
Condensed Matter Physics 2006, Vol. 9, No 3(47), pp. 459–471

On the response of a system with bound states of
particles to the perturbation by the external
electromagnetic field

Yu.V.Slyusarenko, A.G.Sotnikov

Akhiezer Institute for Theoretical Physics, NSC KIPT, 1 Akademicheskaya str., 61108 Kharkiv, Ukraine

Received March 15, 2006, in final form June 1, 2006

The response of the system, consisting of two types of opposite-charged fermions and their bound states
(hydrogen-like atoms), to the perturbation by the external electromagnetic field in low particle kinetic energies
region is studied. Investigations are based on using a new formulation of the second quantization method that
includes a capability of forming the particle bound states [1]. Expressions for Green functions that describe
the system response to the external electromagnetic field and take into account the presence of particle
bound states (atoms) are found. Macroscopic parameters of the system, such as conductivity, permittivity
and magnetic permeability in terms of these Green functions are found. As an example, the perturbation of
the ideal hydrogen-like plasma by the external electromagnetic field in low temperature region is considered.
Expressions for the values are found that describe the ideal gas of hydrogen-like atoms Bose-condensate
response to the external electromagnetic field.
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1. Introduction

In the process of describing a behavior of many-particle systems a class of problems appear,
that are concerned with the system response to the perturbing action of the external, in particular,
electromagnetic field. Widespread approach to solving such kind of problems is based on using the
Green functions formalism (see in that case e.g. [2]).

As well known, the most convenient method of describing physical processes in quantum many-
particle theory is the second quantization method. Thus, within the framework of the second
quantization it is the simplest to formulate an approach to a description of the system response
to the perturbation by the external field, that is based on Green functions. However, if we try to
realize such an approach, we can come across an essential difficulty, connected with the possible
occurrence of the particle bound states.

Really, the key role of the second quantization method consists in the introduction of creation
and annihilation operators of particles in a certain quantum state. The operators of physical quanti-
ties are constructed in terms of creation and annihilation operators. Such a description of quantum
many-particle systems implies the particles to be elementary (not consisting of other particles).
Moreover, it is absolutely accurate despite the possible existence of compound particles. Since
the interactions between particles may lead to the formation of bound states, the standard second
quantization method becomes too cumbersome. For this reason the construction of an approximate
quantum-mechanical theory for many-particle systems consisting of elementary particles and their
bound states represents a real problem. In this theory it is necessary to introduce the creation and
annihilation operators of bound states as the operators of elementary objects (not compound).
Moreover, it should preserve the required information concerning internal degrees of freedom for
the bound states.

Such an approach has been realized in [1]. In this work the possibility of constructing such a
theory is demonstrated for a system, that consists of two types of fermions, assuming that bound
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states (atoms or molecules) are formed by particles of two different types. The choice of such a model
is not dictated by the principal difficulties but rather by the desire to simplify the calculations and
obtain the visual results. Within the framework of this model a method of constructing the creation
and annihilation operators of the bound state as a compound object is given. The substantiation of
the conversion from the description of atoms as compound objects to elementary objects with the
ordinary creation and annihilation Bose-operators is given. Such substantiation is considered in
low-energy approximation in which the binding energy of a compound particle is much greater than
its kinetic energy. In terms of the creation and annihilation operators of fermions and bosons (as
elementary objects) a scheme for constructing the operators of physical quantities is formulated.
Explicit expressions for the operators of principal physical quantities, such as density and charge
density, momentum and current density, system Hamiltonian, are found. The Maxwell-Lorentz
system of equations is found, describing the interaction between electromagnetic field and matter,
that may also consist of neutral “atoms” (low-energy quantum electrodynamic equations).

In the present work we use this system of equations to study the response of the system with
bound states to the perturbation by the external electromagnetic field within the framework of
Green functions formalism. An essentially new issue in these considerations is the next circum-
stance. When we describe the system response to the perturbing action of the external electromag-
netic field the approximate formulation of the second quantization method proposed in [1] makes
it possible to take the neutral bound states into account in sufficiently simple way.

2. Quantum electrodynamic equations for the low-temperatu re hydrogen-
like plasma

The quantum-electrodynamic system studied, consisting of fermions of two different types and
their bound states, in low-energy region, in fact, can be considered as a low-temperature hydrogen-
like plasma. Before we turn to the description of such plasma response to the external electromag-
netic field, let us obtain the main equations that describe an evolution of this system. Taking into
account the interaction between radiation and matter the system’s Hamiltonian Ĥ(t), according
to [1], can be written as

Ĥ(t) = Ĥ0 + Ĥint + V̂ (t), Ĥ0 = Ĥf + Ĥp , (1)

where

Ĥf =
∑

k,λ

ωkĈ+
kλĈkλ (2)

is the Hamiltonian for free photons (ωk is the frequency of photon with wave number k, Ĉ+
kλ, Ĉkλ

are the creation and annihilation operators of photon with wave number k and polarization λ).

