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For nanoclusters and solids, the localization analysis of one-electron states, or MOs
(molecular orbitals), is frequently provided by using the so-called participation ratio (PR)
index. To this conventional PR approach, we add for each MO the new index o;pg which
we define as an average fluctuation of the inverse PR (IPR) value. Typically, the opy
index displays a significant sensitivity to any spatial irregularity in the MO distribution
over molecule. We apply the thus extended PR analysis to the graphene nanoflakes of
different types, and small nanodiamond structures including NV color centers as well. The
proposed scheme has the virtue of being quite simple, and in case of huge clusters it
allows one to rapidly detect orbitals with unusual non-uniform distribution. In particular,
the localization of edge states in graphene molecules is examined in this way.

Keywords: participation ratio, edge localization, graphene nanoflakes, nanodiamonds,
NV centers.

151 HAHOKJIACTEPOB M TBEPIBIX TEJ aHAJU3 JOKAJUIAIUU OJHOIJIEKTPOHHBIX COCTOAHUM,
uiu MO (voaerynapuHux opduTaseil), 4acTo OCYIIECTBIAIOT C HOMOIILI0 TAK HA3BIBAEMOIO
ungexca otHourenus ydacrus (PR). B sroT mogxon mer mob6asasem muasa xammoin MO suaue-
HU€ HOBOT'O MHJEKCA Oppg, KOTODBIN ONpeneNdcM KAk HEKYI CPeJHIONn (IyKTyanuio obpar-
noro ungekca PR (IPR). [auubiil Gipr-index neMOHCTpUPYeT 3HAUMTETLHYIO UYBCTBUTENH-
HOCTHL K KaKOHN YyrogHo HeperyJaspHocTu B pacupegenenun MO mo moserynae. PaciiupeHHBIHN
TakuM obpasom PR-anHanms mpuMeHeH K IpaeHOBLIM HAHOUYEITYHKAM pasjUudHONi MPUPOILI
1 K HeOOJBIINM HaHOAJMABHBIM CTPYKTYPaM, BKJIOUAINUM TaK:Ke NV-IeHTPHI OKPacKH.
IIpennosxennas cxema, KaK JOCTATOUHO TIpocTasd B padoTe BhIoJHe sdpdeKTuBHA — OHA
TMO3BOJIsIET OBLICTPO HAXOAUTHL OPOUTANN ¢ HEIIPUBLIUHO GOJBINON HEOZHOPOAHOCTHIO pacipese-
JeHnda B OOJBINHUX KJacTepax. B uwacTHocTd, TaKUM obpasoM Ma3ydyeHa JOKAJIU3AIUSI Kpae-
BBIX COCTOSHHI I'padeHOBBIX MOJEKYJI.

MogudikoBanuii migxim BiHOIIEHHA CIIBYYACTi: 3acTOCyBaHHA M0 KpPalOBUX CTAHIB
BYTJeIleBUX HaHOKJacTepiB. A.B.JIyszanos.

IIna HaHOKJACTEPiB Ta TBEPJOTO Tija aHaJis JoKasisalii OfHOENeKTPOHHUX CTaHiB, abo
MO (monexyasapHux opbitaneit), yacTo 3ampoOBAIKYIOTh 3a JOIIOMOTOI0 TAK 3BAHOTO iHIEKCY
Bigmomrennsa cmiyuacti (PR). Ho mporo mizxoxy mu momaemo ans xKoykHoi MO sHavenHs
HOBOTO iHJAEKCY Oppg, KOTPUI BU3HAYAEMO AK JMeAKY CePelHI0 (QIYKTyallilo ofepHeHOTO
ingexcy PR (IPR). Ileit 6;pp-index memoncTpye 3HAUHy UyTJIUBICTHL 11070 OyaAb-AKOI Hepery-
aapHocri y posmoxini MO Bsmos:x monexkynau. Posmupenuit ragum unaom PR-amauis sacro-
COBaHO 10 rpad)eHOBUX HAHOJNYCOK PiSHMX THIIB Ta N0 MaJUX HAHOJIaMaHTOBUX CTPYKTYD,
IO BKJOUYAITL Takomx NV-menrpu sabapsiaeHHs. Ik miaxom mpocra y poboTi, 3alrpomroHoBa-
HA CXeMa € JOCHUTh e(peKTHBHOK — BOHA [03BOJIAE IIBUIKO BiAUIyKyBaTu opdiTauai 3 He3BUU-
HYM HEOJHODiZHMM PO3IIOLiJIOM y BEJMYE3HUX KJacTrepax. 30Kpema, B TAKUUA cHocib BuBue-
HO JIOKAJisalliio KpaioBUX CTaHiB rpadeHOBUX MOJIEKYJI.

