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Abstract. In the paper studied are polarization properties of an electron subsystem in the 
structures of intermediate dimension, particularly, in the quasi-two-dimensional structures 
depending on the degree of quasi-two-dimensionality. These investigations were founded 
on the model dispersion law that most completely governs the peculiarities of the structure. 
Here, we studied the character of alternating oscillations of the potential screened by 
interelectron interaction, namely, by its anisotropy depending on microscopic parameters 
that determine the shape of isoenergetic surface and the degree of quasi-two-
dimensionality. It is shown that the obtained potential, in comparison with similar results 
for isotropic Fermi gas, oscillates at smaller distances with amplitude of an order of 
magnitude higher and with a period of an order of that smaller. 
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1. Introduction 
 
The recently subject of intensive studies are low-
dimensional structures, i.e., quantum dots, one-
dimensional (1D) wire and two-dimensional (2D) 
structures [1, 2]. Such investigations are not only of 
fundamental interest, but also are more important for the 
applications of these objects. A number of precise results 
of the studies of such objects are well known [3, 4]. 
However, the structures which can be considered as 
intermediate structures between zero- and 1D, or 1D and 
2D, 2D and 3D ones have been realized [5], the latter 
including the layer crystals. The layer crystal can be 
represented as a set of packed "sandwiches" bonded by 
weak van der Waals forces. Each sandwich is a set of 
monoatomic layers with covalent or ion-covalent bond. 
Such discrimination in chemical bonds causes a number 
of phenomena typical for the layer crystals. The degree 
of 2D or 3D can be significantly changed by different 
ways, such as a pressure hydrostatic or axial (along the 
normal to the layers) or intercalation [6]. In other words, 
the layer crystals can be considered as a quasi 2D 
structure (Q2D), or, in the case of decreased interlayer 
binding, we can consider it as the system of 2D 
structures weakly bonded to one another. It is known 
that electron mixing at the sites of a crystal determines 
the width of the conduction band. Hence, the difference 
of the value of mixing inside the layer and between the 
layers is the reason why the bandwidth in the layer is  
 

much higher than that between the layers in the reciprocal 
space. It demands to refuse from the widely used 
representation of the dispersion law of carriers by the 
parabolic dependence, which is possible for a wide band 
(i.e., within the layer), but is not valid for a narrow band. In 
the latter case, even at a very low degree of band 
occupancy, the deviation from the parabolic dispersion law 
can be significant. It means that the peculiarities of a layer 
crystal manifest themselves at the stage of its one particle 
studies, which should be all the more so taken into 
consideration in the case of many-body effects.  

The aim of this work is  
• to analyze some many-body characteristics depending 

on the degree of “quasi-two-dimensionality” of the 
system on the assumption of a model dispersion law, 
that most completely governs the structure peculiarities 
of the crystal of an intermediate dimension;  

• to study how the dimension of crystal structure 
including the nonparabolic band structure (in those 
cases when the effective mass approximation is 
forbidden) affects the polarization properties of the 
electron subsystem.  
 

2. Model dispersion law and its application to the 
description of many-particle effects 

 
Let us consider the following model dispersion law (in the 
case when OZ axis coincides with the normal to the 
layers) [7] 
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, yxm  is the isotropic effective mass 

of an electron inside the layer), t is an integral of 
electron mixing between the nearest layers along the 
normal to them, which determines the conduction band-
width, 2t, in the OZ direction of the reciprocal space. 
The lattice constants and h were chosen to be equal to 
unity.  

The discontinuity of the ion structure is considered as 
the discontinuity of the value of wavevectors kx ky, kz, 
that is caused by the Born – Karman conditions. The 
choice of the effective mass approximation for the 
description of electrons inside the XOY layer and the 
tight binding across the layers is imposed by the above-
mentioned significant difference of chemical bondings in 
various OX, OY, and OZ crystallographical directions of 
the layer crystal, which causes the condition 2t << π2α, 
i.e., the case of the intermediate dimension.  

The model dispersion law (1) is convenient for the 
mentioned problem solution, inasmuch as the change of t 
parameter makes it possible to realize the 2D structure in 
the t = 0 limit. When t increases (2t→π2α) the 
nonparabolic effects along kz can be neglected, and then 
we take this 3D anisotropic parabolic dispersion law. The 
limit value of the parameter α = 0 describes the 1D 
structure. The model dispersion law (1) causes the phase 

2
12  Lifshitz transition, i.e., topological changes of 

isoenergetic surfaces according to the energy or chemical 
potential changes, which should manifest themselves in 
polarization properties of layer crystals.  

It is clear that interpretating such crystals as the 
system with an intermediate dimension, their physical 
properties, in particular, polarization ones should be 
compared to the properties of pure 2D (when  t = 0) or 
3D structures (when 2t → π2α). However, the smooth 
transition from 2D to 3D case for  t < α  may not be 
observed.  

Many-body effects in the electron subsystem of the 
crystal with intermediate dimension can have a specific 
character due to the peculiarities of the band structure. 
For example, 1D system studies [8, 9] using the 
dispersion law (1) in the case α = 0 showed an additive 
singularity of the dielectric function when qz = 2(π − kF).  