The value Ĥp in the equation (1) is the Hamiltonian for free particles (free fermions and their
bound states)

Ĥp =
∑2

j=1
1

2mj

∫
dx

∂χ̂+

j
(x)

∂x

∂χ̂j(x)
∂x

+
∑

α

∫
dX

{
1

2M
∂η̂+

α (X)
∂X

∂η̂α(X)
∂X

+ εαη̂+
α (X)η̂α(X)

}
, (3)

M = m1 + m2,

where χ̂+
j (x), χ̂j(x) (j = 1, 2) are the creation and annihilation operators of a free fermion of j

type and mass mj at the point x; η̂+
α (X), η̂α(X) are the creation and annihilation operators of

bound states of two different fermions (“hydrogen-like atoms”) with the quantum numbers α at
the point X; εα is the energy of an atom at the level with the quantum numbers α.

The Hamiltonian Ĥint in the equation (1) describes the interaction between particles

Ĥint = Ĥ1
int + Ĥ2

int + Ĥ3
int, (4)
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where

Ĥ1
int =

∫
dx1dx2dyϕ̂+(x2,y)ϕ̂(x2,y){(ν11(x1 − x2)

+ ν21(x1 − y))χ̂+
1 (x1)χ̂1(x1) + (ν22(x1 − y) + ν12(x1 − x2))χ̂

+
2 (x1)χ̂2(x1)}, (5)

Ĥ2
int =

1

2

∫
dx1dx2dy1dy2ϕ̂

+(x1,y1)ϕ̂
+(x2,y2)ϕ̂(x2,y2)ϕ̂(x1,y1){ν11(x1 − x2)

+ ν22(y1 − y2) + ν12(x1 − y2) + ν21(y1 − x2)}, (6)

Ĥ3
int =

1

2

∫
dx1dx2{ν11(x1 − x2)χ̂

+
1 (x1)χ̂

+
1 (x2)χ̂1(x2)χ̂1(x1)

+ ν22(x1 − x2)χ̂
+
2 (x1)χ̂

+
2 (x2)χ̂2(x2)χ̂2(x1)

+ 2ν12(x1 − x2)χ̂
+
1 (x1)χ̂

+
2 (x2)χ̂2(x2)χ̂1(x1)}. (7)

In equations (5)–(7) the operators ϕ̂+(x1,x2), ϕ̂(x1,x2) are related to the creation η̂+
α (X) and

annihilation operators η̂α(X) of atoms in quantum state α by expressions

ϕ̂+(x1,x2) =
∑

α ϕ∗
α(x)η̂+

α (X), ϕ̂(x1,x2) =
∑

α ϕα(x)η̂α(X),

x = x1 − x2, X = m1x1+m2x2

m1+m2
, (8)

where ϕα(x) is the wave function of the bound state and νij(x − y), i, j = 1, 2 is the potential
energy of Coulomb interaction

νij(x − y) =
eiej

|x − y| , (9)

(ei is the electric charge of a fermion of i type).

In this way, the Hamiltonian Ĥ1
int corresponds to scattering of particles of the first and second

types by bound states, the Hamiltonian Ĥ2
int corresponds to scattering of bound states by each

other, the Hamiltonian Ĥ3
int corresponds to scattering of particles of the first and second types by

particles of the same types.

And, finally, the operator V̂ (t) in (1) represents the Hamiltonian that describes the interaction
of particles with the electromagnetic field

V̂ (t) = −1

c

∫
dxÂ(x, t)Ĵ(x, t) − 1

2c2

∫
dxÂ

2
(x, t)

2∑
i=1

ei

mi
σ̂i(x) +

∫
dxϕ(e)(x, t)σ̂(x),

σ̂(x) =
∑2

i=1 σ̂i(x). (10)

In this expression we have taken into account an interaction of particles with the external electro-
magnetic field A(e)(x, t), ϕ(e)(x, t) (ϕ(e)(x, t) is the scalar potential of the external electromagnetic
field) and the quantum electromagnetic field, that is described by the potential â(x) (Coulomb’s
gauge):

Â(x, t) = â(x) + A(e)(x, t), (11)

where A(e)(x, t) is the vector potential of the external electromagnetic field and â(x) is the quantum
electromagnetic field operator, that is defined by the expression

â(x) =
∑

k

2∑

λ=1

(
2π

V ωk

)1/2 (
ekλĈkλeikx + h.c.