Functional materials, 23, 4, 2016 599



AV.Luzanov / Modified participation ratio approach ...

1. Introduction

Electron localization analysis for mole-
cules and solids is well addressed in the
vast literature. Among the methods used,
the so-called participation ratio (PR) plays
important role, in particular for studying
Anderson localization of electron states in
disordered systems [1, 2]. In a simplest
case, PR is defined as

PR = 1/2|CH|4' (1)
u

In Eq. (1) ¢, are usual expansion coeffi-
cients for the investigated state which is
given in terms of atomic orbitals (AOs) or
other basic functions. The PR index can be
considered as a number of the most impor-
tant basis functions involved in the state
under study. The localization (more exactly,
delocalization) measure of this kind was
first proposed in [3] for interpreting normal
vibrational modes in ecrystals. Inde-
pendently, the analogous quantity, called
the collectivity number, was introduced in
[4] for treating amplitudes in the single ex-
citation configuration interaction scheme
(see also [5]).

PR and IPR (inverse partition ratio) are
rather widely used in various quantum-me-
chanical problems. For instance, IPR natu-
rally appears in the quantum transition the-
ory for analyzing survival probabilities (see
p.77 in [6]). At the same time, using PR for
electron localization in molecular systems is
not so frequent (except for the known or-
bital-localization theory given by Pipek and
Mezey [7]). In this light, the main motiva-
tion for the present work is to extend appli-
cability of the PR technique to orbital local-
ization phenomena in large molecules. In
the latter, localization phenomena should be
more interesting and more diverse than in
small-size systems. That this is the case can
be easily understood by instances from con-
densed matter physics. For example, Tamm
put forward the fundamental idea of sur-
face states which may be present on the
surface due to a termination of the bulk
crystal [8]. The subsequent extension and
development of the Tamm surface states
theory was thoroughly discussed in the
well-known reviews [9, 10] and in book [11].
It is interesting to study in detail similar
quasi-surface states which possibly occur in
nanocrystals and related finite-size atomic
clusters. However, only a few works on this
topic can be found in the literature [12—-19].
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Generally, the consistent edge ( surface)
state theory is too involved — in concor-
dance with the Pauli sentence: "God made
solids, but surfaces were the work of the
devil”. In particular, analytical solutions of
edge states were derived within simple
tight-binding approaches only for few exam-
ples of finite nanotubes and nanographenes
[16, 17]. Notice that even in the current
literature, a quantitative characterization
of surface-state localization is rarely pro-
vided.

Continuing our recent work about elec-
tronic properties of nanographenes and
nanodiamonds [20, 21], the present paper
aims to investigate edge-like states by ap-
propriate localization measures. To deal
with large-scale structures, such as huge
conjugated and diamondoid carbon-cage sys-
tems (condensed adamantanes) we will
mainly exploit simple Huckel-type approxi-
mations. In so doing, we propose an ancil-
lary interpretation index which helps
screening and analyzing large orbital ar-
rays. A brief sketch of the paper is as fol-
lows: The main localization measures are
given in section 2. The additional charac-
teristic (our index Oppg) is proposed in sec-
tion 8. Applications to carbon nanomaterials
(graphene nanoflakes and nanodiamonds)
are shown in sections 4 and 5. Miscellane-
ous problems of orbital localizations are
presented in section 6, and the last section
concludes the paper. In Appendix we discuss
the interplay of the edge localized states
and effectively unpaired electrons.

2. Main measures of orbitals
localization

To begin, we describe more or less famil-
iar localization measures. The usual local-
ization measure of the given MO (molecular
orbital) is a sum of the selected squared
LCAO (linear combination of AOs) coeffi-
cients. Throughout the paper we assume a
common AOQO representation of MOs which
can be, by and large, obtained numerically.
Moreover, only canonical MOs (eigenstates
of effective one-electron Hamiltonians) and
relevant natural orbitals will be studied in
this paper. Thus, our subject here is not
artificially localized non-canonical MOs
(which, however, can be particularly suit-
able for configuration-interaction methods).

Before returning to PR index (1), we
make some additional notational definitions.
Let |p;) be the MO in question. We bring in
the standard LCAO expansion of the form
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|(P]> = ZCW'bCM), (2)
u

where the appropriate orthonormal AO basis

| |
101 <p<dim

is employed, and dim is a size of the basis
used. LCAO coefficients Cyj in Eq. (2) are
obviously interpreted as elementary prob-

ability amplitudes. Then the set
|cuj|21SuSdim (3)

produces probabilities of finding electron on
corresponding AOs or corresponding atomic
centers. It allows one to assign to each MO
¢; the ordinary localization measure for the
selected molecular fragment A:

Lylojl = 2|Cw'|2- (4)
ueA

For the given MO 0;, we will term the set
of indexes {L A[(pj]} the atomic distribution if
A in Eq. (4) is reduced to atom. Along with
these commonly used quantities, other addi-
tional measures characterize integrally one-
electron state distribution over the whole
molecule. One of these is the above men-
tioned participation (or partition) ratio PR.
For the jth probability distribution (3), this
index is

PR =1/Y e it (5
n

giving a good measure of the number of AO
or atomic centers which effectively partici-
pate in MO ..

