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1. Introduction

Description of reaction-diffusion processes of particles adsorbed on metallic surfaces is a topical
problem of surface physics. Recent investigations in scanning tunnelling microscopy (STM) show
[1] that it is possible to visualize direct chemical processes by revealing the fundamental properties
of atoms and molecules and their interaction with each other and the environment. A researcher is
able to measure the energy transfer, associated with vibrational-rotational particle motion, study
diffusion of molecules and their conformational changes, detect bond dissociation or formation in
chemical reactions, etc. Though the main purpose of single molecule chemistry experiments is to
study the individual molecules, the interactions between adjacent adparticles strongly effect the
observed picture, and the individuals start to move cooperatively. Such a phenomenon is observed
[2], for instance, during diffusion of hydrogen atoms on Cu(001). The nature of diffusion changes
when two hydrogen atoms are close to each other: the diffusion of a pair rather than of individuals
is observed. On the other hand, the reactions of hydrogen transfer H2S+CC−→ HS+CCH between
carbon diatomics and hydrogen sulfide [3,4], involving a number of reacting particles, were observed
with high resolution enabling us to trace the bond dissociation/formation and a post-reactional
motion of a single molecule.

Therefore, theorists face a new task of creating reliable models that can describe collective
surface dynamics of the adparticles with taking into account the inherent features of each molecule.
Though the existing theoretical apparatus is capable of describing the whole variety of intra- and
intermolecular motions, in fact, such a complex problem is hardly solvable, and a reduction in
the level of description becomes indispensable. One of the possible ways is to treat an adsorbed
molecule as an unstructured particle that resides on a certain lattice site1, at the same time
retaining a possibility to introduce all kinds of interactions into the system including chemical
reactions.

1The STM microscopy fairly often detect such a configuration of adparticles location, see [1] and references
therein.

c© V.V.Ignatyuk, M.V.Tokarchuk, P.P.Kostrobij 55



V.V.Ignatyuk, M.V.Tokarchuk, P.P.Kostrobij

In this paper we present an approach to the description of a single particle dynamics taking into
account a possibility of chemical reactions between adparticles. We treat the chemical transforma-
tions as simple bimolecular reactions α + β ←→ α′ + β′ between different species of unstructured
molecules that reside at a certain end of the lattice cite. The adparticles are capable of performing
intrasite oscillations between the ground and first excited states within the quantum well, hop
to the nearest lattice site, and interact with lattice vibrations. In section 2 we present a system
Hamiltonian, which describes the processes of various nature (intrasite oscillations, tunnelling,
adsorbate-substrate interaction, chemical reactions). In section 3 the quantum kinetic equations of
the reaction-diffusion type are written down in the second approximation in tunnelling constants
and amplitudes of chemical reactions. These equations describe a coherent (non-dissipative) motion
of the adsorbate, particle diffusion, and kinetics of chemical reactions. Peculiar to these equations
is that both diffusion coefficients and reaction rates are phonon-modified and depend on the lattice
parameters (temperature, coupling strengths, mass of a substrate atom etc). In the last section we
presented brief conclusions and pointed out some prospects for further investigations.

2. System Hamiltonian

To specify all the interactions in the “metallic surface – adparticles” system we choose the
Hamiltonian, which permits a site-to-site tunneling of an adsorbate, intrasite oscillation of an
adparticle between the ground and excited states within the potential well, interaction of the
adparticles with a lattice (a coupling with substrate is both by density and oscillation modes), and
bimolecular chemical reactions. We present the Hamiltonian in the following form:

H = HA + Hint + Hreact + HB, (2.1)

where the fundamental Hamiltonian of the adsorbate is given by a two-band Hubbard Hamiltonian
HA:

HA =
∑

α







∑

〈ss′〉, σ

(

−tα0a
†
αs0σaαs′0σ + tα1a

†
αs1σaαs′1σ

)

+
∑

s

(

Ωα

2
(nαs1 − nαs0) + Uα

nαs(nαs − 1)

2

)







(2.2)

with

nαsi =
∑

σ

nαsiσ , nαs = nαs0 + nαs1 .

Here the Greek letters denote sort of the particle, s labels the site in the lattice, 0 and 1 are two
states (ground and excited) within a given well, σ is the spin label, and 〈ss′〉 denotes a sum over
the nearest-neighbour sites. Quantum states within a well are referred to as “vibrational” states,
with vibrational frequencies Ωα. a†

αsiσ (aαsiσ) creates (destroys) a particle of the α-sort on the site

s, in vibrational state i, and with spin σ; nαsiσ = a†
αsiσaαsiσ is the number operator for this state.

