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1. Introduction

At present one of the basic methods for investigating properties of semirestricted systems is the
density-functional theory (DFT) [1,2], which is inherently a one-particle approach. Nevertheless
modifications are possible (LDA, GGA and others). Therefore it is impossible to correctly allow
for collective phenomena in the DFT (i. e., lack of image forces, weak coupling and so on) [3,4].

The first attempt to construct the many-body theory of inhomogeneous electron gas was the
paper [5], where the set of five equations (GWA-approximation) was formulated. Conjunction of
GWA approach with DFT by way of taking into account many-body effects for correcting the
DFT imperfections was considered in [6]. However, this approach calls for numerous uncontrolled
simplifications at carrying out numerical calculations that appear in the absence of oscillations of
effective pair electron interaction potential.

The authors developed the approach for calculating Gibbs potential and distribution functi-
ons of inhomogeneous electron gas using the method of functional integration presented in the
works [7–9]. These characteristics are represented as expansions by effective potential of electron-
electron interaction that takes into account both availability of image forces and collective effects
(screening). This paper investigates an effective potential of electron-electron interaction and a
two-particle correlator “density-density”. Approximations are proposed for finding the correlator
“density-density” and the effective potential of electron-electron interaction in analytical form as
well as determinating their asymptotics. Robastness of these approximations is studied by com-
parison with results of numerical calculations.

2. The model

The semi-infinite jellium is a neutral system of dynamical electrons in a background of uniform
positive ionic charge density %+ restricted division plane (surface) z = −d:

%+(x, y, z) ≡ %+(z) = n θ(−d − z), (1)

where θ(t) is Heaviside function:

θ(t) =

{
1, t > 0,
0, t < 0,
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n is uniform electron density, n = (4πr3
S/3)−1, rS is the radius in atomic units of the sphere

which encloses one unit of electron charge; d > 0 is a parameter self-consistently defined from the
condition of electrical neutrality

+∞∫

−∞

dz

(
%(z) − %+(z)

)
= 0, (2)

where %(z) is an electron density.
We suppose that the ionic system forms a surface potential for electrons which does not allow

them to abandon the surface. This surface potential is modelled as follows:

V (z) =

{
∞, z > 0,
0, z < 0.

(3)

Such a model correctly represents a real situation from physical viewpoint and it admits analytical
solutions of the corresponding Schrödinger equation.

Eigenfunctions and eigenvalues of this potential are

ϕα(z) =
2√
L

sin(αz)θ(−z), εα =
~

2α2

2m
, α =

2πk

L
, k = 1, 2, . . . , (4)

where L determines the area of the change of the electron coordinate normal to the surface z ∈
[−L/2,+∞), and L → ∞ so that a thermodynamical boundary takes place. Allowing for this, the
surface potential V (z) is the following function:

Ψp,α(r, z) =
1√
S

eiprϕα(z), Eα(p) =
~

2(p2 + α2)

2m
, (5)

where ~p is a two-dimensional wave-vector of electron in the plane parallel to the surface.
In the secondary quantization representation constructed on the wave function (5), Hamiltonian

of the system is as follows:

H = H0 −
1

2S
N
∑

q

′

ν(q|0) +
1

2SL

∑

q

′
∑

k

νk(q)ρk(q)ρ−k(−q), (6)

where
H0 =

∑

p,α

Eα(p)a†
α(p)aα(p) (7)

is Hamiltonian of the system without reference to Coulomb interaction between electrons,

ν (q|z − z′) =
2πe2

q
e−q|z−z′|

is a two-dimensional Fourier-image of Coulomb interaction, q = (qx, qy), qx,y = 2π√
S
mx,y, mx,y =

0,±1,±2, . . . , νk(q) = 4πe2/(q2 + k2) is Fourier-image of Coulomb interaction, k = 2π
L n, n =

0,±1,±2, . . . , ρk(q) is a mixed Fourier-representation of local density of electrons:

ρk(q) =
∑

p,α,α′

〈α|e−ikz|α′〉a†
α(p)aα′(p − q), (8)

〈α| . . . |α′〉 =

+∞∫

−∞

dz ϕ∗
α(z) . . . ϕα(z),

a†
α(p), aα(p) are operators of electron creation and destruction in the state (p, α) such that the

standard commutation relationships take place
{
aα1

(p1), a
†
α2

(p2)
}

= δp1,p2
δα1,α2

; (9)
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N =
∑
p,α

a†
α(p)aα(p) is the operator of particle quantity; the prime on the sum in the formula

(6) denotes the absence of summands at q = 0 which is caused by the condition of electrical
neutrality (2).

