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A general theory of superconductivity is formulated within the thermodynamic Green function method for vari-
ous types of pairing mediated by phonons, spin fluctuations, and strong Coulomb correlations in the Hubbard
and ¢-J models. A rigorous Dyson equation for matrix Green functions is derived in terms of a self-energy as
a many-particle Green function. By applying the noncrossing approximation for the self-energy, a closed self-
consistent system of equations is obtained, similar to the conventional Eliashberg equations. A brief discus-
sion of superconductivity mediated by kinematic interaction with an estimation of a superconducting transition
temperature in the Hubbard model is given.
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1. Introduction

Thermodynamic, retarded and advanced Green functions (GFs) introduced by Bogoliubov and
Tyablikov in a seminal work [1] was used soon afterwards in the studies of superconductivity
within the Bardeen-Cooper-Schrieffer (BCS) model [2] as discussed by Zubarev in his famous
review on the double-time GF in the statistical physics [3]. At the same time, Zubarev formulated a
theory of superconductivity for an electron-phonon system based on the equation of motion method
for GFs [4]. The paper was submitted for publication only two months following the paper by
Eliashberg [5] where the temperature diagram technique was used in describing superconductivity
in electron-phonon systems. Zubarev formulation did not attract much attention in succeeding
years, while the Eliashberg theory was frequently used and his formulation became known as the
Eliashberg (or Migdal-Eliashberg) theory of superconductivity for electron-phonon systems. The
real advantage of the Eliashberg formulation is that it permits to consider a strong coupling limit by
using a skeleton diagram technique. In Zubarev formulation based on a subsequent differentiation
of GFs over the same time, it is impossible to employ the skeleton diagram technique. However,
by differentiating the GFs over two times, this problem can be easily solved and the Eliashberg
type equations can be formulated in a very simple and transparent way for any model of electron-
technique was used later in order to study superconductivity in the ¢-J model [7-9] and the Hubbard
model [10]. In those models written in terms of the Hubbard operators, the application of the
diagram technique is rather involved and demands a summation of an infinite set of diagrams (see,
e.g. [11]). A systematic investigation of superconductivity within the ¢-J model by the Hubbard
operator diagram technique was performed by Izymov et al. [12,13].

In the present paper we give a general formulation of a theory of superconductivity by ap-
plying the equation of motion method to the thermodynamic GFs. We consider several models
where superconducting pairing is mediated by electron-phonon and spin-fluctuation interactions,
or by a kinematic interaction originating from strong Coulomb correlations, as in the Hubbard
and t-J models. In our formulation the matrix self-energy operator, derived as a many-particle
GF, is calculated in the noncrossing approximation (NCA), or equivalently, the self-consistent
Born approximation (SCBA). In this approximation vertex corrections are neglected as in the
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Migdal-Eliashberg theory. For the electron-phonon system the vertex corrections are small in the
adiabatic approximation, as shown by Migdal. There are no small parameters for spin-fluctuation
or kinematic interactions and vertex correction may be important in obtaining quantitative re-
sults. However, in the NCA the self-energy is calculated self-consistently enabling us to consider a
strong coupling limit which plays an essential role both in renormalization of quasiparticle spec-
tra and in superconducting pairing. Thus, this approach can be considered as the first reasonable
approximation.

The paper is organized as follows. In the next section the Dyson equation is derived by using the
equation of motion method for a general fermion-boson type interaction. A self-consistent system
of equations for the Hubbard model and the ¢-J model are obtained in section 3 and an estimation
of superconducting T, is given in the weak coupling approximation. Conclusions are presented in
section 4.

2. Eliashberg equations for fermion-boson models

2.1. Dyson equation

Let us consider a general model for electron interaction with phonons and spin fluctuations:

HzZe( ap+ZWp, )aTap, (1)

»,p’

where p = (p,o) denotes the momentum p and the spin ¢ = +(1),—(]) of an electron with
the energy e(p) = e(p) — u measured from the chemical potential y. The matrix element of the
interaction has two contributions:

W(p’ )_600’ ph(p p)pp p’+‘/sf(p p Z Sp p/T (2)

The first term is electron scattering on lattice charge fluctuations pq (phonons) and the second is
scattering on spin fluctuations Sg where 72, is the Pauli matrices. The scalar product of spin
operators in (2) is convement to erte in the form ) S§7% = SZ7* 4+ SF 77 + S, 71, where
SF =52 +iS% and 7* = (1/2)(7" £i7Y) . In this notatlon the interaction with spin fluctuations

readb
sf—Z‘/sf { Tap/T—aTla,p/l)—‘rS a lap/T—&—S apTap,l} (3)

To discuss a singlet superconducting pairing within the model (1) we consider the matrix
thermodynamic GF in Zubarev’s notation [3]

“+oo w . ,
Gpuo(t — 1) = ((Wp o (D)W, (#))) = / & G o (w)e ), (4)

oo 2T

in terms of the Nambu operators:

a
\Ilp,cr = ( anJ > ’ \III)O' = (a’I),U a*pa’) ’ (5)
—p&
where & = —o¢. The Fourier transform of the matrix GF (4) can be written as

= (G0 a0 )= (B0 il ) ©

where Gp(w) = G (w) = ((apolal, ;)0 and Fp,(w) = GL2(w) = ({(ap,s|a—ps))w are the normal
and the anomalous components of the GF, respectively.