For what fzollows we need some more no-
tation. Let

|
{waISuSdim ©)
denote a probability set of nonnegative
weights normalized to unity. Then, the PR

index for w is of the form:

dim )
PR=1/)w?.
k=1

It is also possible to present more general
indexes [22]. For our purposes, the most
important is the second order PR index

2 (8)
PR2 = {Z(wk)z} /3wt
k k
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We may expect, as in [22] for another
problems, that Eq. (8) should provide a
more sharp estimate for an effective num-
ber of atomic centers with strong orbital
localization. Helpful illustrations will be
considered later.

3. Modified localization analysis

3.1. General expressions

Now we introduce our ancillary index
orpg Which helps us to quickly fix signifi-
cantly localized MOs in large-scale orbital
arrays. We turn attention to the fact that
in Egs. (7) and (8) we deal with "inner”
averages of the form

(why = Y wywy) ©)
k

where (wk)k), the kth powers of prob-
abilities, serve as random quantities to be
usually averaged. In these terms, localiza-
tion index (7) is of the form

PR =1/(w). (10)
Analogously, Eq. (8) is equivalent to
PR2 = (w)2/(w3), (11)

and, the frequently employed IPR index
is the simplest average of the form

TPR = Y (wp)? = (w). (12)
k

Eq. (12) suggests an idea to bring into
play o = (w?) — (w)2 , the variance of the
probability distribution itself. In practice, we
will make use the scaled standard deviation

orpr = dim((w?) - w19

The scale prefactor, dim, in Eq. (13) provides
more suitable non-disappearing values of the
index even for very large basis sizes, dim >> 1.

We shortly explain why the variance can
be useful for analyzing localization. By con-
struction, the variance describes fluctua-
tions about the expected value. It means in
our case that o2 reflects a nonuniformity of
the distribution under study. Clearly, the
maximal delocalized states (w; equiv1/dim)
provide the most uniform (flat) distribution
with minimal variance o2 = 0. On the con-
trary, essentially localized states produce
highly non-uniform distributions with a
high variance. This makes 62 (or oppR) 2
good indicator of localization. Thus, in the
present study we will mainly utilize delo-
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calization measure PR2 and oppg index,
which are defined by Egs. (11) and (13), re-
spectively. The opr index will be termed
the fluctuation index. To understand how it
works in reality we explore some examples.

3.2. Using localization indexes for dimer-
ized 1D chain

A finite monatomic chain with one elec-
tron per atom gives us the system which is
simple enough to be tractable, and compli-
cated enough to contain edge localization
phenomena. The standard tight-binding (TB)
approximation with neglecting orbital over-
lap (Huckel method) will be used here. In
fact, we will consider the m-electron struec-
ture of a polyene chain with N carbon
atoms. The basic TB Hamiltonian parame-
ters of the chain are the so-called resonance
(hopping) integrals BpL +1 (1=psN — 1) be-
tween nearest nelghborlng sites. In units of
the standard (negative) hopping integral B,
they are nonnegative and can be taken as
follows: B, ;7 =1 for odd u, and By 1 =1 -
for even U, where m is an alternation pa-
rameter. In this notation, N = dim (a num-
ber of the used AOs), and the well-known
Lennard-Jones result [23] for Huckel orbital
energies of the chain is as follows:

1/2
=41+ (1-m2+21- n)cos2k]} 14

where, for sufficiently long chain we have
approximately kj=mj/N+1, and 1<j<N.
This is the case of a dimerized Peierls insu-
lator without defects.

In the case of a fully regular (homogeneous)
chain when 1 = 0 (no dimerization), we have

g = —+2cosk] and the corresponding
LCAd coefficients are

_ 9 1/2 . (15)
CW~ = (ﬁ} Slanj.

For this case, the computation of the
main localization indexes is easily per-
formed analytically; the required sums of
powers of sink; are well know [24]. More
convenient are asymptotical expressions
which can be simply computed by integrals
given also in [24], entry 3.621.3, The final
result, which is valid for any MO of the
homogeneous chain, is

(why = (2N) ,,(2/%2) (16)

so we have
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PR = 2N/3,PR2 = 18N /35=0.413N, (17)

for each MO of the form (15). The same
results hold for the 1D particle in a box
problem (then N in Eq. (17) should be re-
placed by the box length).