3. Effective potential of electron-electron interaction

Effective potential of electron-electron interaction is a solution of the integral equation (see, for
example, [6,7])

g(q|z1, z2) = ν(q|z1 − z2) +
β

SL2

+∞∫

−∞

dz

+∞∫

−∞

dz′ν(q|z1 − z)M(q|z, z′)g(q|z′, z2), (10)

where
M(q|z, z′) =

∑

k′,k

Mk,k′(q,−q)eikz+ik′z′

, (11)

Mk,k′(q,−q) = i2〈Tρk(q)ρk′(−q)〉0 (12)

is a two-particle “density-density” correlator in the approach of ideal exchange in the case of low
temperatures (βµ � 1, where β is a reciprocal thermodynamical temperature, µ is a chemical
potential of electron),

〈· · ·〉0 =
Sp
(
e−β(H0−µN) · · ·

)

Sp e−β(H0−µN)
.

3.1. Calculation of M(q|z, z
′)

Consider the coordinate representation of the correlator

M(r, z, z′) =
1

S

∑

q

eiqr
M(q|z, z′) =

1

2π

∞∫

0

dq qJ0(qr)M(q|z, z′),

where J0(x) is a cylindrical Bessel function, r is the distance between electrons in the plane parallel
to the surface, M(q|z, z′) is the correlator in (q, z)-representation and according to [8] it takes the
following form

M(q|z, z′) =
L2

β

∑

α1,α2

Λα1,α2
(q)ϕ∗

α1
(z)ϕα2

(z)ϕ∗
α2

(z′)ϕα1
(z′), (13)

where
Λα1,α2

(q) =
∑

p

Πα1,α2
(p,q), (14)

Πα1,α2
(p,q) =

θ(µ − Eα1
(p)) − θ(µ − Eα2

(p − q))

Eα1
(p) − Eα2

(p − q))
(15)

is the polarization operator.
Taking the summation with respect to p in (14) we obtain the following expression for Λα1,α2

(q)

Λα1,α2
(q) =

2m

~2

S

2π

α2
1 − α2

2 − q2

q2

[
1 −

√
1 − 4q2

p2
F − α2

1

(α2
1 − α2

2 − q2)2
θ

(
1 − 4q2 p2

F − α2
1

(α2
1 − α2

2 − q2)2

)]

× θ(pF − α1), (16)

where pF is Fermi wave-vector, pF =
√

2mµ/~.
Consider some approximation allowing us to obtain analytical expressions for the two-particle

correlator M(q|z, z′).
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3.1.1. A mirror electron scattering approximation

Regard that the polarization operator is diagonal, i.e.

Λα1,α2
(q) ≈ Λα1,α1

(q). (17)

Physically it means that we take into account only the mirror electron scattering normal to the
surface. Then the correlator (13) takes the following form

M(q|z, z′) = −L2

β

2m

~2

S

2π

∑

α

|ϕα(z)|2δ(z − z′)


1 −

√
1 − 4

p2
F − α2

q2
θ

(
1 − 4

p2
F − α2

q2

)


×θ(pF − α). (18)

In the expression (18) we use the approach of “constant density” [7,8], i.e. we regard

|ϕα(z)|2 ≈ 2

L
θ(−z).

Then the summation over α in the expression (18) can be done analytically. And thus we get for
M(q|z, z′):

M(q|z, z′) = −SL2

β

2m

~2

1

π2

pF

2
L

(
q

2pF

)
θ(−z)δ(z − z′), (19)

where L(x) =
1

2
+

1 − x2

4x
ln

∣∣∣∣
1 + x

1 − x

∣∣∣∣ is Lindhard function [10].

