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A complete theory for investigation of time correlation functions is developed on the basis of the Bogolyubov
reduced description method proceeding from his functional hypothesis. The problem of convergence in the
theory of nonequilibrium processes and its relation to the non-analytic dependence of basic values of the
theory on a small parameter of the perturbation theory are discussed. A natural regularization of integral
equations of the theory is proposed. In the framework of a model of slow variables (hydrodynamics of a fluid,
kinetics of a gas) a generalized perturbation theory without divergencies is constructed corresponding to a
partial summation in a usual perturbation theory. Properties of Green functions are discussed on the basis of
resolvent formalism for the Liouville operator. A generalized Ernst and Dorfman theory is elaborated allowing
to study the peculiarities of correlation and Green functions and to solve the convergence problem in the
reduced description method.
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1. Introduction

The closely related Green functions and time correlation functions play an important role in
condensed matter physics. From another viewpoint they are integrated within the structure of the
theory of nonequilibrium processes. The problem of convergence of the obtained results is very
important in all applications of this theory. In the kinetic theory it can be solved based on the
few-body dynamics. However, in some cases the problem of convergence can be analyzed only based
on the many particle dynamics. In this paper a generalization of the Ernst and Dorfman approach
[1] (applied to the investigation of hydrodynamic problems by them) is discussed. In fact they
proposed a theory for investigating the peculiarities of correlation functions based on Zwanzig [2],
Mori [3] results and mode-mode coupling theory [4].

The principal method of modern theory of nonequilibrium processes is the Bogolyubov reduced
description method. This method was developed by Bogolyubov [5] based on the functional hy-
pothesis. This approach was widely elaborated by Peletminsky and coauthors (see [6]). The reduced
description idea was also realized by Zubarev within the framework of his method of nonequilib-
rium statistical operator (see, for example, [7]). The application of the theory to the investigation
of the Green and correlation functions was discussed in detail in the both approaches. However,
the problem of convergence of the theory objects calculated in a perturbation theory has been
investigated only to a small extent. Usually the divergence of a contribution of the perturbation
theory speaks of non-analytical dependence of the considered value on a small parameter. Ernst
and Dorfman demonstrated a fruitful approach to this problem in his studying the dispersion rela-
tion for a fluid [1]. In the present paper we propose a generalization of their approach based on the
complete analysis of asymptotics of time correlation functions. In fact this is a general theory of
investigation of peculiarities of correlation functions and corresponding Green functions. Therefore,
it permits to study the convergence problem in the nonequilibrium theory.

The paper plan is as follows.
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The second section of the paper discusses the reduced description method based on the functi-
onal hypothesis. Here a time reversible system is studied, for which an evolution can be formally
considered in both directions of time. This reflects a situation in the modern theory where fun-
damental mechanics is reversible. The observed nonequilibrium evolution in the future can be
considered as a consequence of broken symmetry with respect to time reversal.

The third section discusses the reduced description close to equilibrium with application to
investigating the asymptotics of time correlation functions. The investigation is based on the func-
tional hypothesis and can be considered as a method of the initial state variation.

The forth section discusses the problem of regularization of integral equations of the theory and
proposes a natural regularization procedure. It is more convenient than the Abel regularization
because it does not introduce non-physical parameters in the theory. The regularized integral
equation can be solved in a perturbation scheme that corresponds to a partial summation of the
usual perturbation theory. The reduced description of a system with slow variables is considered as
an important example. Within the framework of this model hydrodynamics of a fluid and kinetics
of a gas can be investigated.

The fifth section discusses a connection of Green functions and time correlation functions within
the framework of the formalism of the Liouville operator resolvent. A relation permitting to study
the Green function peculiarities based on the elaborated procedure of calculation of time correlation
function asymptotics is formulated.

The sixth section proposes the generalization of the Ernst and Dorfman approach which is
formulated as a theory for investigating the peculiarities of correlation and Green functions.

The seventh section discusses the reduced description of a system taking into account nonequi-
librium correlations as new independent reduced description parameters. A relation between the
phenomenological and microscopic approaches is discussed.

The eighth section constructs the generalized Ernst and Dorfman theory taking into account
binary correlations and predicts some corrections to their hydrodynamic theory.

In Conclusions we summarize the ways of investigating the peculiarities of correlation and Green
functions and taking into account the results in the reduced description method.

2. Reduced description of nonequilibrium states based on the functional
hypothesis

An arbitrary nonequilibrium state of a system is described by its nonequilibrium statistical
operator ρ(t) which satisfies the quantum Liouville equation

∂tρ(t) = Lρ(t), Lρ ≡ −
i

~
[Ĥ, ρ]. (1)

We shall discuss the properties of a time reversible system, for which it is possible to consider
nonphysical evolution in the past too. So, we assume that at times ± t� τ0 the system is described
by parameters

Spρ(t)η̂a −−−−→
± t�τ0

η(±)
a (t, ρ0), (ρ0 ≡ ρ(t = 0)), (2)

where η̂a are corresponding operators. The Bogolyubov functional hypothesis describes the struc-
ture of the statistical operator of the system at times ± t� τ0 and has a form

ρ(t)−−−−→
± t�τ0

ρ(±)(η(t, ρ0)), (3)

(the idea to consider the consequences of the time reversibility of a system was proposed in [8]). The
asymptotic statistical operator ρ(±)(η(t, ρ0)) is supposed to be an exact solution of the Liouville
equation

∂tρ
(±)(η(t, ρ0)) = Lρ(±)(η(t, ρ0)), (± t� τ0). (4)

Equations (2), (3) show that the formula

Spρ(±)(η(±)(t, ρ0))η̂a = η(±)(t, ρ0), (± t� τ0) (5)
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is true and with (4) leads to the following generalized kinetic equation

∂tη
(±)
a (t, ρ0) = L(±)

a (η(±)(t, ρ0)), L(±)
a ≡ Sp η̂aLρ

(±)(η), (± t� τ0). (6)

Reduced description parameters η
(±)
a (t, ρ0) as functions of t and ρ0 change in some domain A, in

which formula (5) gives
Spρ(±)(η)η̂a = ηa , (ηa ∈ A). (7)

So, we can consider here ηa as independent variables. Further, formulae (4), (5) lead to an equation
for the statistical operator ρ(±)

∑

a

∂ρ(±)(η)

∂ηa

L(±)
a (η) = Lρ(±)(η), (ηa ∈ A), (8)

which should be studied with equation (7) together. A remark that such a set of equations has two
solutions belongs to Bogolyubov [5]. According to [5], one needs a boundary condition to select a
proper solution. This condition should contain evolution in the corresponding direction of time.