We see that, as it should be in this case,
all MOs are the delocalized (extended) states
having a relatively small value of fluctua-
tion index (13). Thus, the homogeneous
chain does not show any anomalous orbitals
(all states are extended). It is interesting
that in the limit as N — o, the same Egs.
(17) are approximately true for the frontier
MOs in the slightly dimerized chain (n # 0).

A more interesting picture occurs if the
selected B utl is perturbed. This problem
was thoroughly studied in the analytical
manner in [25]. In this it was investigated
under which conditions the local levels of
various types appear. In particular, in case
of the dimerized chain (then m # 0) the edge
state in the forbidden band is possible if the
terminal hopping integral Bege, =Py o satis-
fies the inequality:

Boage < M- (19)

With this in mind, let us perform nu-
merical simulations. We consider the dimer-
ized chain with N =100, and the fixed n
value, n = 0.25. Let us examine two cases:
Bedge =1 (the usual Peierls insulator), and
Pedge =N = 0.25 (the same insulator with
the embryonic edge state). A summary of
the results can be found in Table 1. In it,

Lg%%’lo is (cl)2 for the terminal carbon atom

w=1 in case of the highest occupied MO
(HOMO). We see that indeed in the normal
Peierls chain, the delocalization of MOs is
almost the same as in the regular chain
[compare, e.g., the corresponding maximal
The situation is sharply different when
Bedge = M» and an edge state appears. Then
from oppr plot vs orbital number j (i. e., vs
eigenstate index) we observe that for HOMO
the fluctuation index increases more than
order: ofp¥ = cHQMO = 18. It corresponds to
the case of a strong edge localization of the
frontier state as it must be according to
[25]. Thus, oypr plot helps us simply and
easily to diagnose the localized nature of
the state independently of the values of

Functional materials, 23, 4, 2016
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Table 1. The squared HOMO Huckel coefficients (CM)Z; delocalization indexes PR2yoyos fluctuation

index Oppg; and LHOMO

in the 100-carbon dimerized polyene chain with n = 0.25

edge
HOMO 2
ﬂedge PR2xomo Ledge {|Cu| } O1pr
1 1
05—t A
1. 56. 0.001 0.5
M i
| 50 X 1 50 100’
Olpg =0.54
1 18
0.25 16 0450 @09
LM 05 i
| 25 1 50 100’
O =18.03

other indexes. Such an easiness is the essen-
tial merit when very large amount of orbi-
tals must be handled, as it occurs in case of
huge molecular systems and atomic clusters
which we consider next.

4. Edge localization of frontier
MOs in nanographenes

Recall that two types of edges are usu-
ally recognized in the graphene nanoclus-
ters: armchair and zigzag edges. The arm-
chair edges contain phenanthrene-like units,
whereas the zigzag edges contain anthra-
cene-like units. Peculiarities of the orbital
localization in large graphene-like struc-
tures are discussed in much work (e.g., see
[26—30]). In particular, as established first
in [26], and later in [27], the frontier MOs
are essentially localized on zigzag edges.
Significantly, several experiments [31-33]
have provided excellent supporting evi-
dences in favor of localized edge states in
graphene nanoribbons.

Here we study quantitatively the Huckel
m-orbital localization in several graphene-
like molecules (graphene nanoflakes) pre-
sented in Table 2. For the sake of brevity,
we will use shorthand Cy in dealing with
graphene molecule having N-carbon atom
backbone which is terminated at the periph-
ery by hydrogen atoms. We take almost the
same examples which were previously inves-
tigated [20, 21, 834]. The full edge localiza-

tion index Lg%glo is computed for HOMO by

standard Eq. (4) where only edge carbon
atoms with degree 2 (number of neighboring
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carbons are taken into account in the re-
spective sum over p. Furthermore, in Tables
we display for each system its skeletal for-
mula on which is superimposed the atomic
distributions of the corresponding HOMO.
Notice that the carbon backbone of gra-
phene molecules belongs to the class of the
so-called alternant systems (bipartite
graphs) for which the Coulson-Rushbroke
orbital parity theorem is valid. Then orbital
localizations (4) of the given occupied MO
and dual virtual MO are the same because

1Cu = ICy dimjea - (20)

That is why in the tables relating to al-
ternant m-structures we give oppg plots vs
orbital number only for the occupied MO’s
set.