620



Thermodynamic Green functions in theory of superconductivity

By using equations for the Heisenberg operators ¥y, ,(t) we derive the first equation of motion
for the GF (4) in the form:

Gp,o(w) = Géo,z;(w) + GE)O,Zr(W) Z <<W(p7p/)\llp’,o" | \IJL,0>>M ) (7)
p/
where we introduced the zero-order GF
GO (w) = (why — (p)7s) " 8)

A conventional Pauli matrix representation for the (2 x 2) matrix GFs (6) will be used: 7 is the
unity matrix, 73 = 7%, 71 = 7%. By differentiating over the second time ¢’ the many-particle GF in
(7)) (W(p,p')¥pr 0 | \Illw(t’)» we get the second equation of motion for the GFs

5w <>>> 6w, ©
p//

w

<<W (p,p/) ‘I’p/’gl | \I/I),U>>w - <<W (pap/) \Ilpl,o"

where we assumed that there is no spin ordering and therefore an average value of the interaction
matrix vanishes: (W (p,p’)) = 0. By introducing the scattering matrix

Torl) = & (W00

p’,p"

T T
\ij”,o”W (p’p”)>> ) (10)

we can solve the system of equations (7), (9) in the form:
Gp’a(w) = GS),L(W) + GS),)U(W) Tp,a(w)GgJ,Zr(w) . (11)

The self-energy operator ¥, ,(w) is defined by a proper part of the scattering matrix (10) which
cannot be cut by the single-particle GF Ggf)g(w):

Tp,a(w) = Zp,a(w) + zp,a(w)ngzr(w)Tp,a(w)' (12)

This results in the Dyson equation for the matrix GF (6)

Gpr(@) = {60 ) ~ Tpo(@)} (13)

In comparison with the conventional diagram technique, where the self-energy in the Dyson equa-
tion is defined in terms of the full vertex and the full single-particle GF, in our approach the
self-energy is given by an exact many-particle GF

et () 1)~ (o o

w
p’.p"

which describes many-body inelastic scattering processes of electrons on charge and spin fluctua-
tions.

2.2. Non-crossing approximation

To obtain a closed system of equations for the GF (13) and the self-energy (14) one should
consider an approximation for the many-particle GF in (14). Let us consider the non-crossing
approximation (NCA) which is also known as the self-consistent Born approximation (SCBA) or
as the mode-coupling approximation (MCA). In the NCA, the propagation of the Fermi excitations
described by operators Wy, , and the Bose-like excitations described by operators pq and Sg in
the matrix element of the interaction (2) in the many-particle GF in (14) are assumed to be
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independent of each other. This is given by a decoupling of the corresponding operators in the
time-dependent correlation functions as follows

(WO 0], W05
Wp,p) ) | W (0, 07) (Wt o0 (1) | )
= G000 [Von(P = P)I2 (pppr (DI} ) (Wpr o)) | W, )

 Foron Vi@ =P Y (S (OIS ) Fal00))7al0'0) (Tpror(®) [ 0, ). (15)

1

To calculate the time-dependent correlation functions in (15) we use the spectral representation:

e dw ) 1
T _ —iwt | , T
(Wpr o (1) | qu/70> o /oo 14 e Bw ¢ { WIm <<\ij o \Ilp"”>>w+uj 7 16)

(Bq(t)|BL)

OO dw —iw 1
/OO e {W1m<<Bfol>>w+i6] , (17)

where for the Bose-like operators, Bq = pq, Sg, we use the retarded commutator GFs. Thus, we
obtain the following results for the self-energy (14) in the NCA:

+o0
Spo(w) = ;VZ / dz K (w, 2[p — p') [;ImGP/U(z)] , (18)
i~
Tpo(w) = zlvz / dzK ) (w, z[p — p) [—iIme/g(z)] : (19)
P
where we introduced the normal ¥, 5(w) = X1 (w) = =¥?%,/(—w) and the anomalous ®p, ,(w) =

22 (w) = (Ef)},(w))* components of the self-energy (14). The latter defines the frequency de-
pendent gap function. We emphasize that in the self-energy (18), (19) the spectral functions are
defined by the imaginary parts of the full electronic GF (13) and the corresponding bosonic GFs.
The kernel of the integral equations for the self-energy has the same form as in the Eliashberg
theory:

+oo
tanh(z/2T") 4 coth(Q2/2T)
K& = / dQ AH)(q,0). 20
(w,7l0) TE— (a,9) (20)
The electron-electron interaction mediated by charge (phonons) and by spin fluctuations for the
normal and the anomalous self-energy components is defined by the functions (see Appendix,

(74), (75))
(%) _ 2 § Z| Qz 2 l t
A (qw) = [Vie(a)l |:_7T1m<<‘s’q|‘9—q>>w:| £ [Vou(a)l [—Wlm(<0q|0q>>w : (21)

It is assumed that the dynamical spin susceptibility for the spin-fluctuation scattering in a para-
magnetic state is isotropic and therefore

XF(a,w) = 2% (q,w) = ~2((S5]5Z )

The derived equations for the self-energy (18), (19) are equivalent to the Eliashberg equations [5]
for phonon-mediated electron coupling and spin-fluctuation coupling considered within the tem-
perature diagram technique (see, e.g., [14] where both the spin-singlet and spin-triplet pairings
within the s-d model were studied for various types of magnetic ordering). In particular, to obtain
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only a single-phonon contribution to the self-energy one should consider a linear approximation
for the dynamical structure factor of the lattice vibrations S(q,w) = ({(pq|pl}))w in (21). Effects of
the long-range Coulomb interaction can be also considered within this method as described in [6].