It is important that a solution of the kinetic equation (6) can be continued for times ± t > 0. This

procedure introduces effective initial conditions η
(±)
a (0, ρ0) for kinetic equation (6) and, besides,

it makes equation (4) be valid for times ± t > 0 too. In fact, the effective initial conditions were
introduced by the Bogolyubov functional hypothesis. However, a detailed investigation of their
calculation problem was performed by Grad [9] in his investigation of the hydrodynamics based on
the Boltzmann equation.

For purposes of this paper it is enough to construct the mentioned boundary condition for the
set of equations (7), (8) based on the functional hypothesis (3) written in the form

etLρ0 −−−−→
± t�τ0

etLρ(±)(η(±)(0, ρ0)) (9)

(in fact, this idea was used in [6] to build hydrodynamics). Let us choose ρ0 in the form of a
quasi-equilibrium statistical operator ρq(Y )

ρ(Y ) = exp

{

Ω(Y ) −
∑

a

Yaη̂a

}

, Spρq(Y ) = 1 (10)

in order to construct the boundary condition based on the relation (9). Strictly speaking, let

ρ0 → ρq(Y
(±)(η)) where Y

(±)
a (η) is an inverse function for η

(±)
a (0, ρq(Y )) and the following relation

is valid
η(±)

a

(

0, ρq(Y
(±)(η))

)

= ηa. (11)

In this way, formula (9) takes a form

eτL

{

ρq(Y
(±)(η)) − ρ(±)(η)

}

−−−−→
± τ�τ0

0 (12)

and gives the necessary boundary condition to equations (7), (8). In some cases the following idea
is very useful: relations

f(τ)−−−−→
± τ�τ0

f (±), f(0) = f (±) −

±∞
∫

0

dτ ḟ(τ) (13)

are equivalent (here the second relation can be considered as an integral form of the first one).
The boundary condition (12) in the integral form and the Liouville equation (8) give an integral
equation for the statistical operator ρ(±)(η)

ρ(±)(η) = ρq(Y
(±)(η)) +

±∞
∫

0

dτeτL

{

Lρq(Y
(±)(η)) −

∑

a

∂ρ(±)(η)

∂ηa

L(±)
a (η)

}

. (14)

This equation together with (7) permits to calculate this operator ρ(±)(η) and auxiliary function

Y
(±)
a (η) for some models.
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3. Reduced description close to equilibrium

We restrict ourselves here to a model

η̂+
a = η̂a; ˆ̇ηa ≡ −Lη̂a ∼ λ, λ� 1;

ρq(
o

Y ) = w,
o

Ya ≡ Y (±)
a (

o
η);

o
ηa ≡ Spwη̂a, (15)

where w is an equilibrium statistical operator of the system,
o
ηa are equilibrium values of variables

ηa. Within the framework of this model, for example, hydrodynamics of a fluid and kinetics of a
gas can be considered.

For states which are close to equilibrium the statistical operator of the system and reduced
description parameters have a form

ρ0 = w + δρ0 +O(g2), η(±)
a (t, ρ0) =

o
ηa +δη(±)

a (t, δρ0) +O(g2). (16)

The value g is a small parameter and δρ0 ∼ g, δη
(±)
a (t, δρ0) ∼ g. The initial statistical operator

of the system ρ0 should satisfy the Bogolyubov principle of spatial correlation weakening (see, for
example, [6]). Therefore, the operator δρ0 can be chosen in the form [6]

δρ0 = wχ(w, Â), χ(ρ, Â) ≡

1
∫

0

dξρ−ξ
{

Â− SpρÂ
}

ρξ, (17)

where Â is an additive operator. In this situation (close to equilibrium) the formula

ρ(±)(η(±)(t, ρ0)) = w + δρ(±)(t) +O(g2), δρ(±)(t) ≡
∑

a

ρ(±)
a δη(±)

a (t, δρ0) (18)

with

ρ(±)(
o
η) = w, ρ(±)

a ≡
∂ρ(±)(η)

∂ηa

∣

∣

∣

∣

η=
o
η

(19)

is true. According to (6), the functions δη
(±)
a (t, δρ0) satisfy the equation

∂tδη
(±)
a (t, δρ0) =

∑

b

M
(±)
ab δη

(±)
b (t, δρ0), (±t > 0), (20)

where

M
(±)
ab = Sp ˆ̇ηaρ

(±)
b , Sp ρ(±)

a η̂b = δab. (21)

Now the functional hypothesis (3) and equation (20) give the following asymptotic relation

etLδρ0 −−−−→
± t�τ0

∑

a,b

ρ(±)
a etM(±)

ab δη
(±)
b (0, δρ0). (22)

In hydrodynamics a similar relation was obtained in [6] for the real evolution and in [10] for
evolution in the both directions of time. However, in [6,10] formula a kind of (22) was discussed
in the terms of variables connected with objects of the reduced description in a more complicated
way than above. For kinetics, a relation similar to (22) was discussed in [8].

Choosing here the statistical operator δρ0 in the form (17) and using definitions of quantum
correlation function and equilibrium time correlation function KAB(t)

(Â, B̂) = Sp Âwχ(w, B̂), KAB(t) = (Â, etLB̂), (23)
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we obtain a general formula for asymptotics of equilibrium time correlation functions

KAB(t)−−−−→
± t�τ0

K
(±)
AB (t), K

(±)
AB (t) ≡

∑

a,b

Sp Âρ(±)
a etM(±)

ab C
(±)
b (B̂). (24)

Here the value C
(±)
b (Â) is defined by the formula

C(±)
a (Â) = δη(±)

a (0, wχ(w, Â)) (25)

and is called the memory function hereafter (this function was introduced in [11]). Calculation of
these functions can be simplified based on the formula

C(±)
a (Â) =

∑

b

Sp Âρ
(∓)
b A

(∓)
ba , A

(±)
ab ≡ C(±)

a (η̂b). (26)

Applying the relation (24) to the identity

KAB(t) = KBA(−t) (27)

leads to the formula
K

(+)
AB (t) = K

(−)
BA (−t), (t > 0). (28)

This relation gives the identity
∑

a

Sp Âρ(+)
a C(+)

a (B̂) =
∑

a

Sp B̂ρ(−)
a C(−)

a (Â), (29)

from which the necessary expression (26) follows with the help of the second formula in (21). Note
that the idea of the above proof of the formula (26) belongs to Peletminsky [10].