In this regard, notice a technical point
concerning m-orbital degeneracy in the stud-
ied hexagonal honeycomb structures with
Dg;, symmetry. For these and any other sys-
tems involving as well an accidental, or hid-
den, symmetry, a counterpart of probability
set (3) should be computed by taking into
account all partner orbitals of the corre-
sponding degenerate representation. If ig-
noring this point, an irrelevant asymmetry
is involved, thereby making artificially
more localized MOs, and markedly overesti-
mated localization indexes. However, in the
literature this point is not duly dis-
cussed. In particular, we do not forget
about a possible accidental degeneracy for
Huckel orbital energies g;j=1 (and for ¢; =
—1 as well). This degeneracy is incidental to
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Table 2. HOMO localization indices L&%ﬂ’lo, PR2

graphene nanoflakes

oMo and plot Oppr vs orbital number j for typical

Structure LI:(;;ZAO PR2xomo Cipr
6
0.94 11.
g
1 109J
(ohoMO =6 43)
2
1
0.65 19.
1 il i
(Omr =2.1)
10
0.88 28.
1 _
1 436J
(o MO =9 56)
C1302
2
0.10 766. 1
1 373?
(o MO =0.24)

many graphene m-structures. On this ac-
count, for most of the graphenes given in
Table 2 the actual number N,.. of occupied
n-MOs does not coincide with dim/2.

We first consider a small nanoribbon
Cyog with horizontal zigzag edges. From the
ngg’lo values and the corresponding picto-
rial images, the above-mentioned strong lo-
calization on the zigzag edges is quite evi-
dent. In C,og and other systems, delocaliza-
tion index PR2 provides a reasonably crude
estimation of numbers of the most active
atoms contributed to HOMO, as clear from
the images of Table 2. Besides, opg plots
furnish an additional useful information
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characterizing all MOs. From these plots in
Table 2 we see that in all the cases, oipr
attains its maximal wvalue just for HOMO
(and thus for LUMO, lowest unoccupied
MO). These GE,%MO values are significantly

larger than 0.5 (compare with correspond-
ing the small value in Eq. (18) for the fully
delocalized HOMO of the infinite polyene
chain). It fixes the high localization of
HOMO/LUMO states in zigzag-edge gra-
phene nanoribbons without invoking picto-
rial images; additionally it assures the ab-
sence of another essentially local states. No-
tice also that oppgp plot can detect possible

Functional materials, 23, 4, 2016
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HOMO

Structure

2,

\v,‘ XA

, X
KRR

IR

O1pr

1 291 582

Fig. 1. Structure, HOMO localization diagram, and o;pg plot for diamondoids CgqH44g.

localization in any region of the molecule
(not only the edge localization).

Some additional words about the hexago-
nal nanoflakes C,g and Cy359- Table 2
shows, for HOMO’s, the same preferable lo-
calization on zigzag border atoms. Concur-
rently, we note that cluster C;3qp,, having
the perfect armchair edges, produces, as ex-
pected, small values of the HOMO charac-

teristics Lgl%g’lo and GI}%,%MO. The latter are

fully consistent with a very large value of
the delocalization index PR2 (the 3rd col-
umn in the Table).

5. Searching edge states in
small nanodiamonds

Here we discuss the orbital localization
for another interesting class of carbon
nanomaterials; namely those of diamond-
like structure. These are nanodiamondoids,
which represent a group of sp3 carbon-cage
molecules with dangling carbon bonds nor-
mally passivated by H atoms. These systems
generate very important materials with
broad spectrum of properties and applica-
tions [35—-3T7].

The nanodiamond structure of the for-
mula CyggHqg (related systems were studied
previously in [38]) will serve here as the
main illustrative example. We employ the
so-called extended Huckel method of the
conventional type [39]. The geometric image
of the cluster (H atoms are suppressed) is
given in the left panel of Fig. 1. The central
panel of the figure represents the HOMO
atomic distribution which is displayed mak-
ing use a suitable plane projection of the
molecule. We see that HOMO is preferably
localized inside the carbon cage in agree-
ment with a small value of the surface lo-

calization index: Lg%g’lo= 0.226, that is the
HOMO is approximately 76 % bulk orbital.

The modest magnitude of G{IPRHOMO =3.53
and PR2gxopmo = 45.7 are in concordance

Functional materials, 23, 4, 2016

MO No 143 MO No 189
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Fig. 2. Localization diagrams for special MOs
with orbital numbers 143 and 189 in diamon-
doid C;goH1o-

with a moderately delocalized character of
this bulk orbital. Incidentally we must re-
mark that in the used projections, the plane
images of several atoms are superimposed;
but in our cases this does not prevent ob-
serving orbital localizations clearly.