The imaginary Matsubara frequency representation used in the temperature diagram technique
follows from the equation

tanh(z/27T') + coth(Q/2T) 1 1
2 (iw, — 2 — Q) __T%:iwm—z i(wn —wm) — Q7 (22)

where iw,, = irT(2n + 1). By using the spectral representation for the retarded GFs,

+oo
. 1 dz
Gpro(iwn,) = - / R ImGps(2), (23)

we obtain the imaginary frequency representation for the self-energy (18), (19):

211(12) 10.) N Z Gll (12) lwm A(i (p - pl7iwn - 1Wm)7 (24)

where (4), (=) in the interaction function (21) refer to the normal ¥)'(iw,) and anomalous
Z;Q(iwn) components of the self-energy, respectively.

A formal solution of the Dyson equation (13) for the matrix GF can be written in the conven-
tional Eliashberg form:

wZp(w)7o + (e(p) + &p(w)) 73 + Ppo (w) 71
(WZp(w))? = (e(p) + &(W))*— | Ppo(w) 27
where the odd and even in frequency w self-energy components determine the Eliashberg functions

1 1

W(l = Zp(w)) = 5[Bpe (@) = Tpo(~w)],  &(w) = 5[Epa (@) + Tpo (~w)]- (26)

Gp.o(w) = (25)

By writing the matrix self-energy (14) in terms of the Eliashberg functions
Tpo(w) = w(l = Zp(w)To + &p(w)Ts + Ppo (W) 71, (27)

we obtain an equivalent to (18), (19) self-consistent system of integral equations

+oo

w(l="Zps(w)) = %Z/ dw; KM (w,wi|p — p') [ihnm} (28)
+oo

oole) = 13 [ don KD lp - p) [~ L EAN] )

D, . (w) = NZ/ dw K (w, wi|p — p){ % m], (30)

where D(p,w) = (wZ,(w))? — (e(p) + &p(w))?— | Ppo(w) |*. The imaginary frequency represen-
tation for these equations readily follows from (24), (26). Solution of the system of equations was
considered in a number of papers and reviews (see, e.g., [15,16]).

Here we consider only a weak-coupling approximation (WCA) which results in the BCS-type
equation for the gap function (30). In WCA the kernel of integral equation (20) is evaluated close
to the Fermi energy for the energies |w,w;| < Qp < p as follows

1 w
K (w,wilq) ~ =5 tanh (1) A (). (31)
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where the interaction is defined by the static susceptibility

+o0
dQ s
A (q) = / o A (@) = 3Va(@) X (@ = [Vn(@)l® xpn(a). (32)
for spin-fluctuations, xZf(q) = —Re((55/9%4))w=0 > 0 and charge fluctuations x,n(q) =

—Re({pqlpl))w=0 > 0. In this approximation we have Z, = 1in (28) and &, ~ 0 in (29). Therefore,
for the quasiparticle spectrum in (30) we can write

1 1 1 2 2
{—WImD(Ew)] = 5%, [6(w—Ep) —6(w+ Ep)], Ep=4/e(p)*+ | Ppo |2, (33)

which results in the following equation for the gap function ®pe = Pp(0):
@ / E ’
2 |2z p,0 P
v 2 UVen(@)l® xpn(a) = 3 Var(a)* X3 (@)} om,, o (34)

p’—p a

The integration over p’ is restricted for the phonon contribution by |e(p) — e(p’)| < Qpn and for
the spin-fluctuation contribution by |e(p) —e(p)| < Q¢ where Q) are the maximal frequency
of phonon (spin-fluctuation) excitations. Though the spin-fluctuation in (34) gives a negative con-
tribution to the pairing interaction, nevertheless it can result in a singlet superconducting pairing
of the d-wave symmetry as we demonstrate in section 3.1.4.

3. Superconductivity in strongly correlated systems

In recent years, in connection with studies of high-temperature superconductivity in cuprates,
a pairing theory in strongly correlated systems was investigated by many authors (for a review
see [17]). As it becomes evident, the AFM spin fluctuations in cuprates play a major role in
superconducting pairing as originally has been proposed by Anderson [18]. Here we briefly discuss
a pairing theory developed within the GFs method for an effective p-d Hubbard model [10] and
the t-J model [9].

