creases by a factor 1.5.

It was earlier established that the slow
decay component arises in Csl:Tl and Csl:Na
due to a thermal dissociation of [TI*, V,]
complex [10] and [Na*, V,] complex [21],
respectively which are also denoted as Vi,
centers. Unlike V| centers in Csl lattice, V
centers in Nal lattice are very unstable. V
centers are set in motion in Nal lattice at
58 K [22, 23], and therefore TI* ions cap-
ture holes to form TI2* but not V,, centers.
Using the time resolved absorption spectros-
copy Deich [24] found that a hole escapes
from TI?* center at temperatures over
150 K in Nal:Tl.

We calculated that the activation energy
for the slow component is 0.29 eV which is
higher than the diffusion activation energy
of V, centers (0.18 eV [22, 23] or 0.09 eV
[24]) in Nal:Tl. Such a big difference in the
activation energy allows us to conclude that
the slow decay component arises due to a
thermal liberation of holes from TI2* centers.

The following expressions describe the
recombination process caused by a thermal
dissociation of TI2* centers:

TR+ + ... 4+ TO 270K, (3)

ST+ ...+ e+ ...+ TIO,

Th+ .. +et+...+TOSTHF+ ...+ (4
+ (TH* > T + ... + TI* + hv,

where TI2* is a hole center; TIO is an electron
center; et is a hole in the valance band.

In accordance with the formal kinetics
law, the slow decay hyperbolic component
with an approximation index 2 (see equation
1) is expected to correspond to the forma-
tion of excited TI* centers due to the recom-
bination of TI° centers with mobile V, cen-
ters similar to Csl:Na [9, 23]. However, the
high conversion efficiency of Nal:T| and its
emission decay kinetics with dominating ex-
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ponential components indicate that there is
an energy transfer mechanism which consid-
erably differs from that in Csl:Na.

4.3. Energy transfer mechanism from
Nal lattice to Tl+ ions

The authors of [6] excited Nal: Tl in the
absorption bands of free and self-trapped
excitons as well as in the region band-to-
band transitions at T = 2.4 K and arrived
at the conclusion that the free excitons give
their energy to TI* ions only at low tempera-
tures. In our case the 425 nm emission
yield does not decrease with increasing tem-
perature from 78 to 300 K as shown in Fig.
4 (curve 4). Therefore we believe that the
energy transfer in Nal:Tl is mainly caused
by band charge carriers, i.e. conduction
electrons and valence band holes, whereas in
Csl:TI mainly by localized charge carriers,
i.e. Vi and TIO centers [21, 25, 26]. Accord-
ing to expressions (5) and (6), the excitation
mechanism of TI* center emission in Nal lat-
tice can be either electron- or hole-recombi-
nation:

T+ ...+e+...+h— (5)
— TRt + e > (TH)* = T + hv (ERL),

TI2+ 4 ... 4 TIO 20K (6)

—>THF+...+h+..+TO (HRL).

5. Conclusion

The 425 nm emission of Nal: Tl crystals at
room temperatures is caused by a radiative
transition of TI* ion from lPl to 1.5'0 state.
The post-irradiation rise of the 425 nm
emission is caused by a transition of TI* ion
from 3P0 to 3P1 state; the duration of scin-
tillations is determined by the transtion
time from a metastable 3P; to a radiative
1p, state. In order to design fast scintilla-
tors, Nal should be doped with an impurity
which has no intercombination transitions.
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