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The time-delayed feedback control mechanisms of the nervous system are continuously subjected to the
effects of uncontrolled random perturbations (herein referred to as noise). In this setting the statistical prop-
erties of the fluctuations in the controlled variable(s) can provide non-invasive insights into the nature of the
underlying control mechanisms. We illustrate this concept through a study of stick balancing at the fingertip
using high speed motion capture techniques. Experimental observations together with numerical studies of a
stochastic delay differential equation demonstrate that on time scales short compared to the neural time delay
(“fast control”), parametric noise provides a non-predictive mechanism that transiently stabilizes the upright
position of the balanced stick. Moreover, numerical simulations of a delayed random walker with a repulsive
origin indicate that even an unstable fixed point can be transiently stabilized by the interplay between noise
and time delay. In contrast, on time scales comparable to the neural time delay (“slow control”), feedback and
feedforward control mechanisms become more important. The relative contribution of the fast and slow control
mechanisms to stick balancing is dynamic and, for example, depends on the context in which stick balancing
is performed and the expertise of the balancer.
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1. Introduction

It is becoming clear that biological systems tuned at or close to a stability boundary can exhibit
qualitatively the same kinds of complex dynamics [1,2] that are observed for physical systems at or
close to a critical point [3], including power laws, intermittency, and critical slowing down. A case
in point arises in the neural control of stick balancing at the fingertip. In the control literature,
the studies of the inverted planar pendulum figure prominently in discussions of the stabilization
of an unstable fixed point [4]. Since the equations of motion take the form [5]

b(t) + %é(t) - %sinﬁ(t) +F(0(t) =0, (1)

where ¢ is the length of the stick, g is the gravitational constant, v is the damping coefficient,
and 6 is the vertical displacement angle (6 = 0 corresponds to the upright position, hence the
“~ sign), the control problem is how to design the feedback, F, to stabilize an unstable saddle
point. However, in real applications, such as those that arise in the context of neural control, it
is necessary to take into account the time required to detect a deviation in 6, and then effect a
corrective movement. Consequently the feedback is time-delayed and (1) becomes

b(t) + %9(0 - %sin@(t) +FO(t—1)) =0, 2)
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where 7 is the time delay, and 6(t),0(t — 7)) refer, respectively, to the values of 6 at times ¢ and
t — 7. Since the upright position for (2) can be stable provided that 7 and ¢ are appropriately
chosen [6-8], the goal is to figure out the nature of the control strategy used by the nervous system
from an analysis of the observed fluctuations.

This neuro-biological inverse problem has attracted great interest [9,10]. It is widely held that
an understanding of how the human nervous system addresses the problem of stick balancing at
the fingertip may provide useful insights into solving the problems ranging from minimizing the
risk of falling in the elderly to the developing of stable two-legged robots [11]. The observation
that longer sticks are easier to balance at the fingertip than shorter ones is a reflection of the
fact that the neural latency is finite (~ 100 — 200 msec): as the stick becomes longer the speed
of its movements eventually becomes slow enough so that the nervous system has time to make a
corrective movement. However, it is found that no matter how long the stick or how expert the
individual may be, the stick always eventually falls. Thus the intriguing question for stick balancing
is not why the stick can be balanced at the fingertip, but to understand why the balanced stick
eventually falls!

Here we review our studies on stick balancing at the fingertip [2,6,12-16]. We demonstrate that
it is possible to gain insight into the nature of the control strategy used by the nervous system
by carefully studying the statistical properties of the fluctuations made in the controlled variable,
i.e. 6, and the controller (i.e. the movements of the fingertip).