3.1. Effective Hubbard model
3.1.1. Dyson Equation

To discuss superconducting pairing in cuprates, instead of the original Hubbard model [19] we
start from a two-band p-d model for CuO; layer [20]. This can be reduced within the cell-cluster
perturbation theory [21-23] to an effective two-band Hubbard model with the lower Hubbard
subband (LHB) occupied by one-hole Cu d-like states and the upper Hubbard subband (UHB)
occupied by two-hole p-d singlet states as given below

H = El ZXO'O' T E ZX22 + Z {tllXO'OXOO' +t22X20X02 + 2O_t12(X20'X00' +H c. )}, (35)
i#£j,0

where X" = |in)(im| are the Hubbard operators (HOs) for the four states n,m = |0), |o), |2) =
|11}, 0 ==+1/2=(1,]),5 = —o. Here F1 = ¢4 — pp and E3 = 2E; + A where p is the chemical
potential and A = ¢, —¢q is the charge transfer energy (see [21]). The superscripts 2 and 1 refer to
the singlet and one-hole subbands, respectively. The hopping integrals are given by tfjﬁ = Kag 2ty
where ¢ is the p-d hybridization parameter and v;; are estimated as: v1 = v} jia,,, = —0.14,
Vo = Vj jta,+a, =~ —0.02. The coefficients K,g < 1, e.g., for the singlet subbands we have
tof ~ Ko92tr; ~ 0.14¢ and the bandwidth W = 8t.g. Since the ratio A/W ~ 2, the Hubbard
model (35) corresponds to the strong correlation limit. The HOs in (35) obey the completeness
relation

X4 xTp xH 4 x2 =1, (36)
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which rigorously preserves the constraint of no double occupancy of any quantum state |in) at
each lattice site 4. The HOs have the following multiplication rules X" g X7 o= 65, X% and obey
the commutation relations

[xe7, x77] =0 (66, X207 % 650X77) (37)
In (37) the upper sign stands for the case when both HOs are Fermi-like ones (as, e. g., X?7) and
the lower sign for the Bose-like ones, as the spin or charge density.

To discuss the superconducting pairing within the model Hamiltonian (35), we introduce the
four-component Nambu operators X, and X Za and define the 4 x 4 matrix GF

Fijo(w)
Gy )

(—w

i o i Gy (@)
Gt )= ((RaOILO)). Gunter= (477
where XL = (X?7 X7° X72 X97). Due to two-band character of the model (35), the normal G,
and anomalous Fijc, GF's are 2 x 2 matrices.

To calculate the GF (38) we use the equation of motion method as in section 2.1. Differentiation
with respect to time ¢ of the GF (38) and the use of the Fourier transform as in (6) result in the
following equation

wéijg(w) =0 X + <<ZAia|XJJ>>w ) (39)

where Z;, = [X,, H]. For a paramagnetic state, the matrix ¥ = ({ X5, X]_}) = 79 % ( %2 ; ) g
1

where x2 = (X22+ X77) =n/2 and x; = (X2 + X7%) = 1 — x2 depend only on the occupation
number of holes:

n=(N) = S(X77) + 2(X22). (40)

g

It is important to point out that contrary to the spin-fermion model (1), in the Hubbard model
there is no dynamical interaction of electrons with spin- or charge fluctuations. The nonfermionic
commutation relations (37) for the HOs generate these interactions as has been pointed out already
by Hubbard [19]. For instance, the equation of motion for the HO X¢? reads

7% = X7 H] = (B )X+ Y (B2, X7 - 2013 BE, X))
I#i,0'
= XD (8 X7 + 2013 X77) (41)
I#i
where Bﬁfo/ are Bose-like operators describing the number (charge) and spin fluctuations:
= 1
Bi202'o" = (Xi22+XiJJ) 50'/0'+ng60'/6' = <2Nz+szz) 6(7%7"'5;760’63 (42)
1
B}, = (2]\@» + Sf) Sgrg = 870015, ST =S (43)

To separate a mean-field type contribution to the quasiparticle energy in the equation of motion
(39), we employ a Mori-type projection technique by writing the operator Z;, as a sum of a

linear part and an irreducible part orthogonal to it, A

> which originates from the inelastic QP
scattering:

Zio’ = [Xioa H] = Z Eila'Xlo + ZA’L((IYT) (44)
l

The orthogonality condition ({Z, 0 x JTU}> = 0 provides the definition of the the frequency matrix:

10 )

Bijo = AijoX ™), Aije = <{[X10,H],X}U}> . (45)
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The frequency matrix (45) defines the zero-order GF in the generalized MFA. In the (q,w)-
representation, its expression is given by

(aw) = (i~ Bi@) % (46)

where 7y is the 4 x 4 unity matrix.

Differentiation of the many-particle GF (39) with respect to the second time ¢ and the use
of the same projection procedure as in (44) result in the Dyson equation for the GF (38). In
(g, w)-representation, the Dyson equation reads

1 ~

(Gotaw) = (aw)  ~Soaw) (47)

The self-energy operator (q,w) is defined by the proper part of the scattering matrix as described
in previous section that has no parts connected by the single-particle zero-order GF (46):

£ (qw) = <<Z<" |Z<“>T>> (Prov) 1. (48)

The equations (46)—(48) provide an exact representation for the GF (38). However, to calculate it
one has to use approximations for the self-energy matrix (48) which describes the finite lifetime
effects (inelastic scattering of electrons on spin and charge fluctuations).