Depending on the nuclear spin of the adparticles, the creation and destruction operators will obey
Bose or Fermi commutation relations; we shall omit the spin label in all subsequent expressions.
tα0 and tα1 are the nearest-neighbour tunnelling amplitudes in the ground and first excited states,
respectively, and Uα means on site Hubbard repulsion between particles.

The coupling to phonons, described by the term Hint, is considered to be local within each
well. Phonons may couple both to the adsorbate density operators and to the vibrations within a
quantum well. The interaction Hamiltonian is

Hint =
∑

αs

{

nαs

∑

q

γαsq

(

bq + b†q
)

+
(

a†
αs0aαs1 + a†

αs1aαs0

)

∑

q

χαsq

(

bq + b†q
)

}

, (2.3)
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where b†q, (bq) creates (destroys) a phonon with normal mode frequency ωq. Strengths γαsq (χαsq)
describe the coupling of phonons to the density (oscillation) modes of the adsorbate and depend
on the sort of the particles; for the 1D lattice they could be written explicitly via parameters of
the lattice in the following way:

γαsq =
Gα

√

M(~ωmax)3
−2~ωmax sin[π/(N + 1)q/2] cos[π/(N + 1)q(s + 1/2)]√

N + 1
√

ωq/ωmax

,

χαsq =
Gα

√

M(~ωmax)3
2~ωmax cos[π/(N + 1)q/2] sin[π/(N + 1)q(s + 1/2)]√

N + 1
√

ωq/ωmax

, (2.4)

ωq = ωmax sin[π/(N + 1)q/2],

where the coupling constant Gα depends on the sort of adparticle and could be expressed in terms
of matrix elements of the “substrate-adsorbate” interaction potential [5] over the localized Wannier
states, M denotes a mass of the substrate atom and ωmax could be associated with lattice Debye
temperature.

The third term in (2.1) is associated with bimolecular chemical reactions α + β ←→ α′ + β′:

Hch=
∑

sf,s′f ′

∑

ij,i′j′

κa†
α′s′i′a

†
β′f ′j′aαsiaβfj + h.c., (2.5)

where the second (Hermite conjugate) term describes the reverse reaction, κ ≡ 〈α′s′i′, β′f ′j′|Vreact|
αsi, βfj〉 mean reaction amplitudes, which are assumed to be known from quantum mechanical
calculations. The last term in equation (2.1)

HB =
∑

q

~ωqb
†
qbq (2.6)

corresponds to the phonon bath.

However, it is useful [5,6] to start from a unitary transformed Hamiltonian on a new correlated
basis, which provides a better zeroth-order representation: the sequence of unitary transformations
has the effect of changing to a representation in which the adsorbate is localized at one end of an
adsorption site or the other, and in which there is a correlated displacement of the lattice. Before
performing the unitary transformation, let us pass to the hybrid set of states for each site according
to the following rule:

aαs L

R

≡ 1√
2
(aαs0 ± aαs1) (2.7)

and similarly for the creation operators. The designation L or R means that a single adparticle
is now localized on the left or right side of the given well. Then, applying a procedure of double
unitary transformation H̃ = UHU† with the operator U = U1U2, where

U1 =
∏

αs

exp

[

−nαs

∑

q

γαsq

ωq

(

b†q − bq

)

]

,

U2 =
∏

αs

exp

[

− (nαsL − nαsR)
∑

q

χαsq

ωq

(

b†q − bq

)

]

(2.8)

we obtain a unitary transformed Hamiltonian of the system of chemically reacting adparticles in
the following form:

H̃ =
∑

αs

Hαs +
∑

α

HTα + Hch + Hpp + HB ≡ H ′ + Hpp + HB. (2.9)
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The term Hαs describes the lattice-modified intrasite dynamics of the adparticle:

Hαs =
Uα

2
nαs(nαs − 1)−

(

Ωα

2
Bαsa

†
αsLaαsR + h.c.