)
,

(V is the system volume, ekλ is the photon polarization vector).
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The charge density operators σ̂i(x) for particles of i type (see (10)) are connected with the
density operators ρ̂i(x) (see [1])

σ̂i(x) = eiρ̂i(x),

ρ̂1(x) = χ̂+
1 (x)χ̂1(x) +

∫
dy

∫
dYδ(x − Y − m2

M
y)ϕ̂+(y,Y)ϕ̂(y,Y),

ρ̂2(x) = χ̂+
2 (x)χ̂2(x) +

∫
dy

∫
dYδ(x − Y − m1

M
y)ϕ̂+(y,Y)ϕ̂(y,Y), (12)

and, as easy to see, in the equation (12) we have also taken into account a contribution that had
been made by charged particles, that are represented in the bound states (see (8)). The current

density operator Ĵ(x, t) in the formula (10) can be also expressed in terms of the creation and
annihilation operators

Ĵ(x, t) = −Â(x, t)

2∑

i=1

ei

mi
σ̂i(x) + ĵ(x), ĵ(x) =

2∑

i=1

ei

mi
π̂i(x), (13)

where the momentum density operators π̂i(x) are defined by expressions

π̂1(x) = − i

2

(
χ̂+

1 (x)
∂χ̂1(x)

∂x
− ∂χ̂+

1 (x)

∂x
χ̂1(x)

)
− i

2

∫
dy

∫
dYδ

(
x − Y − m2

M
y
)

×
[
ϕ̂+(y,Y)

∂ϕ̂(y,Y)

∂y
− ∂ϕ̂+(y,Y)

∂y
ϕ̂(y,Y)

+
m1

M

(
ϕ̂+(y,Y)

∂ϕ̂(y,Y)

∂Y
− ∂ϕ̂+(y,Y)

∂Y
ϕ̂(y,Y)

)]
,

π̂2(x) = − i

2

(
χ̂+

2 (x)
∂χ̂2(x)

∂x
− ∂χ̂+

2 (x)

∂x
χ̂2(x)

)
− i

2

∫
dy

∫
dYδ

(
x − Y +

m1

M
y
)

×
[
−ϕ̂+(y,Y)

∂ϕ̂(y,Y)

∂y
+

∂ϕ̂+(y,Y)

∂y
ϕ̂(y,Y)

+
m2

M

(
ϕ̂+(y,Y)

∂ϕ̂(y,Y)

∂Y
− ∂ϕ̂+(y,Y)

∂Y
ϕ̂(y,Y)

)]
. (14)

Using formulas (12)–(14) we can write the expressions for the current and charge density op-
erators in more suitable way:

σ̂(x) =
∑

a

σ̂a(x), ĵ(x) =
∑

a

ĵa(x), a = 0, 1, 2, (15)

where

σ̂i(x) = eiχ̂
+
i (x)χ̂i(x),

ĵi(x) = − iei

2mi

(
χ̂+

i (x)
∂χ̂i(x)

∂x
− ∂χ̂+

i (x)

∂x
χ̂i(x)

)
, i = 1, 2,

σ̂0(x) =

∫
dy

∫
dY

[
e1δ(x − Y − m2

M
y) + e2δ(x − Y − m1

M
y)

]
ϕ̂+(y,Y)ϕ̂(y,Y),

ĵ0(x) = − i

2

∫
dy

∫
dY

[
e1

m1
δ(x − Y − m2

M
y) − e2

m2
δ(x − Y − m1

M
y)

]

×
(

ϕ̂+(y,Y)
∂ϕ̂(y,Y)

∂y
− ∂ϕ̂+(y,Y)

∂y
ϕ̂(y,Y)

)

− i

2M

∫
dy

∫
dY

[
e1δ(x − Y − m2

M
y) + e2δ(x − Y − m1

M
y)

]

×
(

ϕ̂+(y,Y)
∂ϕ̂(y,Y)

∂Y
− ∂ϕ̂+(y,Y)

∂Y
ϕ̂(y,Y)

)
. (16)
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As it is easy to see, the operators σ̂0(x), ĵ0(x) in these expressions define the bound states contri-
bution to the charge and current densities.

In the momentum representation

χ̂i(x) =
1√
V

∑

p

eipxâip, χ̂+
i (x) =

1√
V

∑

p

e−ipxâ+
ip, i = 1, 2,

η̂α(x) =
1√
V

∑

p

eipxη̂α(p), η̂+
α (x) =

1√
V

∑

p

e−ipxη̂+
α (p)

expressions (16) according to (8) will have the next form:

σ̂i(x) =
ei

V

∑

p,p′

eix(p′−p)â+
ipâip′ ,

ĵi(x) =
ei

2miV

∑

p,p′

eix(p′−p)(p + p′)â+
ipâip′ ,

σ̂0(x) =
1

V

∑

p,p′

∑

α,β

eix(p′−p)σαβ(p − p′)η̂+
α (p)η̂β(p′),

ĵ0(x) =
1

V

∑

p,p′

∑

α,β

eix(p′−p)

(
(p + p′)

2M
σαβ(p − p′) + Iαβ(p − p′)

)
η̂+

α (p)η̂β(p′), (17)

where (see (8))

σαβ(k) =

∫
dyϕ∗

α(y)ϕβ(y)
[
e1 exp i

m2

M
ky + e2 exp (−i

m1

M
ky)

]
,

Iαβ(k) = − i

2

∫
dy

(
ϕ∗

α(y)
∂ϕβ(y)

∂y)
− ∂ϕ∗

α(y)

∂y)
ϕβ(y)

)[
e1

m1
exp i

m2

M
ky − e2

m2
exp (−i

m1

M
ky)

]
. (18)

It is significant to note, that the Hamiltonian for free particles Ĥp (see (1), (3)) in the momentum
representation can be written as

Ĥp = Ĥ1p + Ĥ2p + Ĥ0p,

Ĥip =
∑

p

εi(p)â+
ipâip, εi(p) =

p2

2mi
, i = 1, 2,

Ĥ0p =
∑

α

∑

p

εα(p)η̂α(p)+η̂α(p), εα(p) = εα +
p2

2M
, εα < 0, (19)

where εα is the energy of the atomic level with quantum numbers α, M is the bound state mass,
M = (m1 + m2).