3.1.2. Mean-Field Approximation

In the MFA the electronic spectrum and superconducting pairing are described by the zero-
order GF in (46). By applying the commutation relations for the HOs we get for the frequency
matrix (45):

bt a}z o Ai jo
Aijcr - ( *j ~ ! >a (49)
AJZG‘ — Wjiz

where w;;, and Aijg are 2 X 2 matrices for the normal and anomalous components, respectively.
The normal component determines quasiparticle spectra of the model in the normal state which
have been studied in detail in [21]. The anomalous component defines the gap functions for the
singlet and one-hole subbands, respectively, (i # j):

AP =20t 2 (XPN;), AL, =—20t7((2— N;)X}?), (50)

ijo ijo

where the number operator is N; = Y. X79+42X??. Using the definitions of the Fermi annihilation
operators: ¢;; = X7 + 20X7%, we can write the anomalous average in (50) as (¢;jc;itNj) =
<X?lXi12Nj> = (XP2N;) since other products of HOs vanish according to the multiplication rule:
XXM = 6,,X™ . Therefore the anomalous correlation functions describe the pairing at one
lattice site but in different Hubbard subbands.

The same anomalous correlation functions were obtained in MFA for the original Hubbard
model in [24-26]. To calculate the anomalous correlation function (c;jc¢;1N;) in [24,26] the Roth
procedure was applied based on a decoupling of the operators on the same lattice site in the
time-dependent correlation function: (c; (¢)|cit (t')N,;(t')) . However, the decoupling of the HOs on
the same lattice site is not unique (as has been really observed in [24,26]) and turns out to be
unreliable. To escape uncontrollable decoupling, in [25] kinematical restrictions imposed on the
correlation functions for the HOs were used which, however, also have not produced a unique
solution for superconducting equations.

To overcome this problem, we calculate the correlation function (X?N;) directly from the
equation of motion for the corresponding commutator GF L;;(t —t') = ((X?2(¢) | N;(¢'))) which
can be solved without any decoupling. This results in the following representation for the correlation
function at sites ¢ # j for the singlet subband in the case of hole doping [10]:

12

4t} _
(X22Nj) = Z 20112 (X2 XT2N;) ~ A” 20 (X7?X7?). (51)

m;ﬁz o
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The last equation is obtained in the two-site approximation, m = j, usually applied to the ¢-J
model. The identity for the HOs, X J& IN; =2X f 2 was used as well. This finally enables us to write
the gap function in (50) in the case of hole doping as follows

A =20t (X°N;) = Ji; (X2 X7?). (52)
The obtained gap equation determines the exchange pairing as in the ¢-J model with the exchange
energy Ji; = 4(t;?)?/A. In the case of electron doping, an analogous calculation for the anomalous
correlation function of the one-hole subband ((2 — N;)X}?) gives for the gap function Ajj, =
Jij (XP7 X O”) We may therefore conclude that the anomalous contributions to the zero-order GF
(46) can be described as conventional anomalous pairs in one of the two Hubbard subbands. Their
pairing in MFA is mediated by the exchange interaction which has been studied in the ¢-J model
(see, e.g., [7,9]).

3.1.3. Self-Energy
The self-energy matrix (48) can be written in the form

Bijolw) =X (@A*%{(;u - Aj&)u)))‘

ijo

(53)

where the 2 x 2 matrices M and ® denote the normal and anomalous contributions to the self-
energy, respectively. The self-energy (53) is calculated below in NCA as in section 2.2. This is given
by the decoupling of the corresponding operators in the time-dependent correlation functions for
lattice sites (1 #£ 1’,2 # 2') as follows

(Bu (t)X1(t) By () Xa2(t')) ~ (X1() X2 (t) (B (t) B (). (54)

Using the spectral representation for these correlation functions as in (16), (17), we get a closed

system of equations for the GF (38) and the self-energy components (53) which is similar to the
system of equation for the fermion-boson model in section 2.2.

Below we consider explicitly only the self-energy for the singlet subband (UHB) which is relevant

for hole-doped curates. The normal, M?2?(q,w), and anomalous, ®22(q,w), diagonal components
of the self-energy in the SCBA approximation read:

M?2(q,w NZ /dle (w,wi]k,q — k){ —Im [K3,G2 (k,w:) + K1,G2 (k, wl)]} , (55)

1 1
PP (qw) =) / dw; K (w, w1 [k, q — K) {Wlm (K5 F5? (k w1) = Ky Fy (k1)) } - (56)
k — 00

The kernel of the integral equations for the self-energy is defined by the equation similar to (20)

tanh(wy /2T) + coth(Q2/2T)

+oo
K®) k —k:/ Q ) (k,q -k, Q
(W,u)l‘ »q ) d 2(&)—&]1—9) )‘ ( ,q ) )v (57)
where the interaction function reads
1
Ak, q -k, Q) = [t |~ Tmx((a -k Q)| (58)

The kinematic interaction is defined by hopping matrix elements for the nearest, tv;, and the
second, t s, neighbors and is given by t(k) = 8¢ [v1y(k) + 127/ (k)], where v(k) = (1/2)(cos k, +
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cosk,) and 7/(k) = cosk, cosk, . The pairing interaction is mediated by the spin-charge fluctua-
tions which are determined by the corresponding dynamical susceptibilities

2a.0) = 00) 2 xela) =~ { (SalS-a))e & [(ONIN-). } (59)

They arise from the correlation functions (By/(t)Ba(t')) for the Bose-like operators (42), (43) in
(54). As we see, the obtained equations for the self-energy (55), (56) are quite similar for the spin-
fermion model (1) apart from the origin of the interaction: in the Hubbard model it originates from
the kinematical interaction proportional to the hopping matrix elements, while in the spin-fermion
model it has a dynamical character with independent coupling constants.