)

,

Bαs = exp

[

−2
∑

q

χαsq

~ωq
(bq − b†q)

]

, (2.10)

with lattice induced operator exponent Bαs; the second term in (2.9)

HTα =
∑

〈ss′〉

tαch

(

BLR
αss′a

†
αsLaαs′R + BRL

αss′a
†
αsRaαs′L

)

+ tαpr

(

BLL
αss′a

†
αsLaαs′L + BRR

αss′a
†
αsRaαs′R

)

(2.11)

is the intersite tunnelling term with end-changing (end-preserving) amplitudes tαch (tαpr), which are
the linear combinations tαch

pr

= 1/2(tα1 ± tα0) of the initial tunnelling amplitudes, while the lattice

induced operators B are of the structure

BLR,RL
αss′ = exp

[

−
∑

q

(

∆αss′

q ±(+)δαss′

q

)

(

bq − b†q
)

]

,

BLL,RR
αss′ = exp

[

−
∑

q

(

∆αss′

q ±(−)δαss′

q

)

(

bq − b†q
)

]

, (2.12)

∆αss′

q =
γαsq − γαs′q

~ωq
, (±)δαss′

q =
χαsq ± χαs′q

~ωq
,

The third term in (2.9) is associated with bimolecular chemical reactions α + β ←→ α′ + β′,
renormalized due to the adparticle-phonons interaction:

Hch=
∑

sf,s′f ′

∑

ij,i′j′

κ̄Bα′s′i′,β′f ′j′

α s i ,β f j a†
α′s′i′a

†
β′f ′j′aαsiaβfj + h.c., (2.13)

where κ̄ are expressed via linear combinations of the corresponding reaction amplitudes κ, and
the Roman letters {i, j} denote {L, R}-states of the adsorbate. The rate constants become lattice-
modified as

Bα′s′i′,β′f ′j′

α s i ,β f j = exp

{

−
∑

q

[(γα′s′q + γβ′f ′q − γαsq + γβfq) + (δi′L−δi′R)χα′s′q

+(δj′L−δj′R)χβ′f ′q−(δiL−δiR)χαsq−(δjL−δjR)χβfq]
bq − b†q

~ωq

}

. (2.14)

The fourth term of the Hamiltonian (2.9)

Hpp =
∑

αβ

〈ss′〉

−CDD
αs,βs′nαsnβs′ − 2CDO

αs,βs′nαs(nβs′L − nβs′R)

− COO
αs,βs′(nαsL − nαsR)(nβs′L − nβs′R) (2.15)

describes the particle-particle lattice induced interaction with strengths

CDD
αs,βs′ =

∑

q

γαsqγβs′q

~ωq
, CDO

αs,βs′ =
∑

q

γαsqχβs′q

~ωq
, COO

αs,βs′ =
∑

q

χαsqχβs′q

~ωq
. (2.16)
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The CDD
αs,βs′ ≡ CDD

αβ,|s−s′| terms correspond to the short-range attractive interaction between ad-

particles at adjacent sites and, therefore, opposes the Hubbard on-site repulsion. The CDO
αs,βs′ ≡

CDO
αβ,|s−s′| terms give a mutual repulsion between particles; the long-range COO

αs,βs′ ≡ COO
αβ,|s−s′|

interactions (determined by the overlap of the lattice distortions associated with each particle)
stabilize the system when the particles are on sites s and s′ and are at the same end of their
respective wells.

3. Kinetic equations for one-particle nonequilibrium functions of adsorbate

We will consider the first three terms of the Hamiltonian (2.9) as a small perturbation H ′,
which allows us to construct a closed system of kinetic equations for one-particle nonequilibrium
distribution functions to the second order in H ′. Moreover, the experiments in single molecule
chemistry show [1], that the rates of chemical reactions are at least two orders lower than the rates
of other dynamic processes, associated with adsorbate (vibration, rotation, diffusion). Hence, we
can neglect 〈Hch〉B (abbreviation 〈· · ·〉B means averaging over the phonon bath) during derivation
of the kinetic kernels.

Using a method of reduced density matrix [7], one can write down the equation for nonequilib-
rium statistical operator ρS(t) of the adsorbate as follows:

∂ρS(t)

∂t
+

1

i~
[ρS(t), HS] = − 1

~2

0
∫

−∞

dt′ exp(εt′)TrB {[H ′, [H ′(t′), ρBρS(t)]]} , ε→ 0. (3.17)

H(t′) stands for an operator H ′ in the Heisenberg picture

H ′(t′) = exp

[

it′
HS + HB

~

]

H ′ exp

[

−it′
HS + HB

~

]

(3.18)

with the Hamiltonian

HS ≡ Hmf
pp +

∑

αs

〈Hαs〉B +
∑

α

〈HTα〉B =
∑

αsi

Eαsinαsi +
∑

αi

∑

〈ss′〉

tαpr〈Bii
αss′ 〉Ba†

αsiaαs′i . (3.19)