The corresponding formula for correlation function of the reduced description parameters

Kab(t) ≡ (η̂a, e
tLη̂b), Kab(t)−−−−→

± t�τ0

K
(±)
ab (t), K

(±)
ab (t) ≡

∑

c

etM(±)

ac A
(±)
cb (30)

which follows from (21) and (26) is an important particular case of the relation (24). This for-
mula was discussed in [8] and was applied for defining kinetic coefficients in kinetics beyond the
perturbation theory.

An integral equation for the statistical operator ρ
(±)
a can be obtained from its definition (19)

and equation (14)

ρ(±)
a = ρq(±)

a +

±∞
∫

0

dτeτL

{

Lρq(±)
a −

∑

b

ρ
(±)
b M

(±)
ba

}

, (31)

where the quasi-equilibrium statistical operator is given by the expression

ρq(±)
a =

∑

b

wbA
(±)−1
ba , wa ≡ wχ(w, η̂a). (32)

This operator contains matrix A
(±)
ab introduced by formula (26) because the formula

∂Y
(±)
a (η)

∂ηb

∣

∣

∣

∣

∣

η=
o
η

= −A
(±)−1
ab (33)

is valid according to (11). Integral equation (31) should be solved together with relations (21)

with respect to ρ
(±)
a , A

(±)
ab and M

(±)
ab . Of course, equation (31) can be obtained directly from the

Liouville equation at a reduced description
∑

b

ρ
(±)
b M

(±)
ba = Lρ(±)

a (34)

and a boundary condition

eτL

{

ρq(±)
a − ρ(±)

a

}

−−−−→
± τ�τ0

0, (35)

which follows from (8) and (12).
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4. Perturbation theory with partial summation and regularization of integral
equations

A resolvent operator
R(z) = (z − L)−1, (36)

which enters the integral equations (14), (31) in the form of R(± 0) because of the identity

±∞
∫

0

dτeτLe−τz = R(z ± 0) (37)

plays an important role in our discussion. It is known that the operator R(± ε) has a peculiarity
at ε → 0 (see, for example, [12]) and R(± 0) exists only on the integrands in equations (14) and
(31). A guarantee of the existence of R(± 0) on a summand of the integrands and on a contribution
to the integrands obtained in a perturbation theory does not exist. The latter is possible because
basic values of the reduced description should not be regular functions of a small parameter of the
theory λ.

In this situation the Abel regularization of integral equations is widely used in order to make
an investigation possible. In this way, the equations

ρ(±)(ε) =

±∞
∫

0

dτe∓τεeτLK(ρ(±)) or ρ(±)(ε) = R(±ε)K(ρ(±)) (38)

are used instead of equations of the form

ρ(±) =

±∞
∫

0

dτeτLK(ρ(±)) or ρ(±) = R(±0)K(ρ(±)), (39)

(K(ρ) is a function) because
ρ(±) = lim

ε→+0
ρ(±)(ε). (40)

Note in this connection that in a general case

ρ(±) 6= lim
ε→+0

ρ
(±)
1 (ε), ρ

(±)
1 (ε) ≡

±∞
∫

0

dτe∓τεeτLK(ρ
(±)
1 (ε)), (41)

because this approach leads to the products of the form (a ε−1 + b ε + · · · )(m + n ε + · · · ) with
incorrect contribution an to ρ(±).

It is much more convenient to use a natural regularization of the discussed integral equation
(31) which corresponds to a partial summation of a series of the perturbation theory based on (15).
In order to construct the regularized integral equation, note that in the leading approximation in
λ, a solution of equation (31) is given by formulae

ρ(±)(0)
a =

∑

b

wbK
−1
ba , A

(±)(0)
ab = Kab, M

(±)(1)
ab =

o

Mab , (42)

where
Kab = (η̂a, η̂b),

o

Mab =
∑

c

(ˆ̇ηa, η̂c)K
−1
cb . (43)

Let us introduce right and left eigenvectors of the matrix
o

Mab

∑

b

o

Mabχnb = iωnχna,
∑

a

ψna

o

Mab = iωnψnb. (44)
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It is easy to prove that

ω∗
n = ωn, ψna =

∑

b

χ∗
nbK

−1
ba , ψσ(n)a = ψ∗

na, ωσ(n) = −ωn, K∗
ab = Kab, (45)

where σ(n) is a function defined on the numbers of eigenvectors. In this way, the following properties
of the correlation function (23)

(

Â, B̂
)

=
(

B̂, Â
)

,
(

Â, B̂
)∗

=
(

Â+, B̂+
)

,
(

LÂ, B̂
)

= −
(

Â,LB̂
)

(46)

are useful. Note that the introduction of the eigenvectors and eigenvalues with (44) is slightly
schematic because, for example, in hydrodynamics and kinetics these values depend on a wave
vector as a parameter.

A contribution
o

Mab in Mab describes a reversible evolution of the system because its eigenvalues
i ωn are imaginary. Therefore, the boundary condition (35) can be rewritten in the form

eτL
∑

b

{

ρ
q(±)
b − ρ

(±)
b

}

eτ
o

M
ba −−−−→

± τ�τ0

0,

(

eτ
o

M
ab ≡ ( eτ

o

M )ab

)

. (47)

The boundary condition (47) in the integral form and the Liouville equation (34) give a new integral

equation for the statistical operator ρ
(±)
a

ρ(±)
a = ρq(±)

a +

±∞
∫

0

dτeτL
∑

b

{

Lρ
q(±)
b −

∑

c

ρq(±)
c M

(±)
cb −

∑

c

(ρ(±)
c −ρq(±)

c )(M
(±)
cb −

o

M cb)

}

e−τ
o

M
ba , (48)

which should be solved together with relations (21) with respect to ρ
(±)
a , A

(±)
ab and M

(±)
ab . This

equation is a naturally regularized integral equation (31). The idea of this regularization and
equation (48) were proposed in [13] for hydrodynamics.