3.1.2. Nonmirror electron scattering

Let the condition be satisfied

4q2 p2
F − α2

1

(q2 − α2
1 + α2

2)
2 � 1 (20)

that takes place in the case of large q (small distances between electrons on the surface) or in the
case of small q under the condition α2

1 − α2
2 6= 0. Then the correlator takes the following form

M(q|z, z′) = −SL2

β

2m

~2

1

π

∑

α1,α2

ϕ∗
α1

(z)ϕα2
(z)ϕ∗

α2
(z′)ϕα1

(z′)
p2
F − α2

1

q2 − α2
1 + α2

2

θ (pF − α1)

≈ −SL2

β
2m
~2

1
π

∑
α1

θ (pF − α1)
(
p2
F − α2

1

)
ϕ∗

α1
(z)ϕα1

(z′)
∑
α2

ϕ
α2

(z)ϕ∗

α2
(z′)

q2+α2

2

, (21)

where we have done the approximation q2 − α2
1 + α2

2 ≈ q2 + α2
2 using α1 ∈ [0, pF] and α2 ∈ [0,∞).

Taking the summation over α1 and α2 in the expression (21) we get

M(q|z, z′) = −SL2

β

2m

~2

1

π2

1

q

(
e−q|z−z′| − e−q|z+z′|

)
θ(−z)θ(−z′)

×
[

pF cos(pF(z+z′))
(z+z′)2 − pF cos(pF(z−z′))

(z−z′)2 + sin(pF(z−z′))
(z−z′)3 − sin(pF(z+z′))

(z+z′)3

]
. (22)

Carrying out the inverse Fourier-transform and allowing for [11]

∞∫

0

dq e−q|z−z′|J0(qr) =
1√

r2 + (z − z′)2
,
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we get the correlator in the coordinate representation

M(r, z, z′) = −SL2

β

m

~2

1

π3

(
1√

r2 + (z − z′)2
− 1√

r2 + (z + z′)2

)
θ(−z)θ(−z′)

×
[
pF

cos(pF(z+z′))
(z+z′)2 − pF

cos(pF(z−z′))
(z−z′)2 + sin(pF(z−z′))

(z−z′)3 − sin(pF(z+z′))
(z+z′)3

]
. (23)

The obtained expression (23) shows that the approximation (20) leads to a physically cor-
rect result, namely, the image forces and collective effects (the analogue of Friedel oscillations for
homogeneous electron gas) are taken into account.

In figure 1 and figure 2 the results of numerical calculations of the correlator are presented in
a dimensionless form:

M̃(r, z, z′) = M(r, z, z′)/
(
−SL2

β
m

~2a4

B

10−3
)
.

M̃
(r

,
z
,
z
′ )

M̃
(r

,
z
,
z
′ )

M̃
(r

,
z
,
z
′ )

M̃
(r

,
z
,
z
′ )

Figure 1. The correlator under r = 0 in such cases: a) z
′ = −20aB, b) z

′ = −15aB, c) z
′ = −10aB,

d) z
′ = −5aB. A solid line marks the data of numerical calculation of the formula (13) and a

dash line corresponds to the tabulated function (23).

In figure 1 the approximation (20) proposed herein leads to a qualitatively correct dependence
of the correlator on normal coordinates of electrons. However, there is disagreement with data of
numerical calculations, namely, lesser amplitudes of oscillations and stronger repulsion of electrons.
We can see in figure 2 that the approximation (20) does not allow for oscillations in the coordinate r.
Near the surface (see figure 2a) there is a good agreement of numerical calculation data with the
analytical expression (23) and at the removal from the surface (see figure 2b) there is observed a
major departure because the expression (23) gives too strong repulsion of electrons.

Figure 2c and figure 2d present the tabulated correlator (23) and data of its numerical calcula-
tions. Calculations show that the shorter the distance between the electrons and the surface is, the

751



P.P.Kostrobij, B.M.Markovych

lesser is the correlation between them. This is clear from the physical viewpoint since that electron
density near the surface is smaller in average.

M̃
(r

,
z
,
z
′ )

M̃
(r

,
z
,
z
′ )

M̃
(r

,
z
,
z
′ )

M̃
(r

,
z
,
z
′ )

Figure 2. The correlator in the following case:
(a) z = z

′ = −1aB, b) z = −2aB, z
′ = −3aB (A solid line marks data of numerical calculation

of the formula (13) and a dash line corresponds to the tabulated function (23));
c) the tabulated function (23) at z = z

′ = −1aB (a solid line, at z = z
′ = −5aB (a dash line),

at z = z
′ = −15aB (a point line);

d) data of numerical calculation of the formula (13) under z = z
′ = −1aB (a solid line),

z = z
′ = −5aB (a dash line), z = z

′ = −15aB (a point line), z = z
′ = −20aB (a dash-dotted line).