From oppg plot in Fig. 1 we can also ex-

pect the existence of more interesting orbi-
tals with highly inhomogeneous atomic dis-
tribution. For instance, what are the prop-
erties of the MO giving in CyggH{49 the
maximum value offf = 12.65. We find that

this orbital has eigenstate number 143, and
respectively, LL}{é%]= 0.60; the correspond-
ing atomic distribution is displayed in the
left panel of Fig. 2. Searching the orbital
with maximum edge, i. e., is surface local-
ization (its eigenstate number is 189) pro-
vides somewhat different picture (see the
right panel of Fig. 2): a more homogeneous
distribution over the surface (edge) atoms,

and LL}1§21= 0.742. Respectively, no more

than a moderate magnitude of}31= 8.67 is
produced.

Yet, another picture for nanodiamonds
with interior point defects. In Fig. 3 we
present the images for HOMO and LUMO in
the case of NV~ (negative nitrogen-vacancy)
color center generated in the cluster
C190H110. In this case G%aR)f = 60.3, and this

sharp maximum (see Oppgr plot in Fig. 3) is
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HOMO

LUMO

Opr
60

1 291 579

Fig. 8. MO localization properties of the simulated NV~ center C,ggH;,oN™.

Table 8. Atomic distribution of active MOs in functionalized finite-size graphene C,q

HOMO LUMO

HOMO-15 o

1 119 238!
(Opr ©=2.09;
Oppr - =2.46;

om0 =4.62)

exactly attained at the HOMO, if treating
an artificial singlet closed-shell state of the
cluster. (Peculiarities of spin states of NV
centers are not the subject of this paper;
for this issue see discussion and references
in [20, 40]). It is worth noting that judging
from Fig. 3, in the used model, HOMO is
markedly more localized in a vicinity of the
color center than the corresponding LUMO
(the projected position of N atom is indi-
cated in Fig. 3 by a small blue circle). On
the whole, the localization of these HOMO
and LUMO is familiar to the localization of
the of NV -center lowest excitations which
was previously given in [40]. This fact
seems quite natural since the frontier MOs
are normally the most important in forming
lowest excitations.

6. Modified problems

Here we return to graphenes and discuss
additional problems in which we vary the
type of the nanographene borders and
make other modifications. Functionalized,
in particular edge-modified nanographene is
a common and current theme in the gra-
phene literature [37, 41-44]. We consider
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now only one kind of the edge modification.
By making on armchair edges the cycliza-
tion of peripheral phenanthrene subunits we
replace them by fluorenyl subunits, as it is
shown in structure C,3g from Table 8. This
system is no longer alternant one, and sym-
metry relations (20) between occupied and
virtual m-MOs are violated. Accordingly, we
display in the Table the localization dia-
gram for the both frontier MOs: HOMO and
LUMO. From oOppg plot we see that ofpF

corresponds, not to the HOMO, but to a
more deep orbital, HOMO-15 in fact. For
completeness, we show in Table 3 the
HOMO-15 localization diagram, too. Com-
paring all three orbital images given in the
Table we observe that HOMO is now a lesser
localized than the other non-frontier MOs,
and just HOMO-15 (having the maximum
value of G) turns out to be to well localized
on the modified armchair (not =zigzag!)
edges. Remark that in this case the detec-
tion of the HOMO-15 localized on the modi-
fied armchair edges, has become possible
owing to a direct simple search of off§ in

the full set of orbital fluctuations.

Functional materials, 23, 4, 2016
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Fig. 4. Localization diagrams of the Huckel
HOMO for selected graphene nanoflakes in
the strong magnetic field.

Let us now examine the same system
Co3g and others in a strong atomic-scale
magnetic field. The calculations are per-
formed in framework of the conventional
Huckel-London theory which is based on
using gauge-invariant n-AOs [45]. For test-
ing the strong field effect we took the static
field strength 0.02 a.e., at which quite ap-
preciable changes in the HOMO properties
occur (Fig. 4). The most interesting effect is
that the strong field tends to localize the
HOMO in the molecule’s interior in such a
way that the edge localization becomes
weaker (as in C,,g), and even disappears (as
in Cy4g)- As a result, the edge magnetism
must vanish in strong magnetic fields.

At last, the important issue which de-
serves at least a short consideration is the
effects of methods used on the results. In
the illustrations hitherto given, we em-
ployed the Huckel-type methods as a sim-
plest model providing qualitatively reason-
able orbital picture. The recent paper [46]
provides an interesting insight on the im-
pact of Huckel-based models in an ab initio
era. Stress that the Huckel method and its
variations (tight-binding techniques) are a
starting point of conventional theoretical
approaches to the solid-state physics of gra-
phene. Nonetheless, more refined ap-
proaches can generally lead to a somewhat
different orbital localization , especially in
large-scale systems.