In the developed theory it is very convenient to choose linear combinations

η̂n =
∑

a

ψnaη̂a, η̂a =
∑

n

χnaη̂n (49)

instead of variables η̂a. For this case equations (48), (32) and (21) take the same form and can be
written using simple substitution a, b, c→ n, n′, n′′. However, additional simplifications are possible
because

η̂+
n = η̂σ(n), Knσ(n′) = δnn′ or (η̂n, η̂

+
n′) = δnn′ ;

o

Mnn′ = iωnδnn′ (50)

according to (44), (45), and (49). The last formula means that variables δη
(±)
n (t, δρ0) are the modes

of the system with respect to evolution with matrix
o

Mab. Using these results and the relation (37),
one can rewrite the integral equation (48) in the form

ρ(±)
n = ρq(±)

n +R(iωn ± 0)

{

Lρq(±)
n −

∑

n′

ρ
q(±)
n′ M

(±)
n′n −

∑

n′

(ρ
(±)
n′ − ρ

q(±)
n′ )(M

(±)
n′n − iωnδn′n)

}

, (51)

with a following expression for the quasi-equilibrium statistical operator

ρq(±)
n =

∑

n′

wn′A
(±)−1
n′n , wn ≡ wχ(w, η̂n) (52)

and additional equations

M
(±)
nn′ = Sp ˆ̇ηnρ

(±)
n′ , Sp η̂nρ

(±)
n′ = δnn′ . (53)
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Equation (51) is solvable in a generalized perturbation theory in λ, which is based on the model
(15) without expanding the resolvent operator R(iωn ± 0) in powers of ωn (despite ωn ∼ λ). It is
obvious that this theory corresponds to a partial summation within the framework of the simple
perturbation theory in λ.

The basic formula (24) for asymptotic of the time correlation functions leads now to the ex-
pressions

K
(±)
AB (t) =

∑

nn′

Sp Âρ(±)
n etM(±)

nn′ C
(±)
n′ (B̂), C(±)

n (Â) =
∑

n′

Sp Âρ
(∓)
n′ A

(∓)
n′n. (54)

5. Green functions and the reduced description method

Equilibrium time correlation functions (23) and Green functions

G
(±)
AB(t) ≡ ∓

i

~
θ(±t) Spw

[

Â(t), B̂
]

, Â(t) ≡ e−tLÂ (55)

play an important role in condensed matter theory. The Fourier transformation G
(±)
AB(ω) of the

Green function can be expressed through the corresponding correlation function by the formula

G
(±)
AB(ω) = iωβK̃AB(−iω ± 0) + β

(

Â, B̂
)

, G
(±)
AB(ω) ≡

+∞
∫

−∞

dtG
(±)
AB(t) eiωt, (56)

where β is reverse temperature of the considered equilibrium state of the system, K̃AB(z) is a
matrix element of the resolvent operator

K̃AB(z) =
(

Â, R(z)B̂
)

. (57)

Expression (56) follows from the relation (37), notation (17) and the identity

i

~

[

w, B̂(−t)
]

= −β∂t wχ
(

w, B̂(−t)
)

, (58)

(the idea of this transformation was used in [10] too).

An investigation of the peculiarities of the Green functions in this way is equivalent to studying
the correlation functions K̃AB(z ± 0). According to (23), (37), and (54), the latter can be done
using the relation

K̃AB(z ± 0) = S
(±)
AB (z) + K̃

(±)
AB (z), (59)

where

S
(±)
AB (z) =

±∞
∫

0

dt
{

KAB(t) −K
(±)
AB (t)

}

e−zt,

K̃
(±)
AB (z) ≡

∑

nn′

Sp Âρ(±)
n

(

z −M (±)
)−1

nn′
C

(±)
n′ (B̂). (60)

The asymptotic relation (24) shows that S
(±)
AB (z) is a regular function of z and all peculiarities of

K̃AB(z ± 0) are related to the second term in (59).
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6. Generalized Ernst and Dorfman approach
to the investigation of asymptotics of correlation functions

Let us calculate the basic values ρ
(±)
n , A

(±)
nn′ ,M

(±)
nn′ of the theory for the states which are close

to equilibrium in the generalized perturbation theory. Simple consideration gives

ρ(±)
n = w+

n − wχ
(

w,QR(iωn ± 0)Î+
n

)

+ . . . ,

A
(±)
nn′ = Knn′ −

(

η̂n, R(−iωn′ ± 0)În′

)

+ . . . ,

M
(±)
nn′ = iωnδnn′ −

(

În, R(iωn′ ± 0)Î+
n′

)

+ . . . , (61)

where the Mori projection operator P and values În

PÂ = SpwÂ+
∑

n

(

η̂n −
o
ηn

)

Sp Âw+
n , Q = 1 − P; În ≡ Qˆ̇ηn (62)

are supposed to be introduced. Definition (17) of the function χ(ρ, Â) was taken into account too.
The Mori projection operator has the following properties

(

PÂ
)+

= PÂ+,
(

PÂ, B̂
)

=
(

B̂,PÂ
)

, (63)

which were used in (61). In hydrodynamics În can be considered as operators related to dissipative

fluxes. Calculation of the memory function C
(±)
n (Â) according to (54), (61), and (45) gives

C(±)
n

(

Â
)

=
(

η̂n, Â
)

+
(

În, R (iωn ± 0) Â
)

+ · · · , (64)

where the relation
(

Â, R (z) B̂
)

= −
(

B̂, R (−z) Â
)

(65)

was applied.