The Maxwell equations for our system according to [1] can be written in the following form

∂Ĥ

∂t
= −crotÊ, divĤ = 0,

∂Ê

∂t
= −crotĤ − 4π(Ĵ + J(e)), divÊ = 4π(σ̂ + σ(e)), (20)

where operators σ̂, Ĵ are still defined by the expressions (10), (12), (13) and values σ(e), J(e) are

the extrinsic current and charge densities. The electric Ê and magnetic Ĥ field intensity operators
in terms of the scalar and vector potentials can be expressed as (see [2], [1] as well as equations
(10), (11))

Ĥ = rotÂ, Ê = −1

c

∂Â

∂t
− ∂

∂x

(
ϕ(e) +

∫
dx′ σ̂(x′)

|x − x′|

)
. (21)

Note that in deriving the electrodynamic equations we used the Coulomb’s gauge.
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3. The system response to the perturbation by the external el ectromagnetic
field and Green functions

In this section in order to study the system response to the perturbing action of the external
electromagnetic field we shall follow the principles that have been stated in [2]. Let us consider a
system that at some moment of time t is characterized by statistical operator ρ(t). Noting that the
Hamiltonian of interaction V̂ (t) is linear in respect to the external field and assuming that it is
small in comparison with the Hamiltonian Ĥ = Ĥ0+Ĥint (see (1)), we can develop the perturbation
theory over the week interaction. In accordance with [2] the mean value of an arbitrary quasilocal
operator â(x) in linear approach for such system can be written as

Spρ(t)â(x) = Spwâ(0) + aF (x, t),

aF (x, t) =

∫ ∞

−∞

dt′
∫

dx′G
(+)
aξi

(x − x′, t − t′)Fi(x
′, t′), (22)

where w is the Hibbs distribution operator

w = exp
{

Ω − β(Ĥ − µ1N̂1 − µ2N̂2)
}

, (23)

β = 1/T is the reciprocal temperature, N̂1, N̂2 are the number operators of all fermions of the first
and second type respectively (including fermions in bound states, see (12))

N̂1 =

∫
dxρ̂1(x), N̂2 =

∫
dxρ̂2(x) (24)

and µ1, µ2 are the chemical potentials of fermions of the first and second type. The thermodynamic
parameters β, µ1, µ2 can be found from the relations

SpwĤ = H, SpwN̂1 = N1, SpwN̂2 = N2, (25)

and the thermodynamic potential Ω dependence on thermodynamic parameters is defined by the
expression

Spw = 1.

In the formula (22) Fi(x, t) are the quantities, that define the external field and ξ̂i(x) are
quasilocal operators, related to the system (see also [2]); the summation convention is assumed for
the repeated index i.

And, finally, the quantity G
(+)
aξi

(x − x′, t − t′) in the expression (22) is the two-time retarded
Green function (note, that “tilde” over operators means that they are taken in the Heisenberg
representation)

G
(+)
aξi

(x − x′, t − t′) = −iθ(t − t′)Spw[˜̂a(x, t),
˜̂
ξi(x

′, t′)], (26)

where θ(t) is Heaviside function

θ(t) =

{
1, t > 0,

0, t < 0.

Going over to Fourier transforms of values aF , Fi

aF (x, t) =
1

(2π)4

∫
dkdωe−i(tω−kx)aF (k, ω),

Fi(x, t) =
1

(2π)4

∫
dkdωe−i(tω−kx)Fi(k, ω)

one obtains
aF (k, ω) = G

(+)
aξi

(k, ω)Fi(k, ω), (27)
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where

G
(+)
aξi

(k, ω) =

∫ ∞

−∞

dt

∫
dxei(tω−kx)G

(+)
aξi

(x, t). (28)

It is significant, that in terms of the Fourier transforms of the introduced quantities we can
express also the energy, transferred from field to matter. If we assume, that the field is acting only
a limited period of time, the total energy Q, received by matter, is given by the expression [2]

Q =
i

(2π)4

∫ ∞

−∞

dω

∫
dkωFi(−k,−ω)G

(+)
ξiξj

(k, ω)Fj(k, ω). (29)

Now we can apply these expressions to the study of the response of the system, consisting of two
types of oppositely charged fermions and their bound states. To make use of the Green function
method, that was described above (see (22)–(28)), it is more convenient to represent the system
Hamiltonian, that is defined by formulas (1)–(16), as