To somehow understand the situation we
invoke here the MOs which are produced by
the unrestricted Hartree-Fock (UHF)
method within the conventional Pariser-
Parr-Pople semiempirical m-scheme (n-UHF).
For these UHF calculations we take the
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Table 4. Comparison of the n-UHF, pseudo-
n UHF, and QCTB values for HOMO and
EUE localization indexes in C,g

% m-UHF  Pseudo-m UHF QCTB

PR2uomo 7.0 8.1 7.8
OMO

Tim 3.36 287 3.01

NEUE 471 445 525
EUE

PR2 11.4 13.8 16.2

L 0.642 0.670 0.586

carbon backbone formed by regular hexa-
gons with the C-C bond length of 1.4 A.
We should notice that for any UHF models
there is a difficulty in using the canonical
MOs generated by the standard Fock opera-
tors f, and fB of spin-up and spin-down elec-
trons, respectively. In general, these orbi-
tals, taken separately, do not display the
full molecular symmetry even though the
total UHF wave function is in agreement
with the required symmetry [47] (if ignor-
ing possible symmetry breaking). Unlike
such UHF MOs, the associated natural orbi-
tals are symmetry-adapted ones. Thus, we
must compare the Huckel MOs just with
these natural orbitals.

In addition to n-UHF, we employ the so-
called pseudo-m model which was introduced
in [48] to mimic ab initio magnetic m-shell
properties in large polyaromatic hydrocar-
bons (PAHs). In this model, instead of the
given PAH one takes a purely hydrogen
cluster (H-cluster) with the geometry of the
corresponding carbon backbone, and does
the Hartree-Fock computation of the H-clus-
ter at the STO-3G level. However, the m-
electron correlation effects would be overes-
timated if one applies this model within the
post-Hartree-Fock methods. At the same
time, using smaller bond lengths enables
correlation effects to be reasonably re-
duced. Here we introduce just this modifica-
tion of the pseudo-m model with the reduced
neighbor H-H length wvalues all equal to
1A In practice, we simply scale the PAH
backbone Cartesian coordinates in by a fac-
tor of 1/1.4.

The typical are the results obtained for
the localization indices in nanocluster C.g
(Table 4). We compare the HOMO properties
obtained from QCTB [21, 34] (the Huckel-
like model sketched in Appendix) with that
of the HOMO counterparts produced by m-
UHF and the above-mentioned pseudo-n

607



AV.Luzanov / Modified participation ratio approach ...

Table 5. Number of effectively unpaired electrons NEUVE, delocalization index PR2EVE, distribution

of EUE over the carbon backbone, and plot L
nanoflakes

edge

vs orbital number j for representative graphene

System NEUE PR EE LiUE} Ledge
1
C228 13.1 34, 0.5
1 100’
1
C216 11.3 53 03
EUE ! n J
(Ligy. = 38 %)
}
C1058 61.0 112. 05
BUn 1 525j
(Ledge =37 %)
]
C1200 66.2 186. 05
j
EUE _ 1 392
(Ligy. = 33 %)

model at the UHF level (pseudo-m UHF in
Table 4). Moreover, the characteristics of
effectively unpaired electrons (EUE, see Ap-
pendix), are also presented in the Table. We
see that on the whole, all the used schemes
provide a qualitatively similar picture: the
strong edge localization of HOMO and the
well localized (preferably on zigzag edges)
unpaired electrons. Most noticeable is a dif-
ference in quantitative EUE characteristics.
We observe that the applied, rather crude
QCTB scheme overestimates the NEUE
index, that is the EUE number (see Eq. (Al)
in Appendix). The same is true for the delo-
calization character of the unpaired elec-
trons as well (compare the PR2EVE yalues
in Table 5).

7. Concluding remarks

In this paper, the PR analysis of orbital
localization is discussed and supplemented
with the new index opgr, Eq.(13). Using
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the given analysis we studied various types
of systems and problems concerning carbon
nanoclusters. On the whole, the obtained re-
sults support using the fluctuation index
orpgr for interpreting localization phenom-
ena in huge molecules and clusters.

As a conclusion, we can say that, in deal-
ing with large orbital arrays of nanoclus-
ters, the exhaustive description of their lo-
calization properties is a very difficult, if
possible at all. Besides, we do not usually
know beforehand possible regions of local-
ization. In this situation, the proposed oipr
index seems a useful interpretive tool. The
index is quite sensitive to any spatial ir-
regularity. Thus, it is enough to look at
plot orpr vs eigenstate number, in order to
trace orbitals with unusual localization
properties. A successive study of few MOs
thus detected is much more easy to per-
form. This procedure becomes practically
needed in nanostructures, specially. In them
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one cannot restrict to studying, as usual,
only few frontier MOs, because many MOs
(scores and hundreds) can be active, having
energies close to HOMO and LUMO energies.