So, in the considered approximation the asymptotics (54) of the equilibrium time correlation
function (24) is given by the formula

K
(±)
AB (t) =

∑

nn′

{(

Â, η̂+
n

)

−
(

QÂ, R (iωn ± 0) Î+
n

)}

etM(±)

nn′

{(

η̂n′ , B̂
)

+
(

În′ , R (iωn′ ± 0) B̂
)}

. (66)

Respectively, the function K̃AB(z) which defines the peculiarities of correlation functions (see (59),
(60)) and the Green functions (see (56)) takes the form

K̃
(±)
AB (z) =

∑

nn′

{(

Â, η̂+
n

)

−
(

QÂ, R (iωn ± 0) Î+
n

)}

×
[

z −M (±)
]−1

nn′

{(

η̂n′ , B̂
)

+
(

În′ , R (iωn′ ± 0) B̂
)}

. (67)

The next main task is to calculate the asymptotics of the obtained values at λ→ 0. A difficulty
of this calculation consists in a possibility for the correlation functions not to be regular functions
of λ. It is possible to start this investigation from matrix Mnn′ which defines the evolution of the
reduced description parameters δηn(t, δρ0). According to (57), in the considered approximation
(61) this matrix is expressed through the function

D
(±)
nn′,n′′ ≡ Dnn′(iωn′′ ± 0), Dnn′(z) ≡ K̃InI+

n′
(z). (68)
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Applying the relations (59) and (67) to this function gives the following set of equations for M
(±)
nn′

and D
(±)
nn′,n′′

D
(±)
n1n2,n′′ = S(±)

n1n2
(iωn′′) −

∑

nn′

D(±)
n1n,n

[

iωn′′ −M (±)
]−1

nn′
D

(±)
n′n2,n′ ,

M
(±)
nn′ = iωnδnn′ −D

(±)
nn′,n′ , (69)

where S
(±)
nn′ (z) ≡ S

(±)

InI+

n′

(z). These relations can be considered as generalized Ernst and Dorfman

equations [1]. This equation discussion needs the function S
(±)
n1n2(iωn3

) being estimated. In fact, in
the hydrodynamic investigation in [1] this function is regarded to have schematically the structure
ak2 +O(k3) and cannot effect the calculations.

Solving this equation with respect to D
(±)
nn′,n′′ permits to investigate the correlation function

(68) using the formula

Dn1n2
(z ± 0) = S(±)

n1n2
(z) −

∑

nn′

D(±)
n1n,n

[

z −M (±)
]−1

nn′
D

(±)
n′n2,n′ (70)

and to calculate asymptotics

K
(±)

In1
I+

n2

(t) = −
∑

nn′

D(±)
n1n,ne

t M(±)

nn′ D
(±)
n′n2,n′ , (71)

(see (59), (67), and (66)).
The investigation of the correlation function K̃AdI+

n
(z) ≡ EAn(z) (Âd ≡ QÂ) can be performed

based on the relations

EAn1
(z ± 0) = S

(±)

AdI+
n1

(z) +
∑

nn′

EAIn
(iωn ± 0)

(

z −M (±)
)−1

nn′
D

(±)
n′n1,n′ ,

EAn1
(iωn ± 0) = SAdI+

n1
(iωn) +

∑

nn′

EAn (iωn ± 0)
(

iωn −M (±)
)−1

nn′
D

(±)
n′n1,n′ (72)

following from (59). A correlation function FnA(z) ≡ K̃InA+d(z) can be studied analogously. Ac-
cording to (59) and (67), functions Dnn′(z), EAn(z), FnA(z) define the behavior of the general
correlation function K̃AB(z). This gives a complete information on the behavior of the Green
function (56).

7. Reduced description taking into account correlations
as independent variables

The fundamental idea of modern statistical mechanics is: consideration of the dynamics with
random initial conditions reproduces all nonequilibrium states based on this dynamics. For example,
the quantum (classical) Liouville equation describes all nonequilibrium states of a system and is
based on quantum (classical) mechanics with random initial conditions. This idea can be applied
fruitfully to equations of the reduced description method in order to take into account fluctuations
(see [14,15]). Hereafter we give a generalization of this approach.

We shall consider the reduced description of a system with parameters introduced in section 2.
In order to simplify the notation, the evolution in the physical direction of time is investigated and
superscript (+) is dropped in formulae. Our starting point is the solution of the Cauchy problem
ηa(t, η0) for kinetic equation (6)

∂tηa(t, η0) = La(η(t, η0)), ηa(t = 0, η0) ≡ ηa0. (73)
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Initial values of the reduced description parameters ηa0 are considered as random values. Therefore,
fluctuations (moments) of parameters ηa(t, η0) can be considered

fa1...as
(t) = ηa1

(t, η0) . . . ηas
(t, η0), fa(t) ≡ ηa(t). (74)

The investigation of the set of these variables is simplified by a generating functional

F(f(t), u) =
∞
∑

s=0

1

s!

∑

a1...as

ua1
. . . uas

fa1...as
(t) = exp{

∑

a

uaη(t, η0)}, (75)

where ua are auxiliary values. Formulae (73) and (75) give the following equation for the generating
functional

∂tF (f (t) , u) = F

(

f (t) , u+
∂

∂η

)

∑

a

uaLa (η)

∣

∣

∣

∣

∣

η=0

, (76)

(for the case of hydrodynamics this equation was derived in [14]). Instead of the moments of reduced
description parameters it is useful to introduce the centered moments (correlations) ga1...as

(t) by
the formulae

F(f(t), u) = exp

{

∑

a

uaηa(t) + G(g(t), u)

}

,

G(g(t), u) =

∞
∑

s=2

1

s!

∑

a1...as

ua1
. . . uas

ga1...as
(t). (77)

This permits to rewrite equation (76) in the form of equations for average reduced description
parameters ηa(t) and the generating functional G(g(t), u) for their correlations ga1...as

(t) [14]

∂tG(g(t), u) =
{

eG(g(t),u+ ∂
∂η

)e−G(g(t),u) − eG(g(t), ∂
∂η

)
}

∑

a

uaLa(η)

∣

∣

∣

∣

∣

η=η(t)

,

∂tηa(t) = eG(g(t), ∂
∂η

)La(η)
∣

∣

∣

η=η(t)
. (78)

According to (8), a statistical operator ρ(η(t, η0)) satisfies the Liouville equation

∂tρ(η(t, η0)) = Lρ(η(t, η0)), (t > 0) (79)

and its average value

ρ̃ (f (t)) ≡ ρ (η (t, η0)), ρ̃ (f (t)) = F

(

f (t) ,
∂

∂η

)

ρ (η)

∣

∣

∣

∣

η=0

≡ ρ (η (t) , g (t)) (80)

is a solution of this equation too

∂tρ(η(t), g(t)) = Lρ(η(t), g(t)), (t > 0), ρ(η, g) ≡ eG(g, ∂
∂η

)ρ(η). (81)

The statistical operator ρ(η(t), g(t)) satisfies the Liouville equation, depends on time through
variables ηa(t), ga1...as

(t), and, therefore, gives a reduced description of the system. Note that this
theory introduces correlations ga1...as

(t, ρ0) as additional ones to ηa(t, ρ0) independent reduced
description parameters.

