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The results of the study of quasicrystals matrix models are presented, which confirm
the hypothesis that each quasicrystal has corresponding quasiorthogonal matrix associated
with it, the golden ratio matrix meets the D.Shechtman quasicrystal. It is concluded that
for the ordered structures consisting of two endlessly recurring units, a modular two-level
golden ratio matrix may be a model reflecting the structure elements. The main interest
here is in the indication of the prospects: both the materials and the matrices can have
different structures, and the matrices can be involved in predicting the existence and then
in analyzing the materials.
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IIpuBeneHsl pesyabTaTbl MUCCHEJOBAHUS MATPUYHBLIX MOJeJell KBAaSUKPHUCTAJJIOB, IIOJ-
TBEPIKAAIOIIME TUIIOTE3Y, UTO KaXKAOMY KBaSUKPHUCTAJIIY OTBEUAET ACOIMKPOBAHHAA C HUM
KBasUOPTOrOHAJbHAA MaTpuila, kBasukpucramsny [.lllexTmaHa oTBeyaeT MATPUIA 30JOTOrO
ceuenus. CoeslaH BBIBOJ, UTO JJIA YIIOPAJOUEHHBIX CTPYKTYP, COCTOAIIMX M3 ABYX OECKOHEY-
HO IOBTOPAIUXCA (PPArMEHTOB, MOJAEJbIO, OTPAMKAIONIIeH AeTaId CTPOCHUA, MOMKET ABJIATH-
¢ MOIYJBHO NBYXYPOBHEBAs MATPHUIA 30Ja0TOT0 ceueHus. OCHOBHOII MHTEPEC COCTOUT 31eCh
B YKaBaHUU IIEPCIeKTUB: BeJb 1 MaTEPHUAJbI, 1 MATPULLl B COCTOAHUN MMETH €Ille U Apyrue
BUJBI, IIPUYEM MAaTPUIBI MOTYT IPUBJIEKATHCA [IJd [IPEICKASAHUA CYIIECTBOBAHUA U 3aTEM
IJIsl aHAJIKU3a MaTe€PUAJOB.

Cumerpia urra B kpucramnax. M.O.Banonin, B.C.Cyszdans.

Haseneno pesyabraTu ZOCHiIKeHHA MATPHUYHNX MoJejel KBasikpucraiaiB, aki mizreep-
IKYIOTHh TilloTesy, I[0 KOMKHOMY 3 KBasiKkpucraiiB Bigmosimae acoilifioBana 3 HUM KBasiopTo-
roHajbHa martpunsg, kpasikpucrany [.IllexTmana BiamoBijae mMaTpullgd 30JI0TOTO Ilepepisy.
3po6iieHO BHCHOBOK, IO [IJA VIOPAZKOBAHUX CTPYKTYP, AKi CKJIAZAaTbBCA 3 JLBOX He-
CKiHUeHHO IIOBTOPIOBAHUX (parMeHTiB, MOJEJJII0, IO BimoOpakae meraai OymoBH, MOXKe
OyTu MOLYJIBHO-ABOPiBHEeBa MAaTpUIA 30J0TOro mnepepisy. OcHoBHuiI iHTepec moJasrae y
BKasiBIli mepcHnexTuB: OCKinbKM i Marepiaaum, i marpumi B smo3l martu mie I iHmIi Bumwm,
HPUUYOMY MATPHUIIL MOMKYTH 3aJydaTHUCA IJA IepenbaveHHsd iCHyBaHHA 1 aHa/isdy HOBUX MaTe-
piaxis.
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1. Introduction

According to the traditional view, the
structure of a solid substance in the crystal-
line state is characterized by two major fea-
tures: orderliness and periodicity. Thus, the
crystal, according to the definition, is an
ordered structure consisting (in theory) of
an endlessly recurring unit (lattice cell).
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Ranging of the information in respect of
the allowed crystals symmetry discrimi-
nated the crystalline lattice — an auxiliary
geometric image introduced to analyze the
crystal structure and the rotation axes of
the second, third, fourth and sixth orders.
These dogmas became so perpetuated in the
official crystallography that opposing them

Functional materials, 23, 4, 2016



N.A.Balonin, V.S.Suzdal/ Symmetry of life in crystals

led D.Shechtman who discovered the penta-
grams in the experiments on ultra-fast cool-
ing of aluminum and manganese alloys [1]
to the Nobel Prize in 2011. The recognition
of the finding was favored by the experi-
ments of the British mathematician R.Pen-
rose with two diamonds — the Penrose tiles
built on proportions of the golden ratio
forming repeating patterns with the long-
range symmetry [2]. Such objects are now
recognized and called quasicrystals.