Ĥ(t) = Ĥ + V̂ (e)(t), Ĥ = Ĥ0 + Ĥint + V̂ , (30)

where Ĥ0 and Ĥint are given by the formulas (1)–(7), V̂ is defined by the expression (see also (10)–
(14))

V̂ = −1

c

∫
dxâ(x, t)̂j(x, t) − 1

2c2

∫
dxâ

2(x, t)

2∑

i=1

ei

mi
σ̂i(x), (31)

and the Hamiltonian V̂ (e)(t) describes the system interaction with the external electromagnetic
field

V̂ (e)(t) = −1

c

∫
dxA(e)(x, t)̂j(x) +

1

2c2

∫
dxA(e)(x, t)2

2∑

i=1

ei

mi
σ̂i(x) +

∫
dxϕ(e)(x, t)σ̂(x). (32)

To get the Maxwell equations for the electromagnetic field in a medium, it is necessary to
average the equations (20) with the system statistical operator containing the information both
about medium and electromagnetic field. To this end we shall define the mean values of the elec-
tromagnetic fields E(x, t), H(x, t), acting in the matter

E(x, t) = Spρ(t)Ê(x, t), H(x, t) = Spρ(t)Ĥ(x, t), (33)

as well as the induced charge and current averages (see (12)–(14))

J(x, t) = Spρ(t)Ĵ(x, t), σ(x, t) = Spρ(t)σ̂(x). (34)

The equations (20), averaged in accordance with the formulas (33)–(34), bring us to the Maxwell-
Lorentz equations for the average fields in the matter

∂H

∂t
= −crotE, divH = 0,

∂E

∂t
= −crotH − 4π(J + J(e)), divE = 4π(σ + σ(e)), (35)

where quantities σ(e), J(e) still represent the extrinsic charge and current densities.
The next problem is to find the charge σ(x, t) and current J(x, t) densities induced by the ex-

ternal field. Calculating these quantities under assumption of week interaction between the system
and the external field we shall use the equations (22)–(28), considering the potentials A(e)(x, t),

ϕ(e)(x, t) as Fi(x, t), and σ̂(x) or Ĵ(x, t) as a quasilocal operator â(x). As a result one gets

σ̃(x, t) =
∑

a

σa+

∞∫

−∞

dt′
∫

d3x′

[
−G

(+)

i (x − x′, t − t′)
1

c
A

(e)
i (x′, t′) + G(+)(x − x′, t − t′)ϕ(e)(x′, t′)

]
,

J̃k(x, t) = −1

c
A

(e)
k (x, t)

∑

a

ea

ma
σa +

∞∫

−∞

dt′
∫

d3x′

[
−G

(+)
kl (x − x′, t − t′)

1

c
A

(e)
l (x′, t′)

+G
(+)
k (x − x′, t − t′)ϕ(e)(x′, t′)

]
, (36)
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where σa = Spwσ̂a(0), a = 1, 2, 0 (see (17)), w is the Hibbs statistical operator (23). Let us
emphasize, that for quasineutral systems, where the number of fermions are equal (N1 = N2, see
(24)) and their absolute charge values are also equal (|e1| = |e2|)

∑
a

σa = 0.

The retarded charge and current Green functions, that are included in the expression (36), are
determined in accordance with the formula (26) (see also [2]):

G(+)(x, t) = −iθ(t)Spw[σ̂(x, t), σ̂(0)], G
(+)
k (x, t) = −iθ(t)Spw[ĵk(x, t), σ̂(0)],

G
(+)

k (x, t) = −iθ(t)Spw[σ̂(x, t), ĵk(0)], G
(+)
kl (x, t) = −iθ(t)Spw[ĵk(x, t), ĵl(0)]. (37)

As the charge and current density operators of particles of different types (see (17)) commute with
each other

[σ̂a, σ̂b] = [σ̂a, ĵb] = [̂ja, ĵb] = 0, a 6= b, a, b = 1, 2, 0,

then, according to the equations (15), (17), (37), the contribution of different types of particles to
Green functions will be additive

G(+)(x, t) =
∑

a

G(+)
a (x, t), G(+)

a (x, t) = −iθ(t)Spw[σ̂a(x, t), σ̂a(0)],

G
(+)

k (x, t) =
∑

a

G
(+)

ak (x, t), G
(+)

ak (x, t) = −iθ(t)Spw[σ̂a(x, t), ĵak(0)],

G
(+)
k (x, t) =

∑

a

G
(+)
ak (x, t), G

(+)
ak (x, t) = −iθ(t)Spw[ĵak(x, t), σ̂a(0)],

G
(+)
kl (x, t) =

∑

a

G
(+)
akl (x, t), G

(+)
akl (x, t) = −iθ(t)Spw[ĵak(x, t), ĵal(0)]. (38)

With the help of direct calculations, following the method [2], we can see, that also in the presence
of particle bound states the following correspondence between Green functions (37) takes place