Let us consider the relation of the built reduced description to the corresponding one based
on the functional hypothesis. Reduced description parameters can be expressed through statisti-
cal operator ρ(η(t), g(t)) by means of projection operator Pa1...as

which destroys correlations of

variables η̂
(n)
a ≡ (−L)

n
η̂a in the state described by the statistical operator ρ(η)

Pa...a′ Sp ρ(η)η̂(n)
a . . . η̂

(n′)
a′ = Sp ρ(η)η̂(n)

a · . . . · Sp ρ(η)η̂
(n′)
a′ . (82)
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This and the relations (7), (80) lead to the formula

Pa1...as
Sp ρ̃(f)η̂a1

. . . η̂as
= fa1...as

(83)

to be considered as a definition of reduced description parameters fa1...as
(t). So, parameters

ga1...as
(t) describe correlations which are absent in a state with statistical operator ρ(η(t, η0)).

Of course, there is a problem of non-commutativity of operators η̂a corresponding to reduced de-

scription parameters η
(±)
a (t). It is not important in applying this theory to hydrodynamics and

kinetics because operators η̂a commutate in expressions under the action of the introduced projec-
tion operator Pa1...as

. Therefore, we shall not pay attention to this and assume commutativity of
operators η̂a. Note also that a similar projection operator was introduced in [14] for hydrodynamics.

The obtained reduced description can be constructed based on the functional hypothesis

ρ(t)−−−−→
τ�τ0

ρ̃(f(t, ρ0)) (84)

with reduced description parameters fa1...as
(t) defined by the formula (83). This leads to the same

theory because in the considered model (15) the solution of the equation for the statistical operator
ρ̃(f)) is unique. Expression (81) for the statistical operator ρ(η, g) via the operator ρ(η) suggests the
following expression for a quasi-equilibrium statistical operator in the presence of nonequilibrium
correlations [14]

ρq(η, g) = eG(g, ∂
∂η

)ρq(Y (η)). (85)

This permits to argue that similar to (11) the relations

ga1...as
(0, ρq(η, g)) = ga1...as

, ηa(0, ρq(η, g)) = ηa (86)

are true. Here ηa(0, ρ0), ga1...as
(0, ρ0) are the effective initial conditions for the reduced description

parameters ηa(t, ρ0), ga1...as
(t, ρ0).

8. Reduced description taking into account binary correlations
and the generalized Ernst and Dorfman approach

It is assumed here that there are only binary correlations gab(t) while more complicated cor-
relations are absent. In this situation equations for the reduced description parameters take the
form

∂tgab(t) = eG2(g(t), ∂
∂η

)
∑

c

{

gac(t)
∂Lb(η)

∂ηc

+ gbc(t)
∂La(η)

∂ηc

}

∣

∣

∣

∣

∣

η=η(t)

,

∂tηa(t) = eG2(g(t), ∂
∂η

)La(η)
∣

∣

∣

η=η(t)
,

(

G2 (g, u) ≡
1

2

∑

ab

gabuaub

)

. (87)

According to (15), (19), and (83), there are no equilibrium correlations
o
gab = 0 because ρ̃(

o

f) = w

and w = ρ(
o
η) (w is equilibrium statistical operator). So, near the equilibrium

η(±)
a (t) =

o
ηa + δη(±)

a (t) +O(g2), g
(±)
ab (t) = δg

(±)
ab (t) +O(g2), (88)

where we return to the description of the evolution in two directions.
Close to equilibrium, statistical operator of the system (81) has the form

ρ(±)(η(±)(t), g(±)(t)) = w + δρ(±)(t) +O(g2),

δρ(±)(t) =
∑

a

ρ(±)
a δη(±)

a (t) +
∑

ab

ρ
(±)
ab δg

(±)
ab (t), (89)
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where operators ρ
(±)
a were introduced in (19) and ρ

(±)
ab is given by the formula

ρ
(±)
ab =

1

2

∂ρ(±)(η)

∂ηa∂ηb

∣

∣

∣

∣

η=
o
η

. (90)

Time equations for variables (88) can be written as follows

∂tδη
(±)
a (t) =

∑

b

M
(±)
ab δη

(±)
b (t) +

∑

bc

M
(±)
a,bcδg

(±)
ab (t),

∂tδg
(±)
ab (t) =

∑

c

{

M (±)
ac δg

(±)
cb (t) +M

(±)
bc δg(±)

ca (t)
}

, (91)

where the matrix M
(±)
ab was introduced in (21) and M

(±)
a,bc is defined by the relation

M
(±)
a,bc = Sp ˆ̇ηaρ

(±)
bc . (92)

The definition (83) of the reduced description parameters shows that

δη(±)
a (t) = Sp δρ(±)(t)η̂a, δg

(±)
ab (t) = Pab Sp δρ(±)(t)δη̂aδη̂b , (δη̂a ≡ η̂a −

o
ηa). (93)

Statistical operators ρ
(±)
a , ρ

(±)
ab have the properties

Pab Sp ρ(±)
c δη̂aδη̂b = 0, Sp ρ(±)

a η̂b = δab, Sp ρ
(±)
ab η̂c = 0,

Pab Sp ρ
(±)
cd δη̂aδη̂b =

1

2
(δacδbd + δbcδad) (94)

following from (19), (90) and the projection operator Pa...a′definition (82).
Functional hypothesis (84) near the equilibrium (according to (89) and (91)) leads to the

asymptotic relation

etLδρ0 −−−−→
± t�τ0

∑

ab

ρ(±)
a etM(±)

ab δη
(±)
b (0, δρ0) +

∑

ab a′b′

ρ
(±)
ab e

tM(±)

aa′ etM(±)

bb′ δg
(±)
a′b′(0, δρ0)