2. Survival functions

The simplest hypothesis to account for the observation that a stick balanced at the fingertip
falls is that the dimensions of the basin of attraction associated with the stable upright position
are small compared to the intensity of the random perturbations, herein referred to as noise.
In this situation, for example, a sufficiently large perturbation occurring at the right time could
move the trajectory outside the basin of attraction and hence produce a fall. If the hypothesis
were correct, then the survival function, i.e. the fraction of trajectories remaining in the basin of
attraction at time ¢, might be anticipated to be exponential. Indeed, exponential survival curves
have been associated with the times to cross a threshold in chaotic dynamical systems [17,18] and
in stochastic dynamical systems subjected to the effects of additive noise [19], i.e. the effects of
noise are independent of the state variable. An example of a stochastic dynamical system with
additive noise can be obtained by adding a noise term to the right-hand side of (2).
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Figure 1. (a): Survival function, P(tesc > t), measured for three different stick lengths, 39 cm
(o), 62 cm (A) and 120 cm (¢). The P(tesc > t) generated by (3) (solid line) is compared
to that measured experimentally for the 62 cm stick length. Parameters: m = 35 g, k = 35,
v =40 sec!, ro = 0.97 , 0 = 0.15. Data is from [12]. (b): Distribution of escape times for a 55
cm stick. The solid line is for the Weibul distribution with § = 1.8105.
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Figure 1 (a) shows the survival curve, i.e. the probability that stick is balanced at the fingertip
at time ¢, P(tesc > t), as a function of ¢, for two different stick lengths. A longer stick having the
same mass is easier to balance and hence the survival curve is shifted to the right. As can be seen
the survival curve is clearly not an exponential, but has the form of a Weibul function (figure 1(b)),

P(tese > t) ~ exp(—At)”,

where 3 > 1, A are constants. Weibul-type survival functions have been observed previously in the
context of the analysis of the failure times of ball bearings [20] and in survival statistics of patients
with certain forms of cancer [17].

One mechanism that can generate survival functions having this form occurs when the effects
of noise are parametric, i.e. the effects of noise enter through a parameter that is multiplied by
the state variable [12]. Vertical displacements in the pivot point of an inverted pendulum enter the
equations of motion through a parameter [5]; hence parametric noise is particularly relevant to the
study of stick balancing at the fingertip [21]. If we expand F' as a Taylor series

FOt—71))=reft—7)+---

and assume that the gain, rq varies noisily, then (2) becomes

i(t) + %é(t) - %sin&(t) Fro(t)0(t — 1) =0, (3)
where
ro(t) = Ro + (1)

and Ry is a constant and £(t) is Gaussian distributed white noise with zero mean and variance o.
The survival curves in figure 1 can be reproduced by discretizing (3) to obtain the second-order
stochastic discrete dynamical system with state-dependent noise (compare triangles with the solid
line for the right survival curve in figure 1)

Tir1 = Tyt Y,
7) k Tn
S O S R 4
Yt+1 ( m Yt mﬂ?t"i-mxt T (4)
where
re =10 + &

and where 7 is a constant, k/m = g¢/¢, and & is a random variable chosen from a Gaussian
distribution of discrete variables having mean equal to zero and variance, o.

Thus, the observations in figure 1 point to a dynamical system in which parametric noise plays
an important role in shaping the observed dynamics. Further insight into the mechanisms of the
control of stick balancing can be obtained by examining the fluctuations made in the controlled
variables.

3. Stick and fingertip motions

The fluctuations in the vertical displacement angle, #, and the controller, i.e. the fingertip, can
be measured with high accuracy using motion capture technology [6,12,13]. Infrared light reflected
from markers attached to each end of the stick are detected by two specialized motion capture
cameras (Qualisys, Inc): the image projected onto the CCD of each camera determines two of
the spatial coordinates and the third is determined using triangulation techniques involving both
cameras. Measurements can be easily made with a temporal resolution of 1 msec and a spatial
resolution of 4um. Figure 2 (a) shows the fluctuations in 6. It should be noted that € is determined
solely from the position of the two markers in the vertical (z) plane, i.e. cosd = Az/l. The
fluctuations in € are characterized by intervals with small amplitude fluctuations that alternate
with intervals of larger amplitude fluctuations. Figure 2 (b) shows the movements of the fingertip
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Figure 2. (a) Temporal series for Az/l for a 62 cm stick balanced at the fingertip. The horizon-
tal dashed line depicts the threshold position. (b) Two-dimensional representation of the path
traveled by the fingertip during stick balancing. The digitization timestep was 1 ms. Movements
in the anterior-posterior direction are shown on the y axis; side to side movements on the x axis.
Data is taken from [13].

(i.e. the marker closest to the fingertip) in the (z, y)-plane during stick balancing. These movements
are also characterized by two components: 1) relatively slow translations of the pivot point for the
inverted pendulum; and 2) small amplitude corrective movements.

Taken together the observations in figure 2 suggest that it is convenient to consider the mecha-
nisms for neural control on two time scales: 1) fast control, i.e. the time between successive corrective
movements occur on time scales short compared to the neural time delay; and 2) slow control, i.e.
the times between successive corrective movements occur on time scales that are comparable to
the neural time delay.