3.2. Calculation of the effective potential of electron-el ectron interaction

Consider the case corresponding only to mirror electron scattering in the two-particle “density-
density” correlator (19). Then equation (10) takes the form

g(q|z1, z2) =
2πe2

q
e−q|z1−z2| − κ

2
TF

2q
L

(
q

2pF

)
θ(−z1)

0∫

−∞

dz e−q|z1−z|g(q|z, z2), (24)

where κTF is an inverse Thomas-Fermi radius of screening, κ
2
TF = 4pF/(πaB).

Such type of equation is solved analytically (see, for example, [8]) and its solution is as follows

g(q|z1, z2) =





2πe2

Q

(
e−Q|z1−z2| + Q−q

Q+q eQ(z1+z2)
)

, z1 6 0, z2 6 0,

2πe2

q

(
e−q|z1−z2| − Q−q

Q+q e−q(z1+z2)
)

, z1 > 0, z2 > 0,

4πe2

Q+q eQz1−qz2 , z1 6 0, z2 > 0,

4πe2

Q+q eQz2−qz1 , z1 > 0, z2 6 0,

(25)
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where Q =

√
q2 + κ2

TFL
(

q
2pF

)
. If we pass to the limit q → 0 in Lindhard function L (q/(2pF)) then

the solution (25) agrees with the effective potential of electron interaction gTF(q|z1, z2) obtained
in the works [7,8] in Thomas-Fermi approximation.

Take the inverse Fourier transform of the effective potential of electron interaction

g(r, z1, z2) =
1

S

∑

q

eiqrg(q|z1, z2) =
1

2π

∞∫

0

dq qJ0(qr)g(q|z1, z2), (26)

where r is the distance between electrons. Asymptotics of the effective potential of electron-electron
interaction g(r, z1, z2) under r → ∞ is

g(r, z1, z2) ≈
√

π

4
e2 κ

2
TF√
pF

φ(2pF|z1, z2)
sin(2pFr − π/4)

r5/2
, (27)

where

φ(q|z1, z2) =
1

Q

[
−1 + Q|z1 − z2|

Q2
e−Q|z1−z2| +

1

Q

1

Q + q

(
q

Q
− Q − q

Q + q

+ (Q − q)(z1 + z2)

)
eQ(z1+z2)

]
, z1 6 0, z2 6 0, (28)

φ(q|z1, z2) = − 2

Q(Q + q)2
e−q(z1+z2), z1 > 0, z2 > 0, (29)

φ(q|z1, z2) = − 2

Q

1 − (Q + q)z1

(Q + q)2
eQz1−qz2 , z1 6 0, z2 > 0, (30)

φ(q|z1, z2) = − 2

Q

1 − (Q + q)z2

(Q + q)2
eQz2−qz1 , z1 > 0, z2 6 0. (31)

The found expression (27) agrees in form with the result of the work [12]. However, the expres-
sion for function φ has been obtained first.

The asymptotics of the effective potential (27) is presented in figure 3 as well as the results
of numerical calculation of the formula (26), where the expressions (25) and (25) in Thomas-
Fermi approximation are taken as an effective potential g(q|z1, z2). It is shown in figure 3 that in
Thomas-Fermi approximation the oscillations vanish but it corresponds to the qualitatively correct
behaviour of the effective potential. For z1, z2 � 0 (occurring far from the surface in jellium, see
figure 3b) the asymptotics presents well the potential behaviour under r > 5aB. The effective
potential for electrons occurring outside the near-surface area has a strongly repulsive character
(see figure 3c,d) and the oscillations vanish (see figure 3d). This is physically clear because electron
density is lesser than the one outside the near-surface area. So the collective effects are weak and
the electrons interact according to the law similar to the Coulomb law. This fact is represented in
figure 4, where Fourier-image of the effective potential (25) is illustrated as well as its Thomas-Fermi
approximation at r = 0.