In equation (3.19) we have performed a mean field approximation for Hpp to obtain a closed form
of the kinetic kernels; the mean field “energies” Eαsi are the functions of equilibrium adsorbate
densities and parameters C. This approximation is known to be quite reasonable in the case of low
coverage of the adsorbate and short-range nature of the interaction. Taking into account all the
approximations mentioned above, multiplying (3.17) by a†

αcκ
aαcκ and taking the trace over the

phase variables of the system, we can write down the kinetic equations for one-particle densities
as follows:

∂nαcκ(t)

∂t
=

1

i~

∑

s

(

〈Bκκ

αcs〉B 〈a†
αcκ

aαsκ〉tS − h.c.

)

− 1

~2

0
∫

−∞

dt′
{

Kαcν
αcν(t′)K̃αsκ

αsκ
(t′)|V κν

αcs|2A

−Kβf ′′j
βf j (t′)Kαs′′

κ

αc κ
(t′)K̃β′f ′′′j′

β′f ′ j′ (t′)K̃α′s′′′i′

α′s′ i′ (t′)|κ|2B
}

+ c.c. (3.20)

To obtain a closed system of equations for the one-particle densities we neglect the pair correlation
functions during decoupling of the higher order products of the operators a†a. This procedure is
well-grounded in the second order approximation since the pair correlation functions g2(t) are, at
least, of the first order in H ′. In the higher order approximations one can obtain a quantum analog
of BBGKY hierarchy for the distribution functions [10], which has to be truncated at a certain
level to obtain a closed system of equations.

The first term of the r.h.s. of equation (3.20) with SpρS(t)a†
αcκ

aαsκ = 〈a†
αcκ

aαsκ〉tS describes a
coherent (nondissipative) motion of the adsorbate and depends on the nonequilibrium tunnelling
probabilities; the second term with

A =〈∆Bκν
αcs∆Bνκ

αcs(t
′)〉B(1± nαsν(t))nαcκ(t)−〈∆Bνκ

αcs(t
′)∆Bκν

αcs〉Bnαsν(t)(1± nαcκ(t))
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is dealt with adparticle diffusion, and the last term with

B=
〈

∆Bα′s′i′,β′f ′j′

α c κ,β f j ∆[Bα′s′′′i′,β′f ′′′j′

α s′′
κ,β f ′′ j (t′)]†

〉

B
nα′s′i′(t)nβ′f ′j′(t)(1 ± nβfj(t))(1 ± nαcκ(t))

−
〈

[∆Bα′s′′′i′,β′f ′′′j′

α s′′
κ,β f ′′ j (t′)]†∆Bα′s′i′,β′f ′j′

α c κ,β f j

〉

B
nαcκ(t)nβfj(t)(1 ± nβ′f ′j′ (t))(1 ± nα′s′i′(t))

is due to chemical reactions. The upper sign in the kinetic equations corresponds to Bose stati-
stics of the adsorbate, while the lower corresponds to Fermi statistics. Summation over repeated
indexes is assumed and restricted to the nearest neighbour (diffusion term) and next-to-nearest
neighbour (reaction term) lattice sites. We use the abbreviation V κν

αcs to indicate the corresponding
intrasite/intresite parameters Ωα, tαch, tαpr.

Equation (3.20) has a typical reaction-diffusion structure; the integral terms in the second
order approximation depend only on nαsi(t), and there is no cross-correlation between processes of
different nature (intrasite/intersite motion, chemical reactions). However, it could be shown that
in the higher order approximations one can obtain cross-correlation terms. Kinetic equations for
tunnelling probabilities 〈a†

αcκ
aαsκ〉tS are of a similar structure to (3.20) and are not presented here

explicitly for the sake of brevity. A remarkable feature of the system of kinetic equations (3.20)
is that the integral terms in the second order approximation depend only on nαsi(t) and the only
coupling between nonequilibrium densities and nonequilibrium tunnelling probabilities are due to
the coherent terms.