3.1.4. Solution of the gap equation in WCA

Let us consider the gap equation (56) for a hole doped case, n > 1, when the chemical potential
is in the singlet subband p ~ A. For energies |w,w;| close to the Fermi energy we can use the
weak coupling approximation (31) to calculate of the contribution from the same subband (the first
term) in (56). The contribution from another subband (the second term) is rather small since the
one-hole subband lies below the F'S at the energy of the order A > W. Neglecting this contribution
and taking into account the contribution from the exchange interaction in MFA (52) we arrive at
the following equation for the superconducting gap in the singlet subband:

% zk:[J(k —q) — Ak, q— k)| ;I)EQ((?) tanh E;§E{> 7 (60)

*(q) =

where the interaction A\(k,q — k) = |Ka2t(k)|> x(q — k,w = 0) > 0 is determined by the static
correlation function as in WCA (32) . The quasiparticle energy in the singlet band is given by
Ey(k) = [e(k)?+®2?%(k)?] where (k) is the quasiparticle energy in the normal state in the singlet
subband [21]. Similar considerations hold true for an electron doped system, n < 1, when the
chemical potential lies in the one-hole band, p ~ 0. In that case, the WCA equation for the gap
dll(q) is quite similar to (60).

To solve the gap equation (60) we consider only antiferromagnetic (AFM) spin-fluctuation
contribution which is modelled by the following static susceptibility:

Xo 1
= = —(cos gy + cosgqy), 61
where £ is the AFM correlation length. The susceptibility xs(q = Q) at the AFM wave-vector
Q = (7, 7) is equal to the constant yg = 3(2—n)/(2rwsC1) where ws < J is a characteristic spin-
fluctuation energy. The constant is not a free parameter but is determined from the normalization
condition: (1/N)37,(SiSs) = (3/4)(1 — [1 — n[) which gives C = (1/N) > {1+ &[1+~(aq)]} .

Let us estimate the superconducting transition temperature 7. by solving the gap equation (60)
for a model d-wave gap function ®??(q) = ¢4 (cos ¢, —cos g,) = p4n(q) in the standard logarithmic
approximation in the limit of weak coupling. By taking into account that the spin susceptibility
(61) peaks sharply at the AFM wave-vector Q for large £, we obtain the following equation for T,:

Xs(qv O)

1 e(k)
h
2e(l) MM T,

1= 37 70007 + s (4 () (k)] (62)
k

where \g ~ tgﬁ Jws . As we observe, the spin-fluctuation interaction s gives a positive contribution
to the d-wave gap. Now we should take into account that for the exchange interaction in (62)
mediated by the interband hopping with large energy transfer A > W the retardation effects
are negligible. This results in coupling of all electrons in a broad energy shell of the order of the
bandwidth W and high T, [8]:

T. =~ M(W - /’6) exp(—l/)\ex), (63)
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where Aex ~ J N(0) is an effective coupling constant for the exchange interaction J and the average
density N (0) of electronic states for doping é. The spin-fluctuation pairing in (62) is effective only
in a narrow region +w;g close to the Fermi energy and therefore produces a much lower T;.. By
taking into account both contributions we can write the following estimation for T:

1 ~ Aex

Tc = Ws exp( S\Sf)a )‘Sf )‘Sf + 1— )\ex hl(u/ws) 5
where Ags >~ A\; N(Er) is the coupling constant for the spin-fluctuation pairing. By taking for
estimation p = W/2 ~ 0.35 eV, ws, ~ J ~ 0.13 eV and a weak coupling: A\ ~ Aex = 0.2,
we get A ~ 0.2+ 0.25 = 045 and T, ~ 160 K, while only the spin-fluctuation pairing gives
TY ~ wsexp(—1/As) =~ 10 K. Results of a direct numerical solution of the gap equation (60) for
the superconducting transition temperature 7,(§) and for k-dependence of the gap function ®22(k)
are presented in [10] which qualitatively agree with experiments in cuprate superconductors.

(64)

3.2. t-J model

Now we compare the results for the original two-band p-d model for CuOs layer (35) with the
calculations for the ¢t-J in [9]. In that paper, a full self-consistent numerical solution for the normal
and anomalous GF in the Dyson equation was performed allowing for finite life-time effects caused
by the imaginary parts of the self-energy operators which were neglected in the above calculations
in WCA for the Hubbard model.