G
(+)

k (x, t) = G
(+)
k (x, t),

∂G
(+)
i (x, t)

∂xi
+

∂G(+)(x, t)

∂t
= 0,

∂G
(+)
ki (x, t)

∂xk
+

∂G
(+)
i (x, t)

∂t
+

∑

a

ea

ma
σaδ(t)

∂

∂xi
δ(x) = 0. (39)

For the Green functions Fourier transforms (see (28)) these relations can be written as

G
(+)

k (k, ω) = G
(+)
k (k, ω), G

(+)
i (k, ω)ki − ωG(+)(k, ω) = 0,

G
(+)
ij (k, ω)kj − ωG

(+)
i (k, ω) + ki

∑
a

ea

ma
σa = 0. (40)

4. Green functions and macroscopic characteristics of the i deal
low-temperature hydrogen-like plasma

If we neglect all the interactions between particles in the investigated system, it can be con-
sidered as an ideal hydrogen-like low-temperature plasma (we note, that kinetic energy of parti-
cles should be small in comparison with the binding energy of compound particles). For an ideal
hydrogen-like plasma the Green functions, that was introduced earlier, can be calculated exactly.
To do this we should take into consideration, that neglecting the quantum fields presence, the
Hamiltonian Ĥ in the formula (30) should be interpreted as Ĥp, see (1), (3), (19). Taking into ac-
count this fact the Heisenberg representation of charge and current density operators, that appear
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in the equations (37) for the Green functions, is defined by expressions:

σ̂i(x, t) =
ei

V

∑

p,p′

e−ix(p−p′)e−it(εi(p)−εi(p
′))â+

ipâip′ ,

ĵi(x, t) =
ei

2miV

∑

p,p′

e−ix(p−p′)e−it(εi(p)−εi(p
′))â+

ipâip′ , i = 1, 2,

σ̂0(x, t) =
1

V

∑

p,p′

∑

α,β

e−ix(p−p′)e−it(εα(p)−εβ(p′))σαβ(p − p′)η̂+
α (p)η̂β(p′),

ĵ0(x, t) =
1

V

∑

p,p′

∑

α,β

e−ix(p−p′)e−it(εα(p)−εβ(p′))

×
[
(p + p′)

2M
σαβ(p − p′) + Iαβ(p − p′)

]
η̂+

α (p)η̂β(p′), (41)

where quantities σαβ(k), Iαβ(k) are given by the formulas (18). If we substitute the operators
(41) in (38) and do some calculations, we shall come to the following expressions for the Fourier
transforms of scalar Green functions (see (28)):

G
(+)
1 (k, ω) =

e2
1

V

∑

p

f1(p − k) − f1(p)

ε1(p) − ε1(p − k) + ω + i0
,

G
(+)
2 (k, ω) =

e2
2

V

∑

p

f2(p − k) − f2(p)

ε2(p) − ε2(p − k) + ω + i0
,

G
(+)
0 (k, ω) =

1

V

∑

p

∑

α,β

σαβ(k)σβα(−k)
fα(p − k) − fβ(p)

εα(p) − εβ(p − k) + ω + i0
. (42)

Similarly, for the vector Green functions we have

G
(+)
1l (k, ω) =

e2
1

2m1V

∑

p

(2p − k)l
f1(p − k) − f1(p)

ε1(p) − ε1(p − k) + ω + i0
,

G
(+)
2l (k, ω) =

e2
2

2m2V

∑

p

(2p − k)l
f2(p − k) − f2(p)

ε2(p) − ε2(p − k) + ω + i0
,

G
(+)
0l (k, ω) =

1

V

∑

p

∑

α,β

[
(2p − k)

2M
σαβ(k) + Iαβ(k)

]

l

σβα(−k) [fα(p − k) − fβ(p)]

εα(p) − εβ(p − k) + ω + i0
. (43)

And, finally, the tensor Green functions for the investigated system is given by expressions:

G
(+)
1ls (k, ω) =

e2
1

4m2
1V

∑

p

(2p − k)l(2p − k)s
f1(p − k) − f1(p)

ε1(p) − ε1(p − k) + ω + i0
,

G
(+)
2ls (k, ω) =

e2
2

4m2
2V

∑

p

(2p − k)l(2p − k)s
f2(p − k) − f2(p)

ε2(p) − ε2(p − k) + ω + i0
,

G
(+)
0lj (k, ω) =

1

V

∑

p

∑

α,β

[
(2p − k)

2M
σαβ(k) + Iαβ(k)

]

l

×
[
(2p − k)

2M
σβα(−k) + Iβα(−k)

]

j

fα(p − k) − fβ(p)

εα(p) − εβ(p − k) + ω + i0
. (44)

In the formulas (42)–(44) we have introduced the distribution functions for free fermions of the
first f1(p) and second f2(p) type, as well as the distribution functions fα(p) for hydrogen-like
atoms (bound states) with the set of quantum numbers α

fi(p) = {exp[(εi(p) − µi)/T ] + 1}−1, fα(p) = {exp[(εα(p) − µα)/T ] − 1}−1 (45)
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in accordance with the relations

Spwâ+
ipâip′ = δp,p′fi(p), i = 1, 2, Spwη̂+

α (p)η̂β(p′) = δα,βδp,p′fα(p). (46)

The particle energies ε1,2(p), εα(p) in formulas (42)–(45) are given by the expressions (19), and
values δα,β , δp,p′ in (46) are the Kronecker symbols.