Kinetic kernels, formed by particle dynamics, are expressed via Bessel functions J , mean field
“energies” E (which are the functions of equilibrium adsorbate coverage and parameters C), and
renormalized tunnelling amplitude τα

ss′
κ

= tαpr〈Bκκ

αss′ 〉B as follows:

Kα s κ

αs′
κ

(t′)K̃β f j
βf ′j (t′) = i|s−f |+|s′−f ′|JD

|s−s′| (2τα
ss′

κ
t′)JD

|f−f ′|

(

2τβ
ff ′jt

′
)

× exp

[

i

~
(Eαsκ − Eβfj) t′

]

. (3.21)

Hereafter D denotes the lattice dimensionality.
An explicit expression for 〈Bκκ

αss′〉B could be written down as a square root of the second term
of equation (3.22). It follows from the analysis of spectral functions in case of the infinite lattice
[5,6] as well as from the expressions (2.4) for the finite lattice that the end-changing renormalizing
factors B tend to zero after the averaging over a thermal bath. It is seen from equation (3.21),
that the main contributions to the kinetic kernels are due to the zeroth order Bessel functions; the
same analysis yields that the values of nonequilibrium tunnelling probabilities are proportional to
the Bessel functions of higher orders and, hence, turn out to be small2. It should be stressed that
kinetic kernels (3.21) decay in time due to the tunnelling processes. Thus, both generalized diffusion
coefficients and generalized rates of chemical reactions are finite. Another way of obtaining finite
diffusion coefficients is to take into consideration an interaction between adparticles and electrons
of a substrate [8], but obviously this problem is much more complicated.

The kinetic kernels formed by the lattice dynamics

〈∆BI∆BI(t
′)〉B = exp [−(ϕI(0)− ϕI(t

′))] − exp[−ϕI(0)], (3.22)

depend on the lattice parameters (coupling strengths, temperature, mass of the lattice atoms) via

ϕI(t
′) =

∑

q

ΓI(q)
2(coth[~ωq/kBT ] cos(ωqt

′)− i sin(ωqt
′)), (3.23)

where ΓI(q) denote the corresponding combinations of the lattice parameters γαsi, χαsi in the
phonon induced exponents (2.10), (2.12), (2.14).

2The main contribution to the kernels (3.21) originates from the functions, which are finite at t′ = 0 (zeroth
order Js) in contrast to higher order Bessel functions, which are zero at t

′ = 0.
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It is seen from the last equation (2.4) that in the case of infinite lattice (N → ∞) there is
no gap in the spectrum of lattice vibration ωq, and one has to describe the adsorbate-substrate

interactions by means of spectral weight functions J ch/pr
α,|s−s′|(ω). The main contributions to the static

and dynamic correlation functions originate from the low frequency domain of the J ch/pr
α,|s−s′|(ω). In

statics, different behaviour of end-changing spectral functions (J ch
α,|s−s′|(ω) ∼ ωD−2 at low ω)

and end-preserving spectral functions (J pr
α,|s−s′|(ω) ∼ ωD at low ω) results in self-trapping of the

adsorbate in the certain end of the potential well due to the overlap of lattice distortions and
renormalization of phonon induced tunnelling amplitudes (2.12) and intrasite oscillation frequency
ΩαBαs. In dynamics, the same factor leads to different activation behaviour for the diffusion
constants [6] and chemical rates, arising from the form of correlation functions in the kinetic
kernels.

Thus, in the case of the infinite lattice one can rewrite the equation (3.23) via spectral functions
as follows:

ϕI(t
′) =

ωmax
∫

0

JI(ω)

ω2
(coth[~ω/kBT ] cos(ωt′)− i sin(ωt′))dω, (3.24)

where, for instance, the intrasite spectral function could be written as

Jαs(ω) =

∞
∑

q=1

χ2
αsqδ(ω − ωq) ∼ ωD−2 (3.25)

and frequency characteristics for the other spectral functions (with I corresponding to the tun-
nelling processes and chemical reactions) could be obtained after some algebra.

To complete the analysis of kinetic equations let us conclude, that one can obtain temperature
dependent diffusion constants and reaction rates with activation energies that are functions of
a whole set of the lattice parameters and tunnelling amplitudes. Depending on the underlying
processes this could be done by separating the corresponding time scales3 before integrating over
t′ in the kinetic kernels or by a series expansion of equation (3.22) in ϕI(t) (that corresponds to
the one- and multiphonon processes being taken into account) in the way it was performed in
[6]. In the single particle limit (N → 1) and in the strong coupling case (Gα is comparable with
kBT ), neglecting off-diagonal elements in the kernels of the kinetic equations (3.20), we obtain for
diffusion constant D:

D ∼ exp(−Ea/kBT )√
kBT

(3.26)

with activation energy Ea depending on Gα. In the weak coupling limit (Gα/kBT � 1) the
temperature behaviour of D is much more complicated (see section 5 of [6]) and cannot be described
via a single activation energy. It would be challenging to investigate the temperature dependance
of the rate constants since the problem seems to be much more difficult due to the interplay
between different Gα and, hence, multitude of spectral characteristics depending on the sort of the
reacting particles. Changing the strength of coupling between adparticles and a substrate before
and after the reaction, it is possible to model the activation behaviour of the rate constants and,
consequently, even to manipulate some reaction channels. Thus, a feedback in the complex “theory-
experiment” could be established: on the one hand, it is possible to foresee the peculiarities in the
cooperative dynamics of chemically reacting adparticles, and, on the other hand, to visualize the
direct chemical processes by revealing the fundamental properties of atoms (molecules) and their
interaction with each other and the environment that could supply the theorists with necessary
input parameters for the system modelling.

3Time decay of the kernels (3.21), formed by particle dynamics, is much slower than the characteristic evolution
times of the kernels (3.22), formed by the lattice dynamics.
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4. Conclusions

In the previous sections we presented a quantum-kinetic approach to the description of chemi-
cal reactions between unstructured particles adsorbed on the metallic surface and interacting with
substrate vibrations. We obtained a system of coupled equations for one-particle nonequilibri-
um distribution functions and nonequilibrium tunnelling probabilities. These equations are of a
reaction-diffusion type and have phonon modified diffusion coefficients and reaction rates, which
depend on the lattice parameters. By integrating the kinetic kernels over t′ it is possible to obtain
a temperature dependance of the mentioned characteristics and calculate their activation energies.

However, as we have already mentioned, the observed picture of chemical reactions on the metal-
lic surfaces is much more complicated than the model introduced in the section 2. The reactants con-
sist of a number of constituent atoms, possess the internal degrees of freedom (stretch/bending vi-
brations , rotations, conformational changes), are subjected to chemical bond formation/dissociation.
Besides, a new class of interactions could be introduced in the system, for instance – the interaction
between adparticles and electrons of a substrate. Eventually, one can consider a phonon subsystem
to be nonequilibrium that opens a straight road to the description of an interesting phenomenon
such as surface reconstruction [9,10]. Thus, to conclude the paper we would like to summarize some
open questions and problems still to be solved:

• generalization of our (L–R) model to the single band and many band cases; this is straight-
forward;

• calculation of the activation energies for the diffusion coefficients and rate constants; it could
be done explicitly in some cases. Alternatively, numerical evaluations could be performed;

• derivation of reaction-diffusion equations in the higher approximations in tunnelling ampli-
tudes and reaction constants;

• taking into account the interactions between the adsorbed particles and the electrons of a
substrate; this problem, though being complicated, can be solved by methods of quantum
kinetics [8].

• consideration of the bound states of molecules; the existing quantum mechanical apparatus
makes it possible to do this (see, for instance, [11]).

In the general case, nonequilibrium distribution functions and tunnelling probabilities could be
calculated only numerically for the lattice of a definite structure and the parameters taken from
the experiments.
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7. Zubarev D.N., Morozov V.G., Röpke G. Statistical Mechanics of Nonequilibrium Processes. Vol. 2,

Relaxation and Hydrodynamic Processes. Akademie Verlag, Berlin, 1996.
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2 74Ai0(4>=(+C 9(i32:)+*2* “<=3i3)=/4 D0>i*25(i/4”,
79000 <=3i3, 3,>. ?*.E4(12:+,12
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Y+(46i/4 Z4)*+(0/, 41)0:[034(+5 (4 \032:5(i 62*4>,, 10)>i1],@*=)^ 62*0106 /34(*030; /i(2*+/+._*:+64(0 )+)*26, :24/AiC(0-1+-,.iC(+5 /i(2*+Z(+5 :i3(^(= 1>^ 01(0Z4)*+(/03+5 (2:i3(034](+5-,(/AiC :0.\01i>, 41)0:[4*, 3 1:,B06, \0:^1/, .4 /0()*4(*46+ *,(2>`34((^ *4 46\>i*,146+ 5i6i-Z(+5 :24/AiC.
abcdefi gbefh: ijklmnjn-iilompqlk monris, tnuovi witiqlpw rokixiy lk znjorwli, ino{ixi|lmpup{}~i�, �jpuin�mi rokixiy
PACS: 05.60.Gg, 05.70.Np, 63.10.+a, 68.43, 82.20.Xr
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