Stress once more that the fluctuation
index oypr serves as a direct indicator of
the irregularity. Therefore, the orbitals
with large values of this index may not be
corresponding to a large localization on ar-
bitrarily selected atom group or molecular
fragment. The example of this kind was
considered in Section 5. These situations are
in fact inevitable since one can select many
different fragments of molecule, while the
MO with the extremal opgr = OfpF is unique

in fact. It should be recognized that in the
complicated cases, orbital localizations are
too involved, and additional global indica-
tors are desirable for more exhaustible un-
derstanding.

A few words would be in order about how
the proposed modification of orbital analy-
sis can be extended to problems other than
purely orbital ones. We have already dis-
cussed the EUE distribution {LEUF} in terms

localization indices (see Appendix). Using
the same PR analysis for many-electron ex-
cited state seems even more attractive.
However, only future concrete calculations
will be able to tell us about a real use of
such extensions of the presented interpre-
tive tool.
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Appendix. Localized states and
effectively unpaired electrons

The motivation for this appendix comes
from the fact that there exist many physical
manifestations of local frontier MOs in gra-
phene networks. In particular, the intrinsic
magnetism in them is closely related to the
localized states [49—52]. In this context, the
effectively unpaired electrons (EUE) are an
important face of such magnetism. Here,
following [21, 34] we consider a simplistic
interpretation of EUE in terms of Huckel
orbitals and their localization.

Strictly speaking, in diamagnetic closed-
shell systems, EUE results from the elec-
tron correlation properly. The latter causes
decoupling electrons with opposite spins, so
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in singlet states the electron pairing is par-
tially lost. With this, virtual hole-particle
pairs arise, and the fact can be expressed by
an appropriate quantitative EUE measure
which will be denoted by NEUE, Ags a possi-
ble definition for NEUE the average popula-
tion of the virtual hole-particle pairs was
proposed [5, 53]. This quite reasonable
physical and simple definition is in essence
equivalent to the well known Head-Gordon
index [54], previously designed from formal
analysis (for detail see [21, 34] ). Our work-
ing expression is simply this:

NEUE=2¥%%, . (A1)

a

In Eq. (19), {A,} are natural orbital occu-
pation numbers for "virtual” part of 1-elec-
tron density matrix spectrum (a>n + 1, and
n = N/2 where N is an even number of elec-
trons).

In the case of bipartite graphs (e.g., al-
ternant hydrocarbons, graphenes, etc.) it is
possible to construct the one-electron den-
sity matrix, which allows for a crude ac-
count of electron-correlation effects in
terms of Huckel orbitals only ("quasi-corre-
lation™ model) [21]. It is based on a suitable
approximation along the line of the differ-
ent orbital for different spins theory. In the
final formulation, an appropriate spin split-
ting parameter O is introduced, and the vir-
tual-orbital occupation numbers are directly
estimated from the Huckel eigenspectrum
{e,}, as follows:

)\.21—8(1/\162‘}‘82. (A2)

Besides, the EUE density matrix can be
written down in terms of these A, and
Huckel MOs. As a result, the atomic local-
ization indices LEUE can be rather simply

expressed, as follows:

LEVE- 2} (1 - |si|/\/gz+—€i2_)LA[(Pi], (A3)

1<i<n

with orbital localizations L A((pj) computed
by Eq. (4) from the occupied Huckel orbitals

@;- With this, YLEUE — NEUE. The corre-
A

sponding number of active atomic EUE cen-

ters is estimated as in Eq. (8):

PR2EUE _ [2(L£UE)2]2/Z(L£UE)4. (A4)
A A
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In agreement with [21, 34], Eqgs. (A2)-
(A4) determine the basic results of the
quasi-correlated tight-binding (QCTB) model
for EUE.

After this preliminary, we can pass to a
simplified study of EUE in the large gra-
phene networks. We show in Table 5 the
representative results for two structures
from Table 2 (nanoribbon C,,g and hexago-
nal C,4 nanographene), and for two
nanoparticles Cyg3g and Cy509 which include
pores — the so-called antidot structures.
The latter became a rather frequent object
of research scrutiny [55—-57]. In all the sys-
tems studied, NEUE reaches large values of
(near 10). The PR2EVE index reveals a
rather delocalized EUE character, while
having a considerable concentration of EUE
at the edge (see {LEVE} distributions in the

Table). This fact can be treated qualita-
tively in terms of the frontier orbitals
which give the essential contribution to
NEUE | Really, by restricting summation in
Eq. (A3) to the first 10 virtual MOs, we
obtain, say for C,,g and C,4g, more than
60 % of the whole NEUE magnitude. Plots
of the edge localization index {L.4 e[(p]-]} for
occupied MOs (the last column of Table 5)
tell us that only few frontier MOs are mark-
edly localized on the egde, and just these
frontier MOs provide a significant but not
overwhelming contribution to EUE proper-
ties.
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