4. Fast components for balance control

The times between successive crossings of a threshold (dashed horizontal line in figure 2 (a))
in the upward, or corrective, direction were measured. These times correspond to the laminar
phases of a dynamical system that exhibits intermittency. Figure 3 (a) shows a double-log plot
of the probability that the laminar phases have length 6t, P(dt), as a function of §t. There are
two important observations [6]. First, > 98% of the laminar phases are shorter than the measured
neural latency. Second, the fluctuations exhibit two statistical features of on-off intermittency [22],
namely, the laminar phases exhibit a —3/2 power law (solid line in figure 3 (a) and the power
spectrum of the fluctuations in 6 exhibits a —1/2 power law (figure 3 (b)).

The power laws that characterize on-off intermittency can be reproduced using (3) provided
that the parameters are chosen to place the deterministic version of this equation close enough to
the stability boundary so that the ro(¢) can be stochastically forced back and forth across it [6].
These observations suggest that parametric noise plays an important role in the fast component
of the control of stick balancing. It should be noted that the zero crossings for a random walk also
scale as —3/2 [23]. Thus the beneficial effects of on-off intermittency for stick balancing likely arise
because the fluctuations in 6 resemble a random walk for which the mean value of 6 is approximately
zero, i.e. the balance position is statistically stabilized [24].

In summary, the fast corrective movements for stick balancing exhibit three characteristics: 1)
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they are intermittent and ballistic; 2) the time between successive corrective movements is much
shorter than the neural latency; and 3) they are open-loop, i.e. non-predictive (see below). It has
been recently suggested that ballistic fluctuations that scale as —3/2 are associated with optimal
control [25]. Fast components having these same properties have also been observed in other human
balancing tasks, namely postural sway during quiet standing [26,27] and ankle movement controlled
balancing of an inverted pendulum [28]. Although it has been suggested that the mechano-elastic
properties of limbs and joints could provide a “zero delay” feedback control mechanism for balance
[27,28], our observations on stick balancing suggest that the effects of parametric noise may be a
more plausible explanation for these fast controlling movements. In addition, these observations
suggest that methods used to characterize intermittent behavior in turbulent flow [29], such as the
flatness factor, may be useful for the study of skill acquisition in humans.
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Figure 3. (a) Log-log plot of the normalized probability of having laminar phases of length §t,
P(6t) for a balanced stick of length 62 cm. The dotted line has slope —3/2 and the physiological
delay is depicted by the vertical line. (b) Power spectrum, S(f), of the fluctuations in 6 showing
the presence of two power laws. The slopes of the solid lines are, respectively, —0.5 and —2.5.
Data is from [6].

5. Stabilizing with noise and delay

An important question concerns whether the control system is tuned slightly to the stable or
to the unstable side of the stability boundary, the proximity to the stability boundary depending
on the intensity of the state-dependent noise. Two experimental observations suggested that the
system may actually be tuned slightly to the unstable side of the boundary: 1) power laws identical
to those observed for stick balancing are observed in a virtual stick balancing task that does not
possess a stable point [14] and 2) the measured survival functions can be best fit by (4) when the
parameters are chosen so that the deterministic version possesses only an unstable fixed point (see
figure 1). The effect of partial or even full stabilization of unstable states by noise is well known
to occur in stochastic dynamical parametric systems [30]. Furthermore, recently it has been shown
that additive noise can induce transient stability by delaying the escape time of unstable systems in
periodically modulated systems [31] and in pure unstable damped systems [32]. In the case of time
delayed dynamical systems the stabilizing effect of additive and parametric noise by postponement
of bifurcations has been also reported for specific systems [33]. Thus it seems appropriate to ask
ourselves whether there exist cooperative effects between random perturbations and time delay
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feedback at a more fundamental level responsible for improved stabilization in simple unstable
systems.

To address this question we have considered the case of the repulsive delayed random walk
[15] which, in turn, is a special case of the delayed random walk (DRW) [34]. In the DRW the
walker takes a discrete step of unit length per unit time in a direction determined by a set of
conditional probabilities that depend on the position of the walker at a given time in the past, 7.
The conditional probabilities for the walker to take a step to the right are