In 1982, at the National Institute of
Standards and Technology (USA) D.Shecht-
man studied the structure of aluminum and
manganese alloy using electron diffraction.
The picture seen by D. Shechtman is
astonishing: ten bright points located
around the central point. But this is just a
part of the three-dimensional picture. After
some time, having taken the pictures of the
sample at different angles and adding a
standard mathematical processing, he was
able to determine how the atoms in the
crystal are arranged. It turned out that
they were located at the apexes of the icosa-
hedron — a polyhedron assembled of 20
regular triangles. It is known that it is im-
possible to fill the space with icosahedrons
so that they joint each other tightly, there
are surely interstices which is impossible in
crystalline objects. However, in 1984,
D.Shechtman, I.Blech, D.Gratias and
J.Cahn confirmed the symmetry of the fifth
order on the electron-diffraction pattern of
ultra-fast cooled aluminum and manganese
alloy (AlggMn,,) [1]. The quasicrystals dis-
covered by Shechtman are ordered but not
periodic, i.e. they have no translational
symmetry.

The space filling in the quasicrystals is
very fancy; in fact there are two or three
lattice cells, two or three types of lattice
cells which are oddly combined without pro-
ducing translational periodicity. Neverthe-
less, the structure possesses the long-range
order. Diffraction pattern, i.e. the hosing of
X-ray by the quasicrystal structure, is con-
sist of clear sharp strictly located spots. In
the same way as is in the crystal.

The symmetries of the fifth, seventh,
and other orders prohibited in ecrystal-
lography are the most common in nature.
The rotational symmetry of the fifth order
(72° angle) is the most effectively repre-
sented in plant life and in the simplest liv-
ing organisms, particularly in some species
of viruses and organisms of some sea dwell-
ers (sea stars, sea urchins, colonies of green
algae, radiolarians, and others). Flowers of
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many plants possess the rotational symme-
try of the fifth order which until recently
was not observed in inorganic nature. The
quasicrystals show us the symmetry of life.
We can say now that there is a transition
link between the stone and the plant, which
has a common symmetry.

At present there are hundreds of kinds
of quasicrystals with icosahedral point sym-
metry, as well as with decagon, octagon and
dodecagon one, but it was recognized that
formation of such substances in nature is
just impossible because the structure is ex-
tremely unstable. In 2009, scientists discov-
ered the first natural quasierystal in the
rare mineral khatyrkite from Russian Far
East. In the fragments of rocks collected in
the Koryak Highland, natural quasicrystals
reach the size of up to 200 um. They consist
of atoms of iron, copper and aluminum and
have complicated structure with several (up
to six) axes of the fifth order.

The following properties of the quasi-
crystals determine the possibility of their
practical application: hardness, low friction
coefficient, low thermal conductivity and
unusual electricity-conducting properties.
Today they are supposed to be used in a few
fields, in particular, the development of
quasicrystalline coatings and adding
nanoparticles to alloys [38]. The most impor-
tant field of application is the production of
coatings. It is more promising than using
the whole quasicrystals. The latter are quite
fragile, and while using coatings their ri-
gidity is manifested. Another way to avoid
the problem of the fragility of the quasi-
crystalline materials is to use icosahedral
quasicrystalline particles of nanometer sizes
for the reinforcement of aluminum-based al-
loys.