The Fourier form of the screened Coulomb potential 
related with the core potential V0(q) through the well-
known expression [10] that, in the Ω = 0 case, is as 
follows: 

( ) ( )
( )

0V
V

ε
=

q
q

q
%  ,    (2) 

where ( )q0V   for 3D structures has the form [10] 

( )
2

0 2
0

4 eV π
ε

=q
q

  (3) 

and ε(q) is the dielectric function. We will be interested in 
the behaviour of the potential screened by electron-electron 
interaction for systems with an intermediate dimension 
which is inspected for anisotropy of the conduction band. 
That is why both in the t < α case and in the limit cases 
t→0, t → π 2α  the Coulomb potential will be given as (3).  

Statistic description of many-body effects, particularly 
within the framework of the model of the interacting 
electron gas in the solid state, foresees the introduction of 
electron basis for functions. In our case, the Bloch 
functions instead of the plane waves are taken as the basis 
of functions, i.e., wave functions of carriers are described 
by the dispersion law (1). The effects of electron-electron 
interaction causes the screening the Coulomb potential, 
which is found by summing the loop diagrams (random 
phase approximation (RPA)). In the paper [11], q-depen-
dence of static dielectric function of the Bloch electrons 
with the parabolic dispersion law is described by the 
following model expression 

( )
( ) ( )

2

22
, 1

0
q

q
p

g i

ω
ε

ω ω
Ω = +

− +
, (4) 

where ωg(q) is the effective q-dependent gap frequency and 
ωp is the plasma frequency of valence electrons. 
 
3. Polarization properties of the intermediate dimension 
structures 
 
In this paper, the dielectric function is calculated from the 
Bloch functions, considering the environment anisotropy 
(the dispersion law (1)). Since we deal with an electron 
subsystem, dielectric function should be studied depending 
on the direction being vector rather than a tensor. 

In the RPA, ε(q,Ω) components, namely, real ε1(q,Ω) 
and imaginary ε2(q,Ω) ones are connected with the 
polarization loop ),( ΩΠ q  [13] as follows: 

( ) ( ) ( )1 01 Req, q, qVε Ω = + Π Ω , (5) 

( ) ( ) ( )2 0Imq, q, qVε Ω = Π Ω . (5′) 

Here, 
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),( ΩΠ q is the polarization loop calculated in terms of 
Green’s functions when T = 0 [12]: 
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For 1D case such polarization loop was analyzed in 
[8, 9]. Integrating over the frequency by residue method, 
we get  

,
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Then in the case 0=Ω , the real and imaginary 
components of ),( ΩΠ q become 
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Eqs (9) and (10) are taken in the sense of their 
principal values and b = 2tsin(qz/2). In the 3D case, the 
regions {A3} і {B3} are as follows: 
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(11) 
Varying the free carriers concentration one can 

change the value of the Fermi energy. It is well known 
that the carriers located in the vicinity of the Fermi level 
play the main role in kinetics effects. The Fermi level 
transition to higher than the bandwidth along kz, 2t, 
makes it possible to consider at least Q2D problems in 
the vicinity εF→2t. We can realize the similar Q2D one 
by changing t parameter. Hereinafter, we will consider 
the above-mentioned transition by changing εF  that is, 
for εF < 2t,  we deal with the anisotropical nonparabolic 
case, and when εF > 2t, this is a Q2D case with 

isoenergetic surfaces open along OZ axis, and, for εF >> 2t, 
this is a 2D case. All the parameters such as α, t, εF are 
given in electron-volts. 

4. Calculations of polarization loop 

Firstly, let us consider 1D case (α = 0), for which the 
dispersion law (1) is as follows: 

( ) )cos1( zz ktkE −= . (12) 

In this case, the disperse dependence of real and 
imaginary components ( )ΩΠ ,zq  are written in the follo-
wing manner: 

( ) ( )
{ } { }
∫
−

−−Ω−=ΩΠ
AB

zzz dkkbq 1sin
2
1,Re
π

, (13) 

( ) ( )
{ } { }
∫
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AB

zzz dkkbq sin
2
1
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The condition (11) gives us the nonzero values of the 
polarization loop (13) and (14). The regions of integration 
are given in Fig. 1. 

1. Region 1>Q  where 
t

tQ Fε−= , then { } { } { }0, ∈BA  

or according to (5) ( ) 0=Π zq . 
2. Region 1≤≤QR : then { } [ ] { } [ ]1403 ,,, zzBzzA ∈∈  

(Fig. 1а), where 43, zz  are the roots of the equation 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

2
cos zq

zQ , and 10 , zz are the roots of the 

equation ⎟
⎠
⎞

⎜
⎝
⎛ −=

2
cos zqzQ . 