PX(t+1)= X(O) + |X(t—7)>0) = p,
P(X(t+1) = X(O) +1|X(t—7)=0) — %
PX(t+1)= X() + 1|X(t—7)<0) = 1—p, (5)

where X (t) is the position of the walker at time ¢ and 0 < p < 1. This walk differs from the well
known brownian walk not only because its dynamics depend on the past but also because its origin
can behave attractively or repulsively depending on the value of p. In particular the origin, X = 0,
is attractive if p < 1/2, unbiased for p = 1/2 (as in the case of the brownian random walk) and
repulsive if p > 1/2. Models of delayed random walks with an attractive origin enable a number of
important properties of the delayed Langevin equation to be obtained analytically, including the
autocorrelation function [34]. However, analytical insights in the repulsive case are not immediate
and thus we restrict our exposition to a numerical approach.
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Figure 4. Mean first passage time as a function of the delay time for X* = 120 steps and
different values of the bias p. (a) From top to bottom: p = 0.7,0.8,0.9,1.0. (b) From top to
bottom: p = 0.425,0.45,0.475,1/2. Data obtained with 100000 realizations.

Computer simulations of a DRW with a repulsive origin for a given 7 require the definition
of an initial function, ®(s), where s € [—7,0]. We generated this function by using a brownian
random walk with p = 1/2 and 7 = 0. The origin of the delayed random walk corresponds to ®(0).
For ¢t > 0 the position of the walker evolves while being influenced by its history at 7, X (¢t — 7). To
study the stability properties in the repulsive regime we concentrate our attention on the escape
behavior. Thus the walker is said to escape at a first passage time L if at such time the walker
crosses an arbitrarily established threshold +X*. The question we ask is how long the walker can
be kept around the repulsive origin without escaping? Figure 4 (a) depicts the mean first passage
time (MFPT), (L), for values of 1/2 < p < 1. The MFPT shows a non-monotonous dependence on
the time delay showing a maximum at a particular value of the time delay, 7°. When p increases
from 1/2 this optimal delay time moves towards smaller values.

The behavior observed in the repulsive regime should be contrasted to that obtained for a
DRW in the attractive regime, i.e. for p < 1/2. In this situation the MFPT also depends on the
time delay. In particular, in the zero delay case the walker remains trapped around the origin for
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long times. As the time delay increases the MFPT rapidly and monotonously decreases indicating
that the inclusion of delay in the dynamics destabilizes the walker. Moreover, the MFPT tends to
decrease with increasing p and, as expected, it reaches a constant value when p = 1/2.

The mechanism by which this transient stabilization of the unstable origin occurs is still under
investigation. Preliminary observations suggest that it reflects the interplay between two opposing
tendencies: 1) the stabilizing effects of the past history of the walker that delay escape, and 2) the
greater the probability of escape the longer the walk is.

6. Slow control

The above mechanism for fast control does not readily explain why, for example, a stick cannot
be balanced at the fingertip so well with the eyes closed as with the eyes open. Obviously closed-
loop feedback control mechanisms that depend, in part, on visual and other sensory inputs should
also be involved in this task. We refer to these unidentified controlling mechanisms as the “slow
components” for control since they cannot be expected to respond quicker than the related neural
conduction times. The identification of the nature of these slow control mechanisms has been more
difficult [10]. The observation that closed-loop feedback control of voluntary movements become
of lesser importance as expertise develops [35], suggests that it might be possible to gain insights
into their role by identifying the controlling movements that occur as expertise develops.

P(AV)

AV ( m/sec)

Figure 5. Comparison of the probability distribution of AV of hand movements during stick
balancing for the same person at two different skill levels [13]: low skill (o) and high skill (A).
The stick length was 62 cm. The reflector closest to the fingertip was used to track the hand
movements. The vertical dashed lines show the truncation point: low skill at 0.26 and high skill
at 0.41. Similar changes in the probability distributions with the development of stick balancing
expertise have been obtained in four individuals (in preparation). Data is taken from [13].

Suppose we model the movements of the fingertip during stick balancing as a random walk.
The step size of the random walker per unit time is equal to the speed, V. In order to focus on the
fast components of these movements (figure 2 (b)) it is necessary to high pass filter the time series.
This is equivalent to calculating the change in speed, AV [13]. Figure 5 compares the distribution
in the changes of the distribution of AV, P(AV),that occur when a subject was a novice stick
balancer and that obtained when they became more expert after 8 days of intensive practice. The
increase in expertise coincides with a change in the shape of P(AV), i.e. the distribution develops
fatter tails at the higher skill level. Surprisingly the Lévy exponent was found to be ~ 0.9 [13]. Lévy
flights with a &~ 1 have the characteristics of super-diffusion and have been shown to be optimal
for a variety of random search patterns [36]. This observation suggests that the fast components
of the control of stick balancing resemble a random foraging strategy.