Thus, a new state of matter is found that
has the long-range order but does not have
translational symmetry and has the symme-
try elements prohibited for crystals. This
state was termed quasicrystalline and it was
found for several hundreds of substances,
and in all cases these are metal alloys. As
well as there are colloid systems. You will
never see quasicrystals from the ones known
now: for example, there is none of them in
ionic substance such as sodium chloride.
The oxides, sulfides, sulfates, and so on
have no such quasicrystals. These are al-
ways metal alloys, often the ones based on
aluminum. Why?

Another feature of quasicrystals is that
their chemical formulas which are very
strange. For example, AlggMny,, i. e., it is
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not AIMn, not AIMn,, but very strange, out-
landish proportions of the chemical ele-
ments.

So, how to understand the existence, how
to describe the structure of this kind of
substance? It is clear today that it is possi-
ble to describe the quasicrystals structure
in two different ways. The first one is the
Penrose tiling which is a classic example of
the two-dimensional quasicrystal [4], the
second one is a multidimensional descrip-
tion [5].

In 1976, Penrose created a non-periodic
tiling of two tiles, thickened and waisted
diamonds with strictly defined proportions,
and not just simple proportions but the pro-
portions of "the golden ratio” or 1.618...
The plane without inconsistencies can be
surfaced with two kinds of diamonds: with
acute corners of 36 and 72 degrees. The
angles of these diamonds are related to the
golden ratio. The ratio of the quantity of
wide diamonds to the narrow ones is equal
to the golden ratio. Since this is an irra-
tional number, it is impossible to separate a
lattice cell which would contain a whole
number of diamonds. If the node points are
replaced with atoms, the Penrose tiling
would be a good analogue of the two-dimen-
sional quasicrystal since it has a lot of prop-
erties typical for this state of matter.

Firstly, it is possible to separate in the
tiling regular polygons having quite similar
orientation. They create the long-range ori-
entation order called quasiperiodic. This
means that between distant tiling structures
there is interaction coordinating the loca-
tion and the relative orientation of the dia-
monds in a quite determined though an am-
biguous way.

Secondly, if all diamonds with the sides
parallel to any chosen direction are conse-
quently painted, they form a series of zig-
zag lines. Along these zigzag lines it is pos-
sible to draw parallel straights distant ap-
proximately at the same distance from each
other. Due to this property we can speak
about some translation symmetry in the
Penrose tiling.

Thirdly, consequently painted diamonds
form five families of similar parallel lines
intersecting at the angles that are multiples
of 72°. The directions of these zigzag lines
correspond to the directions of the sides of
the regular pentagon. Therefore the Penrose
tiling has to some extent rotational symme-
try of the fifth order and in this sense it is
similar to the quasicrystal.
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The higher-dimensional approach is based
on the information on intensity distribution
in the reciprocal space, i. e. it can be ap-
plied directly to describe the experimental
diffraction data. It is based on the fact that
from mathematical point of view the con-
struction of an aperiodic function can be
reduced to the sum of harmonic functions
with the number of linearly independent
wave vectors greater than dimension of the
real space. Quasiperiodic functions in s-di-
mensional space can be considered as irra-
tional sections of n-dimensional periodic
functions (n > s), where n specifies the
minimum dimension of the space of embed-
dings, and s — dimension of the quasicrys-
tal itself. The structure factor of the quasi-
crystal in the higher-dimensional approach
is calculated based on distribution of hy-
peratoms in the lattice cell of the n-dimen-
sional lattice. The method allowed class-
ifying the possible symmetry point groups
of the axial quasicrystals, setting the di-
mension of the space of embeddings and
corresponding n-dimensional space groups
for each case [6, 7].

2. Matrix models

In 2014, N.Balonin hypothesized: each
quasicrystal has corresponding quasiortho-
gonal matrix associated with it, the golden
ratio matrix meets the D.Shechtman quasi-
crystal.

Let’s list some definitions of the matrix
theory.

Definition 1. Values, to which elements
of the matrix are equal, will be called its
levels. Thus the Hadamard matrix with ele-
ments {1, -1} has two levels (two-level ma-
trix) and the Belevitch matrix (C-matrix,
conference matrix) with elements {0, 1, -1}
is a the three-level one.