+
∑

abcda′b′

t
∫

0

dt′ρ(±)
a e

(t−t′)M(±)

ab M
(±)
b,cd e

t′M(±)

ca′ et′M(±)

db′ δg
(±)
a′b′(0, δρ0), (95)

which is similar to (22). Here δη
(±)
a (0, ρ0), δg

(±)
ab (0, ρ0) are effective initial conditions for parame-

ters δη
(±)
a (t, ρ0), δg

(±)
ab (t, ρ0). Choosing initial state δρ0 in the form (17), we obtain the following

expression for asymptotics of time correlation function KAB(t)

K
(±)
AB (t) =

∑

ab

Sp Âρ(±)
a etM(±)

ab C
(±)
b (B̂) +

∑

abcd

Sp Âρ
(±)
ab e

tM(±)

ac etM(±)

bd C
(±)
cd (B̂)

+
∑

abcd a′b′

t
∫

0

dt′ Sp Âρ(±)
a e

(t−t′)M(±)

ab M
(±)
b,cd e

t′M(±)

ca′ et′M(±)

db′ C
(±)
a′b′(B̂). (96)

Here, similar to (25), memory functions

C(±)
a (Â) = δη(±)

a (0, wχ(Â)), C
(±)
ab (Â) = δg

(±)
ab (0, wχ(Â)) (97)

are introduced. The first term in expression (96) coincides with (24), the second and the third ones
take binary correlations into account.

The formula (96) can be applied to the investigation of correlation and Green functions within
the framework of the generalized Ernst and Dorfman approach. In their theory only the second
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term in (96) was taken into account [1]. For the first time this term as a leading contribution
to (96) was proposed by Kadanoff and Swift [4] within the framework of a mode-mode coupling
theory. Therefore, our expression for asymptotics (96) can be considered as a generalization of
the mode-mode coupling theory. In hydrodynamics the second and the third terms from (96) were
taken into consideration in the generalized Ernst and Dorfman equation (69) in [16]. Solution of
the last equation was studied in [17] with an application to the calculation of kinetic coefficients
of a fluid.

Of course, all the values entering (96) can be calculated. Really, values ρ
(±)
a , C

(±)
a (Â), M

(±)
ab

were calculated in the generalized perturbation theory in sections 6 (see formulae (61) and (64)).

So, we have to calculate statistical operator ρ
(±)
ab , memory function C

(±)
ab (Â) and matrix M

(±)
a,bc.

Equation (14) and definition (90) give the following integral equation for ρ
(±)
ab

ρ
(±)
ab = ρ

q(±)
ab +

±∞
∫

0

dτeτL

{

Lρ
q(±)
ab −

∑

c

ρ(±)
c M

(±)
c,ab −

∑

c

ρ(±)
ac M

(±)
cb −

∑

c

ρ
(±)
bc M (±)

ca

}

, (98)

where the quasi-equilibrium statistical operator

ρ
q(±)
ab =

1

2
w

{

∑

c

χ(w, η̂c)B
(±)
c,ab +

∑

cd

χ(w, δη̂cδη̂d)A
(±)−1
ca A

(±)−1
db

}

(99)

is introduced (taking into account (33) and definition B
(±)
a,bc ≡

∂Y (±)
a (η)

∂ηb∂ηc

∣

∣

∣

η=
o
η
). Equation (98) should

be solved with respect to statistical operator ρ
(±)
ab and matrices B

(±)
a,bc, M

(±)
a,bc using (92) and the

third formula in (94). In order to construct the generalized perturbation theory for these values
the integral equation (98) has to be transformed (see transformation of (31) to (51)).

According to (96), the asymptotics of important time correlation functions are expressed
through matrices

A
(±)
ab,c = C

(±)
ab (η̂c), A

(±)
a,bc = C(±)

a (δη̂bδη̂c), A
(±)
ab,cd = C

(±)
ab (δη̂cδη̂d) (100)

similarly to (26). The relations (86) and formula (99) lead to the following expressions for these
matrices

A
(±)
ab,cd = A(±)

ac A
(±)
bd +A

(±)
ad A

(±)
bc , A

(±)
a,bc =

∑

da′b′

A
(±)
ad B

(±)
d,a′b′A

(±)
a′b A

(±)
b′c , A

(±)
ab,c = 0. (101)

The last formula shows that the matrix B
(±)
a,bc calculation can be also done based on our results

in section 6, where the matrix A
(±)
ab and memory function C

(±)
a (Â) were found (see formulae

(61), (64)).

The memory function C
(±)
ab (Â) for an arbitrary operator Â can be calculated taking into account

reversibility of the system. Formula (96) gives a relation

∑

a

Sp ρ(+)
a ÂC(+)

a (B̂)+
∑

ab

Sp ρ
(+)
ab ÂC

(+)
ab (B̂)=

∑

a

Sp ρ(−)
a B̂C(−)

a (Â)+
∑

ab

Sp ρ
(−)
ab B̂C

(−)
ab (Â), (102)

which is similar to (29). Substituting η̂c in this relation instead of Â and using formulae (94) and
(101) confirm the formula (26). Substituting δη̂cδη̂d in this relation instead of Â, applying the
operator Pcd, and using formulae (94) and (101) lead to an expression for the memory function of
correlations

C
(±)
ab (Â) = 2

∑

cd

Sp Âρ
(∓)
cd A(∓)

ca A
(∓)
db (103)

(in hydrodynamics this result was obtained in [11]).
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So, all the values in the expression (96) for asymptotics K
(±)
AB of the correlation functions can

be calculated based on the developed theory. The results take the simplest form in the case of
using variables η̂n, defined in (49) instead of η̂a. For example, in order to calculate corrections to
the Ernst and Dorfman theory for the correlation function Dnn′(z) (see (68)) it is enough to use
the leading order contribution to corresponding values

ρ
(±)
nn′ =

1

2
wχ(w,Qδη̂+

n δη̂
+
n′) + · · · , M

(±)
n,n′n′′ =

1

2
(În, δη̂

+
n′δη̂

+
n′′) + · · · ,

C
(±)
nn′(Â) = (δη̂nδη̂n′ ,QÂ) + · · · , A

(±)
n,n′n′′ = (δη̂n, δη̂

+
n′δη̂

+
n′′) + · · · (104)

(operators Q and În are defined in (62)).
For the first time the ideas considered in this section were developed in hydrodynamics in

[16,17].