The particular feature of the obtained Green functions is that the contribution of bound states
in the processes under consideration is now taken into account.

The expressions for Green functions that have been found enable us to get an expression for
the matter macroscopic parameters, such as conductivity, permittivity and magnetic permeability.
To this end we shall also use the method described in [2].

In accordance with the formulas (35), (36) the next relation between Fourier transforms takes
place

J̃i(k, ω) = σ̄l(k, ω)ki
kE(e)(k, ω)

k2
+ σ̄t(k, ω)

[
[k,E(e)(k, ω)],k

]

k2
,

σ̃(k, ω) =
1

ω
σ̄l(k, ω)kE(e)(k, ω), (47)

where

σ̄l(k, ω) =
iω

k2
G(+)(k, ω),

σ̄t(k, ω) =
i

ω

[
∑

a

ea

ma
σa +

1

2

(
δij −

kikj

k2

)
G

(+)
ij (k, ω)

]
. (48)

It is clear from equations (47) that the quantities σ̄l and σ̄t, expressed in terms of Green functions
according to formula (48), define the longitudinal and transversal current density components. They
are usually interpreted as outer conductivity coefficients in contrast to inner (or true) longitudinal
σl or transversal σt conductivity coefficients, that will be defined below. Note that according to
(38) these coefficients are also additive quantities

σ̄l,t(k, ω) =
∑

a

σ̄l,t
a (k, ω).

In terms of the introduced outer conductivity coefficients σ̄l and σ̄t we can express the energy,
absorbed from the external field sources (see (29)):

Qωk =
−2

(2π)4
Im

1

ω
E∗(e)(k, ω)G+

ij(k, ω)E(e)(k, ω).

From this expression, in accordance with the formulas (47)–(48) one obtains

Qωk =
2

(2π)4
Re

{
σ̄l(k, ω)|E(e)

‖ (k, ω)|2 + σ̄t(k, ω)|E(e)
⊥ (k, ω)|2

}
. (49)

In terms of these quantities (σ̄l and σ̄t) the expressions for permittivity and magnetic perme-
ability can be also defined. The relation between the permittivity and outer conductivity (see [2])
is given by the formula:

ε =

(
1 +

4πσ̄l

iω

)−1

.

From this, according to the expression (48):

ε−1(k, ω) = 1 +
4π

k2
G(+)(k, ω). (50)
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It is more convenient to express the magnetic permeability in terms of inner conductivity coefficients
σl and σt

µ−1(k, ω) = 1 +
4πω

ic2k2
(σl − σt), (51)

that are connected with the outer conductivity coefficients σ̄l and σ̄t by the relations:

σl = εσ̄l, σt =
σ̄t

1 +
4πσ̄t

iω

(
1 − k2c2

ω2

)−1 .

In accordance with the expression (49), their relations with the Green functions (42), (44) take
the form:

σl(k, ω) =
iωG(+)(k, ω)

k2 + 4πG(+)(k, ω)
, σt(k, ω) =

k2c2 − ω2

iω

A(k, ω)

(ω2 − k2c2) + 4πA(k, ω)
,

A(k, ω) ≡
∑
a

ea

ma
σa +

1

2

(
δij −

kikj

k2

)
G

(+)
ij (k, ω) . (52)

So, we have defined the main macroscopic characteristics of the ideal hydrogen-like plasma in
low temperature region. These characteristics allow us to solve a number of applied problems for
our system. Let us demonstrate it on a few examples.

Using the developed theory it is not difficult to find the permittivity of an ideal gas of hydrogen-
like (alkali) atoms at low temperatures. According to the expressions (42), (50) in neglect of free
fermions contribution one gets

ε−1(k, ω) = 1 +
4π

k2

1

V

∑

p

∑

α,β

σαβ(k)σβα(−k)
fα(p − k) − fβ(p)

εα(p) − εβ(p − k) + ω + i0
. (53)

As is well known, at extremely low temperatures the Bose-Einstein condensate (BEC) of alkali
atoms can be formed. At the temperatures much lower than the critical point temperature T0

(T � T0, see e.g. [2]), the bound states distribution functions fα(p) are proportional to the
Dirac delta-function δ(p). Therefore, according to the expressions (19), (53), after integration over
momentum p the expression for permittivity of the studied gas in BEC state takes the form:

ε−1(k, ω) ≈ 1 +
(2s + 1)

2π2k2

∑

α,β

σαβ(k)σβα(−k)

×
[

να

∆εαβ + k2/2M + ω + i0
− νβ

∆εαβ − k2/2M + ω + i0

]
, T � T0, (54)

where s is the bound state spin, να is the density of condensed atoms in the quantum state α
and quantities σαβ(k) are still defined by the formula (18). As it is easy to see, in the expression
(54) at frequencies that are close to the energy interval ∆εαβ (∆εαβ ≡ εα − εβ) some peculiarities
appear. In fact, such a behavior can strongly reflect on the dispersion characteristics of the gas
studied. It appears to be a very interesting question, but we think this is the subject of a separate
investigation.