In the limit of strong correlations the interband hopping in the model (35) can be excluded by
perturbation theory which results in the effective ¢-J model

1 o -
_ o0 v 0o oo 00 Voo lododh Voo
Hi_y=—> t; XX — > X; + > Ty (X7TXTT - X7OXI7), (65)
i#j,0 io i#j,0
where only the lower Hubbard subband is considered with the hopping energy ¢;; = —t%jl . Exclusion

of the interband hopping results in the instantaneous exchange interaction J;; = 4 (t;7)*/A. The
superconducting pairing within the model (65) can be studied by considering the matrix GF for
the lower Hubbard subband in terms of the Nambu operators: ¥;, and ¥; = (X7° X99):

Gt — 1) = (T (DT (#))). GwAw»—Q<G”*”) GU”WO.

G () G (w) (66)

Here we introduced the Hubbard factor @ = 1 — n/2 which depends on the average number of
electrons n =) _(X77).

By applying the projection technique as described above we get the Dyson equation which can
be written in the Eliashberg notation similar to (25) as

wZ,(q,w)7o + (e(q) + & (q,w))T3 + Po(q, w)T1
(WZs(q,w))? = (e(q) + & (q,w))?— | Polq,w) |2

The electron dispersion £(q) in the normal state in the MFA is calculated within the projection tech-
nique as discussed above (for details see [9]). The frequency-dependent functions Z,(q,w)), &, (q,w)
are defined as in (28)—(30). The self-energy is calculated in the noncrossing approximation (54) as
in the Hubbard model:

Golqw) =Q (67)

+oo
1 1
2371(12) (q,w) = N E / dle(i)(w,wﬂk,q - k) {— ImG}rl(u)(kv wl):| . (68)
™
k —0o0

The kernel of the integral equation K (w,w;|k,q — k) is defined by the same equation (57) as
in the Hubbard model where the interaction function reads

1 2
Al = ) = 109~ (a - k)

LlT Im ) (q - k, Q)} . (69)
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The electron-electron interaction is caused by the same spin-charge dynamical susceptibility (59)
as in the Hubbard model. Taking into account the mean-field contribution to the gap mediated by
exchange interaction we obtain the following gap equation:

B(6,) = Aol@) + 5@, Adla) = g X Ja- RGN (70)
k

As we see, the equation for the self-energy (68) is similar to (56) obtained for the Hubbard model if
we disregard in the latter the small contribution from the second subband oc F1!(k,w;) as discussed
above. However, contrary to the gap equation (60) in the WCA for the Hubbard model, equation
(70) for the ¢-J model preserves the frequency-dependent self-energy contribution ¥1?(q,w) (68).
Moreover, in [9] for the ¢-J model a full self-consistent solution for the normal GF Gl!'(q,w) in
equation (67) and the corresponding self-energy ¥1!(q,w), equation (68), was performed.

Numerical calculations in [9] have demonstrated that quasiparticle-like peaks emerge only in
the vicinity of the Fermi level, while an anomalous, non Fermi-liquid behavior for the self-energy
ImX}'(q,w+1d) o w reveals close to the Fermi level. The occupation number N(q) = (1/Q)(X37)
reveals a small jump at the Fermi level which is generic for strongly correlated systems. The
superconducting 7, was calculated from a linearized gap equation which was solved by direct
diagonalization in (q,wp )-space:

) T _ . .
D, (q,iw,) = N Z Z{J(q —-k)+ Al )(k,q —k|iw, —iwn)}
k m

x G (K, 1w, ) GE (K, —iwn ) ®o (K, iwn) (71)

for the Matsubara frequencies. The doping dependence of superconducting T.(d) and @, (q,iwy,)

were calculated which unambiguously demonstrated the d-wave character of superconducting pairing
(for details see [9]). By comparing the T, (0) dependence for the Hubbard model with T/#* ~ 280 K,

and for the ¢-J model with T}"** ~ 180 K, we observe a strong reduction of T."** in the latter

model due to a large contribution from the Im¥!!(q,w) being taken into account.

4. Conclusions

In the present paper a theory of superconducting pairing within the general fermion-boson
model (1) with electron-phonon or electron-spin-fluctuation interactions, or within the Hubbard
model (35) and the ¢-J model (65) with strong-electron correlations is presented. By employing the
equation of motion method for the thermodynamic double-time GFs [1,3] with differentiation the
GFs over two times, ¢ and ¢/, we easily obtained the self-consistent system for the matrix GFs and
the self-energies in the noncrossing approximation. The latter is equivalent to the Migdal-Eliasberg
approximation and exactly reproduces the results of the diagram technique.

It is important to point out that the investigations of models with strong electron correlations
provide a microscopic theory for superconducting pairing mediated by the AFM exchange interac-
tion and spin-fluctuation scattering induced by the kinematic interaction, characteristic of systems
with strong correlations. These mechanisms of superconducting pairing are absent in the fermionic
models (for a discussion, see Anderson [27]) and are generic for cuprates. The singlet d,2_,2-wave
superconducting pairing was proved both for the original two-band p-d Hubbard model and for
the reduced effective one-band ¢-J model. Therefore, we believe that the proposed magnetic mech-
anism of superconducting pairing is a relevant mechanism of high-temperature superconductivity
in copper-oxide materials.
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Appendix

Let us consider more in detail the NCA for the normal and anomalous components of the
self-energy (14) which are given by the following many-particle GF's:

Spo(w) = > {((A,(p.P)IAL(P.P"))),, (72)
(I)pp(w) = - Z <<Aa(pap/)|A6—(7pv 7p//)>>w7 (73)

where

Aa(pap)_fsao ph(p p)pp p’apa+‘/bf(p p)
X {Spfp’ Up/o (60,T - 5071) + (S:)rip/ 60"1' + Sgip/(so"T)a/p/a-} .