A simple explanation for the changes shown in figure 5 is that they reflect differences in trun-
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cation [37,38]. If we write

[ aLa(AV)F(AV) i [AV] > T,
P(av) = { NING. if [AV] < TI

where L, (AV) describes the Lévy distribution in AV') with Lévy index «, and ¢, co are normali-
zation constants. The truncation function, f(AV), is typically a decreasing function of AV with
compact support and the truncation threshold, II, is the critical value of AV at which the distribu-
tion begins to deviate from L, (AV'). Truncation accounts for the fact that AV is limited by both
the biomechanical properties of the musculoskeletal system (which are unlikely to change over the
training period of 1-2 weeks) and the effects of time-delayed (reactive) feedback mechanisms: the
more active the feedback control, the more truncated [38]. No skilled-related changes in the Lévy
index, «, or the Lévy scale factor were observed [13]. Thus the slow components for the control of
stick balancing that change as the expertise develops, are likely to either involve a reactive feedback
at the level of local sensorimotor loops (e.g. [7]) or possibly the mechanisms based on feedforward
control involving higher neural centers (e.g. [10]).

7. Discussion

The parametric noise mechanism we have described for the fast component of the control
for stick balancing will obviously be most important when the movements of the stick are quick
compared to the neural time delay. Although this observation would argue that this mechanism
should be of lesser importance once the stick movements become sufficiently sluggish, e.g. long
and heavier sticks, experimental observations indicate that the situation is far from being that
simple. For example, novice stick balancers are capable of improving performance, i.e. shift the
stick survival curve to the right, by concurrently moving a leg rhythmically [15]. The fact that a
similar improvement in performance can be obtained by having the subject think about moving the
leg rhythmically, but not actually moving it [16], demonstrates that this improvement is not simply
due to mechanical vibrations of the fingertip induced by leg movement. The simplest explanation
is that the increase in performance is the result of the diversion of the intention for voluntary
corrective movements away from the stick balancing task. In other words the improvement in
performance arises because a corrective movement guided by volition is not necessarily optimal
and hence their role should be minimized since they may do more harm than good.

At any instant in time the control of a voluntary movement by the nervous system reflects the
interplay between multiple controlling effects. Closed-loop neural feedback loops in which informa-
tion obtained from sensory receptors to adjust corrective movements are organized in a hierarchical
manner [39]: local reflex control loops are organized into cooperative synergies under the control of
neural centers located at progressively higher neural centers (e.g. spinal cord, brainstem, cortex).
As the environment and the demands of the task become more predictable, it becomes possible
to use feed-forward mechanisms to program the neural activations before the movements should
be made. Moreover, it follows directly from the equations of motion for every motor task, that
control cannot be completely due to the effects of neural activations alone, but should also take
into account the biomechanical properties of the musculoskeletal system and the changing nature
of the environment in which the movements occur [40]. Often neglected is the fact that the care-
ful identification of noise sources and their effects on variability can provide us with important
non-invasive methods to gain insights into the structure of the underlying control networks [2,41].

What are the rules that govern the interplay between all of these controlling effects? To what
extent are these rules dependent on factors such as the nature of the task, the expertise of the
performer, and the demands placed on critical, but limited resources, e.g. attention? Stick balancing
at the fingertip provides an important and accessible experimental paradigm to investigate these
issues using non-invasive techniques. The development of virtual stick balancing tasks that involve
the interplay between a human and a computer [10,14] will enable these studies to be extended into
the functional neuroimaging suite and possibly to even the study of non-human primates (e.g. [42]).
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Thus obtaining an understanding of how the nervous system controls complex voluntary tasks may
be no further away than the tip of our finger!
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Questions and answers

Q (Dragi Karevski): About the distribution of big jumps: are they rare (extreme) events?