Definition 2. Quasiorthogonal will be
called a square matrix A, order n, with the
maximum of the absolute values of its ele-
ments reduced to 1, obeying the quadratic
equation

ATA = ol,

where I — identity matrix; @ — weight of
the matrix.

Basically, quasiorthogonal in the broad
sense of the word could be called any or-
thogonal by columns (or rows) matrices. In
this case, they would have included orthogo-
nal ones with the weight w =1 and the
maximum modulus element m < 1. How-
ever, in this case we are interested in the
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Fig. 1. Octahedron in a cube.

matrices extreme as for the determinant
with restrictions to the values of their ele-
ments: they must not be greater than 1. It
is obvious that with elementary multiplica-
tion by 1/m any orthogonal matrix with the
determinant equal to 1 is reduced to the
quasiorthogonal one, and its determinant
increases by 1/m™ times.

A further increase of the determinant by
scaling is not possible, as this will make the
matrix elements larger than 1. From
det(4)2 = 0" and |det(4) = 1/m" follows
that o = 1/m?2.

Geometric interpretation of the matrix
determinant is related to volume of the
body built on the column-vectors of the ma-
trix. It is a direct way to wording of the
close packing problems. For example, in
three-dimensional case three orthogonal be-
tween themselves ordinary along the length
of the column-vectors of the orthogonal ma-
trix represent axis leading to the apexes of
an octahedron (they define its position). Let
us assume now that the octahedron is in a
cube with the coordinates of the apexes
equal to 1 or —1.

It is quite obvious that position of the
octahedron shown in Fig. 1 is not optimal in
terms of its volume. Inclining the octahe-
dron, we deprive it of the contact with the
limitation walls and consequently we can in-
crease its volume by scaling. The question is
what the optimal position of the expanding
octahedron is in which it would be impossible
to increase its volume with any turns. This
purely geometric problem is also equivalent to
the search for the optimal position of the
antitank hedgehog for which it is possible to
construct a minimal barn. I.e., the same geo-
metric object can occupy larger or smaller vol-
ume; it all depends on its position.

Let us now recall that the volume of the
octahedron is equal to the determinant of
quasiorthogonal matrix. This implies that
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Fig. 2. Microparticles in the field cells.

extreme quasiorthogonal matrices describe
the exact solutions of the close packing
problems.

The close packing problems also include
physical problems of microparticles distri-
bution in the cells of the force field, see
Fig. 2. An example is the positions of mag-
netized needles in the magnetic field. The
needles tend to hold not any position but a
compact one in terms of their orientation
along the force lines.

Geometrical, physical and abstract
mathematical models such as the octahedron
in confined spaces may have very little in
common between themselves. However, let
us remember that the Mendeleev table of
chemical elements is based on the principle
obeyed by the quasiorthogonal matrices as
well. In particular, the well-known period of
the table corresponds to the contiguity of
the forth order of so-called Hadamard ma-
trices — the quasiorthogonal matrices with
elements 1 and -1.

With increase of n order the extreme
matrices behave quite exotic. In particular,
if the order of the matrix is not a multiple
of 4, only a part of the elements reaches the
values of 1 and -1. The other elements are
not equal to the values as large in respect
of amplitude, but they are equal among
themselves. In other words, the extreme
quasiorthogonal matrices are few-level.

The maximum element m of the orthogo-
nal matrix associated with it, of the matrix
from which they are obtained by scaling, is
called their m-norm; m-norm parameter of
the extreme solutions is minimal. In fact,
|det(A) = 1/m™, the less m value is, the
higher determinant is. Consequently, the
minimax matrices, orthogonal matrices of
the preassigned order with minimal maxi-
mum modulus element, correspond to them.

With increase of the odd order n the
number of matrices levels increases line-
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Fig. 3. Diffraction of the Shechtman quasicrystal and of the ordinary crystal.

arly, resembling the bifurcation (splitting
of the levels) in chaotic problems. There is
also a critical order 13 in which the number
of levels increases explosively. It would
seem that with this special aspects of ex-
treme problems come to the end. But here
we reach the central point of our research.
As it is known, the extremums are of two
kinds — global (absolute) and local (rela-
tive) ones.