3. Region RQR ≤≤−  : { } [ ] { } [ ]3401 ,,, zzBzzA ′′∈′′∈  
(Fig. 1b). 

4. Region RQ −≤≤−1  : { } [ ] { } [ ]3041 ,,, zzBzzA ′′′′∈′′′′∈  
(Fig. 1c). 
 
The integrals (13) and (14) can be found analytically. In 

the static case ( 0=Ω ), it is 

z4

z1z3

z0 z4
z1 z3

z0
z4

z1 z3
z0

+– +– +–

kz

 
  a    b    c 
Fig. 1. The regions of integration {A}, {B} according to (11) in the 1D case. 
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The limits of integration are determined from the 
condition (6) (Fig. 1), and they are different depending 
on Q value [8]. They can be compared with ( )zqΠRe  
for the 1D case with the parabolic dispersion law [12] 

( ) ( )
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Fz

z

F
Dz kq

kq
q
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Nq
2
2

ln
2

0Re 1 −
+

=Π .   (16) 

As seen from (16), the polarization loop has 
singuliarity in one point F2kqz =  while, for our case, it 
has an additional point ( )F2 kqz −= π (see Fig. 1 in [8]). 

In the case of 3D anisotropy (α ≠ 0, t ≠ 0), the similar 
calculations of { } { }BA ,  regions and ( ) ( )qq ΠΠ Im,Re  
were performed numerically. They showed that the 
behaviour of the polarization loop does not change 
qualitively at the transition from 1D-system to 3D-
anisotropical one for given band filling (Fermi level), 
i.e., the quantity of singuliarity points does not decrease, 
while the ( ),Re zqΠ  ( )zqΠIm  values  increase. The 
further increase of band filling, i.e., the transition from 
3D-case to Q2D-one, causes the decrease of the quantity 
of singuliarity points and an increase of 

( ) ( )zz qq ΠΠ Im,Re  values (Figs 2, 3).  
 

5. The potential screened by interelectron interaction 

The obtained disperse dependences for the components 
of dielectric function were used for the )(~ qV

r calculations 
according to (2). Here, the Coulomb potential )(0 qV

r   is 
taken from (3), i.e., the potential used for 3D-case. Such 
a choice is caused by the above-mentioned purpose  of 

the paper which lies in studying the screening effects in the 
structures of intermediate dimension. These effects are 
caused by strongly anisotropic but still 3D-structure. That 
is why the coordinate dependence of ( )rV

~
 

( ) ( ) zyx dqdqdqVrV qrcosq~~ ∫
−

=
π

π

  (17) 

 is considered as 3D integral.  
Let us analyze the ( )rV

~
 dependence on the coordinates 

in the directions (001) and (111). In the (001) case, ( )rV
~

 
dependence for different εF  is represented in Fig. 4. As 
seen from Fig. 4, the amplitude oscillations (curve 1) take 
place at smaller distances than that for isotropic Fermi-gas 
(insertion in Fig. 4). This difference is evidently caused by 
the nonparabolic dispersion law. The decrease of ( )rV

~
  

(curves 1-3), i.e., at the transition from quasi 2D to 3D 
anisotropic case, causes a decrease of the first minimum in 
( )rV

~
 dependence just to negative values and shifts them in 
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Fig. 2. Dependence of the polarization loop ( ),0,0,Re zqΠ  

( )0,0,Im zqΠ  for the 3D anisotropic case (εF = 0.01 eV).  
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Fig. 3. Dependence of the polarization loop ( ),0,0,Re zqΠ  

( )0,0,Im zqΠ  for the Q2D case (εF = 0.21 eV). 
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Fig. 4. Dependence of  ( )zV
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the direction of smaller z-distances. In the vicinity of 
εF = 2t, electrons at distances z ∼ 1.5a0 (a0 is the lattice 
constant) are most attracted, while when ( )rV~  amplitude 
oscillations practically do not depend on εF . 

( )rV~  dependence along (111) direction looks 
somewhat different: the first minimum in the z ∼ 1.5a0 
vicinity (Fig. 5a) disappears and oscillations in the 
coordinate dependence are noticeable only after 15-fold 
extension.   

The coordinate ( )rV
~

 dependence in (111) direction 
compared with that in the direction (001) changes as 
follows: i) when εF = 0.01, the oscillation period 
significantly increases, while the first local minimum 
(typical for (001) direction) vanishes; ii) when εF = 0.21, 
the oscillation period also increases significantly, and the 
depth of the first minimum decreases.  

6. Conclusions 

Polarization properties of the electron subsystem in the 
structures of intermediate dimension, in particular, in the 
Q2D structures depending on the degree of quasi-two-
dimensionality are studied. The peculiarities of their 
electron band structure are characterized by the model 
dispersion law.  

The analysis of the polarization properties of electron 
subsystem in the Q2D structures within the framework 
of the RPA shows: 

1. When changing the degree of Q2D, the number of 
singuliarity points in the disperse behaviour of the 
polarization loop )( zqΠ  and dielectric function in the kz 
direction do not change while its number changes inside 
the XOY plane. 

2. The character of alternating oscillations of the 
potential screened by interelectron interaction is stronger 
pronounced as compared to the isotropic crystal structures. 
This is caused by nonparabolic effects. 

Thus, changing the degree of quasi-two-dimensionality 
of the layer crystal by intercalation, stage ordering, 
hydrostatic or axial pressure makes it possible to 
significantly affect the properties of the electron subsystem. 
That is why we should take into consideration the 
screening effects analyzing the phenomena that take place 
in layer crystals. 
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