9. Conclusions

Discussion of the Bogolyubov reduced description method based on the functional hypothesis
shows that it can be a ground for the theory of nonequilibrium processes. This theory permits to
develop a general approach to the investigation of time correlation and Green functions. Solution of
the problem of convergence of contributions of a perturbation theory to basic values of the theory
can be reduced to an investigation of peculiarities of correlation functions. The corresponding
approach is based on the generalized perturbation theory with partial summation of contributions
of the usual perturbation theory. Contributions of the generalized theory exist due to the procedure
of the natural regularization of an integral equation for the statistical operator of the system.
The generalized perturbation theory introduces correlation functions, which can be studied based
on the generalized Ernst and Dorfman theory proposed in the paper. This theory permits to
build asymptotic expansions of correlation functions in a small parameter and, therefore, of the
basic values of the reduced description. These expansions are non-analytic in general. In this way,
peculiarities of Green functions can be also studied because they are expressed through correlation
functions.

This work was supported by the State Foundation for Fundamental Research of Ukraine (project
No. 2.7/418).

References

1. Ernst M.H., Dorfman J.R. Nonanalytic dispersion relations.II. The general fluid, J.Stat.Phys., 1975,
12, No. 4, 311–359.

2. Zwanzig R. Ensemble method in the theory of irrevesibility, J. Chem.Phys., 1960, 33, No. 5, 1338–1341.
3. Mori H. Transport, collective motion and Brownian motion, Progr. Theor. Phys., 1965, 33, 423–433.
4. Kadanoff L.P., Swift J. Transport coefficients near the liquid-gas critical point, Phys. Rev., 1968, 166,

No. 1, 89–101.
5. Bogolyubov N.N. Problems of Dynamical Theory in Statistical Physics. Moscow-Leningrad: Gostekhi-

zdat, 1946, 119 (in Russian).
6. Akhiezer A.I., Peletmisky S.V. Methods of Statistical Physics. Moscow: Nauka, 1977, 386 (in Russian);

Oxford: Pergamon Press, 1981.
7. Zubarev D.N., Morozov V.G., Roepke G. Statistical Mechanics of Nonequilibrium Processes, Moscow:

Fizmatlit, 2002, 1, 431, 2, 296 (in Russian).
8. Kovalevsky M.Yu., Peletminsky S.V., Sokolovsky A.I. Nonequilibrium entropy and principle of symme-

try of kinetic coefficients, Theor. Mat. Fiz., 1977, 33, No. 3, 377–389 (in Russian).
9. Grad H. Asymptotic theory of the Boltzman equation, Phys. Fluids, 1963, 6, No. 2, 147–181.
10. Peletminsky S.V. Functional hypothesis and low frequency asymptotics of the Green functions. In:

Problems of Modern Theoretical Physics, Kiev: Naukova dumka, Ed. V.G. Bar’yakhtar, S.V. Peletmin-
sky, 154–167 (in Russian).

11. Sokolovsky A.I. Effective initial conditions for equations of fluctuation hydrodynamics, Dopovidi Nats.
Akad. Nauk Ukrainy, 1998, No. 5, 83–88 (in Russian).

429



A.I.Sokolovsky

12. Balescu R. Equilibrium and Nonequilibrium Statistical Mechanics, Moscow: Mir, 1978, 1, 406 , 2, 400
(in Russian), Wiley, New York, 1975.

13. Sokolovsky A.I. Equations of hydrodynamics close to equilibrium in the absence of long correlations,
Ukr. Fiz. Zhurn., 1992, 37, No. 10, 1528–1536 (in Russian).

14. Peletminsky S.V., Sokolovsky A.I. General equations of fluctuation hydrodynamics, Ukr. Fiz. Zhurn.,
1992, 37, No. 10, 1521–1528 (in Russian).

15. Peletminsky S.V., Slusarenko Yu.V.Stochastic derivation of kinetic and hydrodynamic equations of
long-wave fluctuations, Ukr. Fiz. Zhurn., 1994, 39, No. 1, 112–119 (in Ukrainian).

16. Sokolovsky A.I., Sokolov P.G. Integral equation for flux-flux correlation functions and kinetic coeffici-
ents of a fluid, Visnyk of Dnipropetrovs’k University, Physics, Radio Electronics, 1998, 1, No. 3, 76–82
(in Russian).

17. Sokolovsky A.I. Influence of fluctuations on dynamics of a fluid, Visnyk of Dnipropetrovs’k University,
Physics, Radio Electronics, 1998, 1, No. 3, 64–75 (in Russian).

Скорочений опис нерiвноважних процесiв та кореляцiйнi
функцiї. Розбiжностi та неаналiтичнiсть

А.I.Соколовський

Днiпропетровський нацiональний унiверситет, вул. Наукова 13, Днiпропетровськ, Україна, 49050

Отримано 16 травня 2006 р., в остаточному виглядi – 6 липня 2006 р.

На основi методу скороченого опису Боголобова, що ґрунтується на функцiональнiй гiпотезi, роз-
вивається повна теорiя для дослiдження часових кореляцiйних функцiй. Обговорюється проблема

розбiжностей в теорiї нерiвноважних процесiв та її зв’язок з неаналiтичною залежнiстю основних

величин теорiї вiд малого параметра теорiї збурень. Пропонується природна регуляризацiя iнте-
гральних рiвнянь теорiї. В рамках моделi повiльних змiнних (гiдродинамiка рiдини, кiнетика газу)
конструюється узагальнена теорiя збурень, яка вiдповiдає частковому сумуванню у звичайнiй теорiї
збурень. Властивостi функцiй Грiна обговорюються на основi формалiзму резольвенти оператора

Лiувiлля. Розробляється узагальнена теорiя Ернста та Дорфмана, яка дозволяє вивчати особливо-
стi кореляцiйних функцiй i функцiй Грiна та розв’язувати проблему збiжностi у методi скороченого

опису.

Ключовi слова: скорочений опис нерiвноважних процесiв, функцiональна гiпотеза, проблема

збiжностi, природна регуляризацiя, асимптотика часових кореляцiйних функцiй, функцiї Грiна,
особливостi кореляцiйних функцiй i функцiй Грiна, узагальнена теорiя Ернста та Дорфмана
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