It turns out that the behavior of the
local extremum matrices, i.e., if we are not
interested in the higher determinant value,
but still in the extreme one, such subopti-
mal matrices of the determinant local maxi-
mum remain few-level. Moreover, these are
often two-level matrices with the elements
having values of 1 and —b.

Why is this so important?

Because the non-periodic Penrose tiling
described as a model of the Shechtman qua-
sicrystal, is the two-dimensional model.
Meanwhile, the physical problem is the
three-dimensional problem. Fig. 3 shows: on
the left — diffraction from the quasicrystal
along the symmetry axis of the fifth order,
and on the right — ordinary diffraction
from the crystal with the allowed symmetry
of the sixth order.

Let us now imagine that there is the qua-
siorthogonal matrix of order 10 with the
elements 1 and —b, b = 0.618 .. is one of the
numbers of the golden ratio. The matrices
of this class, firstly, have never been com-
pared with quasicrystals before; secondly,
its level value is hardly casual.

We have now before us a new ten-dimen-
sional abstract mathematical model of the
Shechtman quasicrystal, and it is important
to emphasize that this model generally
speaking is not static (as the Penrose
model). We will describe it more in details
below, but in the meantime we should note
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Fig. 4. The matrix search procedure.

that the matrices of the determinant local
maximum are natural products of recursive
optimization procedures, as well as the qua-
sicrystal is a product of "iterations” of the
similar, but the physical nature. In addition
to the identity (of some of the features, of
course) of the resulting objects there also
exists an identity in the behavior leading to
the procedures results.

Quasicrystals are products of the very
extreme conditions, they are obtained by
ultra-fast cooling.

The quasiorthogonal golden ratio matrix
with levels 1 and -b, b = 0.618... is also a
product of specific process. On order 10 the
determinant global maximum among qua-
siorthogonal matrices is observed in C-ma-
trix — a matrix with elements 1, -1 (and
zero on the diagonal). This matrix has noth-
ing to do with the golden ratio, and the
iteration procedure shown in Fig. 4 leads to
it. Any non-orthogonal matrix M (non-or-
thogonality is marked with an over-bar) is
orthogonalized, for example, with the
Gram-Schmidt algorithm. Furthermore,
since we are interested in increase of the
matrix determinant and it is inversely pro-
portional to degree of the maximum element
value, the matrix saturates (quite ordinary
nonlinear operation). Looped, this process
leads to the determinant extremum of the
quasiorthogonal matrix.
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In order the extremum was not global
but local, it is necessary to change the satu-
ration function, to increase dramatically,
for example, small elements, see Fig. 5. We
cannot say that this is what models heating
of the substance, but we can avoid a matrix
with zero elements with this. Hysteresis can
be added if required.

Thus, from the static model we arrived
at the dynamic model, the one that is stud-
ied by the theory of dynamic systems. The
matrix on return of this system is an at-
tractor, a condition which is obtained after
the dynamic process comes to the end. The
parameter leading to bifurcations, i.e. to
the increase of the number of levels, is
quite specific. This is the matrix order. In
large, this is a quadratic problem since we
are talking about optimizing the determi-
nant on the quadratic constraint equation.

The bottom of the saturation function
(area in the vicinity of 0) in the process of
the matrix search forms a kind of "numeric
fountains”, numbers flows rising up in the
matrix. The more intensive process is, the
more chances we have to obtain a model of
the physical phenomenon that Shechtman
obtained with the sharp freezing. And we
can "turn off” (freeze) our model at any
stage.

The Penrose model is two-dimensional,
static and well studied by now. These qua-
siorthogonal matrices and dynamic proc-
esses generating them are quite a different
story. These are new models, and we en-
courage studying them because the findings
can be made at the interdisciplinary conflu-
ence (the Penrose model was required for
understanding the physical result of
D.Shechtman).