Based on the developed theory we can also find the energy, that is dissipated by a charged
particle when it passes through hydrogen-like plasma at low temperature (see in that case, e.g.
[2]). In the case of a small dissipation the particle movement can be considered as uniform. Thus,
the particle current density (the extrinsic current density in medium, see (20)) will be defined by
the formula

J(e)(x, t) = zevδ(x − vt),

where ze is the particle charge and v is the particle velocity. It is easy to see, that the Fourier
transform of the current density is given by the expression

J(e)(k, ω) = 2πzevδ(ω − kv). (55)
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Next we shall use the expression (49) for the energy, absorbed in the matter from external field
sources. In this expression, using (47), the Fourier transforms of the longitudinal and transversal
components of the external field can be expressed in terms of longitudinal and transversal compo-
nents of the current particle density (55). If we do the necessary calculations, we shall come to the
following expression for the energy dEkω, that was dissipated by the charged particle per unit time
in the frequency dω and the wave vector dk intervals, when it passes through the hydrogen-like
plasma:

dEkω = −qkωdωdk, qkω =
Qωk

T
= −

( ze

2π

)2

δ(ω − kv)ωIm

(
v2

c2
− 1

εµ

)(
ω2

c2
ε − k2

µ

)−1

, (56)

where T is the particle time of flight. To get the expression (56) it is necessary to use the formula

δ2(ω − kv) =
T

2π
δ(ω − kv).

The total dissipated particle energy E per unit length can be found by integrating the expression
(56) over ω and k

dE
dx

= −1

v

∫
dωd3kqkω . (57)

It is easy to see, that the main contribution in this integral comes from poles of the integrand
(see (56))

ε(k, ω) = 0,
ω2

c2
ε(k, ω)µ(k, ω) − k2 = 0. (58)

The formulas (56)–(58) are similar to the expressions, that are given in [2], however, in microscopical
approach they take account of particle bound states (atoms) to all processes that take place in
our system (see (50)–(52), (42)–(46)). Note also that the expressions (58) represent the dispersion
relations for free waves, that can spread in the system studied.

Thus, by using the microscopic approach, we have studied the linear response of the system with
bound states of particles to disturbing effect of an external electromagnetic field. Our approach
is based on novel formulation of the second quantization method in the presence of bound states
of particles [1]. The use of such an approach has enabled us to obtain the expressions for the
macroscopic characteristics of ideal hydrogen-like plasma at low temperatures taking into account
not only the contribution of free charged fermions but also their bound states – the atoms of
alkali metals. The expression for dielectric permittivity of an ideal gas of alkali atoms in the
presence of Bose-Einstein condensation has been also obtained. The dispersion equation for the
waves propagating in the system studied has been derived and the existence of resonance frequencies
has been found.
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Про вiдгук системи зi зв’язаними станами частинок на
збурення зовнiшнiм електромагнiтним полем

Ю.В.Слюсаренко, А.Г.Сотнiков

Iнститут теоретичної фiзики iм. О.I.Ахiєзера ННЦ ХФТI, вул. Академiчна, 1, 61108 Харкiв, Україна

Отримано 15 березня 2006 р., в остаточному виглядi – 1 червня 2006 р.

Дослiджується вiдгук системи, у якiй присутнi два типи фермiонiв з протилежними зарядами та їх

зв’язанi стани (атоми водневого типу), на збурення зовнiшнiм електромагнiтним полем у областi
малих кiнетичних енергiй частинок. Дослiдження базуються на використаннi нового формулювання

методу вторинного квантування, що включає можливiсть утворення зв’язаних станiв частинок [1].
Знайдено вирази для функцiй Грiна, що описують вiдгук системи на зовнiшнє електромагнiтне по-
ле та враховують присутнiсть зв’язаних станiв частинок (атомiв). За допомогою цих функцiй Грiна

знайдено макроскопiчнi параметри системи, такi як провiднiсть, дiелектрична та магнiтна прони-
кнiсть. Як приклад розглянуто збурення iдеальної водневоподiбної плазми зовнiшнiм електромагнi-
тним полем у низькотемпературному дiапазонi. Знайдено вирази для величин, що описують вiдгук

бозе-конденсату iдеального газу водневоподiбних атомiв на зовнiшнє електромагнiтне поле.

Ключовi слова: функцiї Грiна, зв’язанi стани, вiдгук системи, низькотемпературна водневоподiбна

плазма, провiднiсть, магнiтна проникнiсть

PACS: 05.30.d, 05.30.Jp, 03.75.Mn, 03.75.Hh
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