A We need to consider that in the task of stick balancing there are two important distributions
where large fluctuations (i.e., big jumps) can be observed: 1) In the case of the distribution of
laminar phases (figure 3 (a)) and 2) In the distribution of fingertip speed changes (figure 5).
However the first one corresponds to time intervals (corrective movements) and do not reflect
necessarily big fluctuations in the stick. Meanwhile large fluctuations in case 2) have low
probability as can be seen from (figure 5) indicating that they are quite rare extreme events.
These big changes in speed are not strictly related with big changes in the stick vertical
deviation which are a persistent signature of its dynamics thus not necessaryly rare because
the sticks always fall.
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MexaHi3M KOHTPOJII0 HEPBOBOI CUCTEMM HA Pi3HUX 4YAaCOBUX
MacwiTabax: 6anaHcyBaHHS NanuLUelo Ha KiHYMKY Nanbus

X.J1.Kabpepa', KJlyuiani?, Ox.Minston®

1 LLleHTp ¢i3nkun, BeHecyenbCbKuii IHCTUTYT HAyKOBUX AOCHIAXEHb,
noLIT. CKprHbka 21827, Kapakac 1020-A, Benecyena

2 disnunmin dakynbreT, YHiBepcuTeT CimoHa boniBapa, Kapakac 1080-A, BeHecyena
3 akynbTeT NpUpoaHNYMX ancumniid, KnepeMoHT konepx, KnepemoHT, CA 91711 CLUA

OTtpumanHo 10 kBiTHA 2006 p., B ocTato4yHOMY BUrnsai — 12 TpaeHsa 2006 p.

3ani3HeHni B Haci MexaHi3aM KOHTPOJIO 3BOPOTHLOIO 3B’A3KY HEPBOBOI CUCTEMW NOCTINHO 3a3HAE BNIUBY
HEKOHTPOJIbOBAHMX BUNAAKOBMX 30YIKEHb (SKi HA3MBATUMEMO LUYMOM). 3 Ujei TOUKM 30pY, CTATUCTUYHI
BNACTUBOCTI GAYyKTYaLill KOHTPONbOBAHNX 3MIHHUX MOXYTh CIYXKUTU AxepesioM iHbopMaLii npo npupo-
Oy UbOro MexaHiaMy KOHTPOsIo. Mu inloCTPyeEMO Lie TBEPAXKEHHS BUBYEHHSAM BaniaHCYBaHHS NasINLEI0 Ha
KiHYMKY nanbls, BUKOPUCTOBYIOUMN TEXHIKY LUBUAKICHOrO GikCyBaHHS pyxy. EkKcnepuMeHTanbsHi cnocrepe-
XEHHS MOoeAHaHi 3 YACNOBMM aHanisaoMm andepeHLianbHOro PiBHSAHHS i3 CTOXaCTUYHUM 3ani3HEHHAM MNo-
KasyloTb, O HA MaclwTabax 4yacy Manavx NopiBHAHO 3 YACOM 3ani3HEHHS HEPBOBOI cucTeEMU (“LUBUAKNN
KOHTPOJb”) MapaMeTPUYHINI LWYM CIPUYUHAE HenepeabavyBaHUin MexaHi3M, Skuii cTabiniaye 6anaHcoBa-
HY NasMLIO Y BEPTMUKANBHOMY NMOMOXEHHI. YMCNoBi cumynsauii BUNaakoBoro 6/iykaHHs i3 3anisHeHHAM Ta 3
BiALUITOBXYBANBLHUM NMOYATKOM BiAJliKy nokasanu, Lo HaBiTb HECTilika Hepyxoma Touka Moxe cTabiniaysa-
TUCS 3aBAAKM CNiNbHOMY BIJIMBY LLIYMY | HACOBOTO 3ani3HeHHs. | HaBnaku, Ha MacluTabax Yacy, MOPIBHAHNX
3 4aCOM 3ani3HeHHs HEPBOBOI CUCTEMMU (“MOBINbHUIA KOHTPOMb”) MEXAHI3MU KOHTPOJIO 3BOPOTHLOMO 3B’A3-
Ky i NnepeabdadYeHHs cTaloTb BaXAUBILLMMK. BigHOCHMIA BKNa, LUBWMAKOMO i MOBINILHOrO MeXaHi3My KOHTPONO
B Npouec 6anaHCyBaHHA Nanmuero € AMHAMIYHUM | 3aneXnTb, HAaNPUKIaa, Bifl yMOB, B AKX 3AjACHIOETLCA
e npouec Ta Big, [oCBiQy TOro, XTo 3AjACHI0E HanaHCyBaHHS.

Knwou4oBi cnoBa: ¢uykTyadiiiHi auila, 4acose 3arisHeHHs, 00ePHEHNA MasiTHUK, KOHTPOJIb
3BOPOTHLOIO 3B5I3KY, LUYM

PACS: 89.75.-k, 87.19.5t, 02.30.Ks, 05.45.-a, 02.50.-r
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