For the time-dependent correlation function corresponding to the normal many-particle GF in (72)
we get the following result:

> (A (p. P )AL, P")) = Y Vin(P — D) Vor(P” — P)(pp—p' (1) apra(t) alyy ph_ )
p/’p// p p//
+ 3 Vet = ) Vet P = B) ({ Spr (1) pro (1) (Gt = 00.1) + (S (1) 8
p p/l

+So (t)éa,T)ap'a(t)} ) {S;,,,p 0l o (Bot = 0o) + (g ) + s;,_pégm)a;,,&»
=3 Wonlp ) (o 0] bra) (o9 (1) ppr-9) + 3 Wirlp =PI { {awro (0] 0l
<6ﬂ+6al>< o (1) 1S5 o) Hapo (8) [ alys) p
X (8.1 S (157 ) + G0t (S (D150 ) }

= > AVen(® = PP (opp (Dlopr—p) + 3[Vet(p = P)I” (S5 (D15 )} apro ()] @, (74)
p/
where we took into account that in a paramagnetic state (apf(,(t)|a;r),g> = (ap/,—,(t)|al,,6> and
(S3(BIS~q) = (S5 (1)) = 253057

For the anomalous time-dependent correlation function in (73) the NCA gives

> (Ao (P P) (1) A5 (=P, —P") = Y Vin(P — P') Veu(—p" +p)

p’.p"’ p’,p”

X (pp—p’ (1) apro(t)|a—prs p—pipr) + Z Ve(p — P) Vet (P” — p)
p’,p”

% <{S;*p/ (t) (o1 = 00.1) apro (t) + (S;lp, (t) 65,1 + Sp—p' (t)(scf,T)ap’&(t)} ‘
. {Sf),_p (80,1 = Go.1) a—prra + (Spr_pdoit + Spy 50=l)a7p”"}>

Z ph (p— P <ap/cr<t)|a7p/6> <pp*p’(t) |Pp’*p>
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+ Z [Vae(p — P')I* {{apro (t)] a—pro) (=601 — 00,1 ){Sp—p (1)|S5 _p)

T {apra (D)]apra) oy (SFpr (1S o) + 0015 (DS o))}

=D AIVen(® = P)Xpp—p (Dlppr—p) = 3[Vat (P = P')*(Sp_pr (DIS5—p) Hatpro (B)a—pra), (75)

where we took into account that for the anomalous correlation functions we have the relations:

(aps

s(t)]acpe) = (a—p5(t)|ape) = —(apo(t)|a—pz). Thus, a corresponding spin-fluctuation

contribution to the anomalous self-energy has a sign opposite to that in the normal self-energy.
Taking into account a negative sign in the definition of the anomalous self-energy (73), we obtain

the

effective interaction (21) for the normal and anomalous components with equal signs for the

spin-scattering contribution and opposite signs for charge-scattering contribution.
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TepmoaguHamiyHi GyHKLUIT FpiHa B TeopiT HAANPOBIAHOCTI

M.M.Mnakipa

O6’egHaHN IHCTUTYT SAepHUX gocnioxkeHb, 141980 Oy6Ha, Pocis

Otpumano 30 6epesHs 2006 p.

dopmynioeTbCs 3aranbHa TeOPIs HAAMNPOBIOHOCTI B pamMkax METOAY TEPMOAMHAMIYHUX dYHKLUI [piHa ans
pi3HMX TUNIB cnapioBaHb Yepe3 GOHOHU, CriHOBI GnyKTyauii Ta CUbHI KyNOHIBCbKI kKopensuii y moaeni
Xabb6appa Ta t-J mogeni. TouHe piBHAHHA [alicoHa ons matpuui dyHkuii MpiHa oTpMMaHo Yyepes BacHy
eHeprito sk 6arato4acTMHKOBY ¢GYHKLUiO MpiHa. 3acTOCOBYIOYN HENepexpecHe HabNMXEHHS ANs BNaCHOI
eHeprii, OTPMMaHO 3aMKHYTY CaMOy3roa)eHy CUCTEMY PiBHSIHb, NOAIOHY A0 3BMYalHMX PiBHSAHbL Eniaw-
6epra. KopoTko 06roBopeHo HaanpoBiAHICTb 3aBASKN KiIHEMATUYHIA B3aEMOZIT Ta OLHEHO TeMnepaTypy
nepexony y HaAnpoBigHWIA cTaH B Moaeni Xabbapaa.

KniouoBi cnoBa: ¢pyHkuii [piHa, Teopis HaANPOBIAHOCTI, CU/IbHI ESIEKTPOHHI Kopessiuii

PACS: 74.20.-z, 74.20.Mn, 74.72.-h
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