It is quite obvious that except root of 5
leading to the golden ratio, in these prob-
lems associated with the matrices of differ-
ent orders, we can find any irrationalities
built on the roots of the prime numbers: 2,
3, 5, 7, etc. The Shechtman quasicrystal is
emphasized by belonging to the class of
problems in which the golden ratio is en-
countered. Other quasicrystals may be well
associated with other quasiorthogonal ma-
trices. Are the dynamic processes giving
rise to quasiorthogonal matrix, predicting?
It may be. After all, the matrix with the
level of 0.618... was found.

The number t (the golden ratio) is a rep-
resentative of the special class of irrational
numbers called algebraic integers. The lat-
ter are defined as the roots of the algebraic
equation
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Fig. 5. Different saturation functions.

X"+ a, x" 1+ +ay=0,

where all a, are integers.
The number T is determined as a solution

of the simplest quadratic equation 12 =1+ 1,
which is the self-similarity equation.
Writing it in the form of 1 =1/t + 1/12,
we see that it defines the division of a
unit length in two intervals with the
lengths of 1/t and 1/12 proportional ratio
of which is T= (1 + V5)/2=1.618. As for
the self-similarity, it is a kind of the sym-
metry characteristic of the system towards
the uniform extension of the system size
(scale invariance or scaling). The self-simi-
larity of quasicrystals (and crystals, natu-
rally) consists in the fact that there are
points in space towards which with increas-
ing extension to any other point of the lat-
tice by ¢ times, we get back to the lattice
point again. Quasicrystals with symmetry of
the 5th and the 10th order are self-similar
with regard to stretching by T times, i. e.,
the golden ratio matrix meets the icosahe-
dral quasicrystal. Presumably, in quasicrys-
tals with symmetry of the 8 and 12th
order the coefficients of the self-similarity
stretching are &= (1 +V2)/2 =1.207 and
W = (2 + V3)/2 = 1.866, respectively [3].

The numbers T, &, \ are irrational. The
matrices with irrational levels are relatively
new objects [10, 11]. To find them, an algo-
rithm of the "tapped” determinant de-
scribed above is used. Except the golden
ratio matrices of the 5" and the 10! or-
ders, there are other matrices of small or-
ders (for example, the Pythagoras matrix)
with other irrational numbers-levels corre-
sponding probably to the properties of the
existing quasicrystals line.

The golden ratio matrix G;, is a modular
two-level matrix with modules of the level
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a=1 and g = 618..., it is shown in Fig. 6.
Brightness of the cell reflects the value of
its element level in the range from 0 (white)
to 1 (black); as we can see, the levels are
discrete.

Golden ratio matrix aspect depends on
sorting of the rows and columns, there is a
bicyclic shape, but we prefer to present the
one in which the oscillations of element
signs of the matrix are more clearly visible.
Cyclic and bicyclic forms are comparable
with the models in which long-range order-
liness can be seen, as it takes place with the
lines of the magnetic field, whose distant
models cyclic matrices are (a combination of
chaos in the elements signs along the rows
and the rigid orderliness along "diagonals™).
The branch of the golden ratio matrices is
defined in the orders n = 10-2%. The follow-
ing construction logic is correct for them
(similar to the construction logic of the
Hadamard matrices): the matrix Gq¢ is the
start for the entire sequence of matrices
found by iterations represented in the form

Gnk Gnk .
G, = . The function value of the
G =Gy
level of these branch matrices is the con-
stant g = 1/7.

3. Conclusions

The field of application of mathematical
models in the form of compact in the pre-
cise mathematical sense basis is large [9].
For the ordered structures consisting of two
endlessly recurring units, the modular two-
level golden ratio matrix may be a model
reflecting the structure elements. We can
find here the same particularities of the
problem to be solved — dichotomy of the
elements related to the golden ratio. The
interest consists not so much in the state-
ment of this, surely, important dependence,
but in indication of the prospects: both the
materials and the matrices can have differ-
ent types, in addition to the well-known
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Fig. 6. Golden ratio matrix Gy.

ones, and the second ones may be involved
in predicting the existence and then in ana-
lyzing the first ones. The dynamic model is
new, it points to a useful link with the
theory of dynamical systems, linear opera-
tors, random attractors, etec. with their
mathematical tools so necessary in the de-
velopment of views on quasierystals.
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