In figure 4a and figure 4b the effective potential of electron-electron interaction is shown as
the function of the normal coordinate of one of electrons and another one occurs at z2 = −5aB

(figure 4a) and z2 = 0 (figure 4b). These figures show that the effective potential obtained by
numerical solution of the integral equation (10) oscillates (solid line) and the neglect of electron
scattering along the normal to the surface leads to the absence of the effective potential oscillations
along the normal while there are oscillations in the plane parallel to the surface (see figures 3a,b,d).

Figure 5 presents a comparison of the numerical solution of the integral equation (10), the results
of the work [6] and Coulomb potential. As follows from this figure, there is observed a qualitative
agreement between the results of our calculations and the results of the work [6]. However, the
effective potential in the work [6] decreases faster to zero and there is no oscillation. In our opinion,
the collective effects being insufficiently taken into account are responsible for this situation.

All the calculations in the paper have been made for rS = 2aB.
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Figure 3. The effective potential of electron interaction g(r, z1, z2) in such cases:
a) z1 = z2 = −0.2aB, b) z1 = z2 = −5aB (a solid line marks the asymptotic g(r, z1, z2) (27), a
dash line corresponds to Fourier-image of the function (25), a dash-dotted line marks Fourier-
image of the effective potential (25) in the Thomas-Fermi approximation);
c) Fourier-image of the effective potential (25) in the Thomas-Fermi approximation at z1 = z2 =
0 (a solid line), z1 = z2 = 1aB (a dash line), z1 = z2 = −10aB (a dash-dotted line);
d) Fourier-image of the effective potential (25) at z1 = z2 = 0 ( a solid line), z1 = z2 = 1aB (a
dash line), z1 = z2 = −10aB (a dash-dotted-line).

Figure 4. The effective potential of electron interaction g(r, z1, z2) at r = 0 in such cases: a)
z2 = −5aB, b) z2 = 0 (a solid line marks the numerical solution of the integral equation (10), a
dash line corresponds to the effective potential (25)).
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Figure 5. A solid line marks the effective potential of electron interaction g(r = 0, z1, z2 = 0)
as a numerical solution of the integral equation (10), a dash line corresponds to the effective
potential of electron interaction g(r = 0, z1, z2 = 0) by the data of the work [6], a dash-dotted
line marks Coulomb potential.

4. Conclusion

In the work numerical calculations have been carried out for the two-particle “density-density”
correlator M and analytical approximating expressions have been proposed for M which agree well
with the results of numerical calculations.

The obtained analytical expressions allow us to investigate the asymptotic behaviour for both
M at large distances between electrons (r → ∞):

M(r, z, z′) ∼ sin(2pFr − π/4)

r5/2

and the effective potential of electron-electron interaction g:

g(r, z1, z2) ≈
√

π

4
e2 κ

2
TF√
pF

φ(2pF|z1, z2)
sin(2pFr − π/4)

r5/2
, r → ∞.

The obtained analytical expression for M in the case of the mirror electron scattering approx-
imation makes it possible to analytically solve the integral equation for the effective potential of
electron-electron interaction g taking into account both the effects of image forces and screening.

For the first time it is shown that the collective effects being correctly taken into account at
numerically solving the integral equation for the effective potential of electron-electron interac-
tion lead to the oscillations of the effective potential. It is shown that numerical results for g [6]
correspond to the mirror electron scattering approximation for g (25).
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Ефективний потенцiал мiжелектронної взаємодiї для
напiвобмеженого електронного газу

П.П.Костробiй, Б.М.Маркович

Нацiональний унiверситет “Львiвська полiтехнiка”, 79013 Львiв, вул. С. Бандери, 12

Отримано 31 сiчня 2006 р.

Розраховано ефективний потенцiал мiжелектронної взаємодiї та двочастинкову електронну коре-
ляцiйну функцiю “густина-густина” для напiвобмеженого металу в моделi “желе” та дослiджено їх

асимптотичнi поведiнки при великих вiддалях мiж електронами в площинi поверхнi.

Ключовi слова: напiвобмежена модель “желе”, електронна кореляцiйна функцiя “густина-густина”,
ефективний потенцiал парної мiжелектронної взаємодiї
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