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1. Introduction

Abstract.The influence of electron correlations (direct dependence of electronic wave function
on distance between electrons) on energy spectra of two-electron systems (D, F', F-centers
and bipolarons) in polar crystals with strong electron-phonon interaction is investigated.
Bipolaron is chosen as the simplest model of two-electron system in the crystal. Bipolaron
energy is calculated for various distances between the centers of polarization wells of two
polarons with accounting the electron correlations. A singlet bipolaron is stable at rather
high energy of ion binding n <n,, = 0,143 (n =¢&,/&y). The unique energy minimum corre-
sponds to a one-center bipolaron (an analog of a helium atom). The bipolaron binding
energy constitutes up to 25.8% of a double polaron energy at n — 0. A triplet bipolaron (an
analog of orthohelium) is energetically disadvantageous. The one-center configuration of a
triplet bipolaron corresponds to a maximum on the distance dependence of the total energy
Jpp(R). The exchange interaction between polarons has antiferromagnetic character. A predic-
tion is made about a possibility of the Wigner crystallization of a polaron gas, which occurs
with antiferromagnetic ordering in the polaron system. The examples of energy calculations
with accounting the electron correlations of exchanged-coupled pairs, D~ and F'-centers in
polar crystals are also given.

Keywords: bipolaron, Frolich Hamiltonian, electron-phonon interaction, electron correla-
tions, superconductivity, high-temperature superconductivity
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[1]) were corrected in [2]. The energy minimum obtained
in [2] for a one-center bipolaron (or Pecar bipolaron[3])

Bipolaron is an elementary two-electron system in polar
crystals. Such two-electron systems as for example F'
and F»>-centers in polar crystals, and also D~-centers and
exchange-coupled pairs of paramagnetic centers (PC)in
covalent crystals and crystals with mixed polar -covalent
coupling can be considered as bound bipolaron placed
in a field of static charges. For this reason bipolaron is
the simplest test system to check the methods of an energy
electron systems accounts in a solids, to which interac-
tion of an electron subsystem with a field of crystal el-
ementary excitations are essential. The optical phonons
field (interaction with which is described by Frolich Ham-
iltonian) is one of examples of such numerous fields
(acoustic phonons, plasmons, spin waves, waves of charge
density, etc.).

The bipolaron problem has revived again due to the
discovery of a high-temperature superconductivity
(HTSC). Unfortunate numerical errors made in early
papers devoted to bipolarons (see, for example, review
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was much lower than a corresponding minimum origi-
nally found in [4] for a two-center bipolaron. In terms of
spatial configuration, the one-center bipolaron is analo-
gous to a helium atom, while the two-center one is an
analog of a hydrogen molecule. Subsequently, the results
of [2] were repeatedly reproduced for both Slater and
Gaussian functions [1, 5-7].

The deciding factor, when choosing a bipolaron probe
wave function (WF) in variational calculations, was its
nonmultiplicative form. For the two-center bipolaron the
probe WF was chosen [4] as a symmetrized product of
one-electron WFs. For a one-center bipolaron correla-
tion effects were taken into account by introducing a term
depending on the difference in electron coordinates [2, 5,
6] (in what follows, this particular type of correlation
effects will be referred to as electron correlations).

However, until the present time no calculations have
been performed to take into account both these effects at
the same time. Therefore, the question which of the two
235
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bipolaron configurations is energetically more advanta-
geous still remains open. Thus, the works [8, 9] continue
to explore the two-center bipolaron (despite the fact that
the author of [2] obtained a deeper minimum for the one-
center bipolaron than in [§, 9]). A quantitative estimate
of the contribution of electron correlations into the en-
ergy of two-electron systems of the type of large-radius
paired centers in polar crystals (F,-center or “a hydro-
gen molecule placed in a phonon field”) is yet to be ob-
tained, too. To solve the problems of this sort, one should
simultaneously consider both the permutation symmetry
of WF and the electron correlation.

The energy of the one-center bipolaron can be calcu-
lated using wave functions of the Pecar type [3]

W(ry,rp) =
= N(1+ymp)(+an)(L+ar)exp(-aln +r), (1)

where N is a normalization multiplier, r{, r are the co-
ordinates of the first and second electrons, respectively,
Iy = |rq1 — 1| is the distance between the first and the
second electron, r; = |rq|, 7, =|r2|, ¥ and a are variational
parameters.

The bipolaron energy is calculated analytically and
the relevant functional is subsequently varied over the
parameter y(a is uniquely determined by ). The decid-
ing factor in the formation of a bound two-electron state
is the availability of a correlation term proportional to
the difference in electron coordinates yr;».

Calculations of the two-center bipolaron are con-
cerned with consideration of the permutation symmetry
of the electron system. The wave function of the two-elec-
tron system is chosen in the symmetrized form:

W(ry,rp) =P(ry,rp) +®(rp,rq) - (2)

In early papers devoted to calculation of bipolaron
states, ®(r;, r,) was chosen as a product of hydrogen-like
WF centered at various points [4]. In the recent paper [§]
that deals with calculation of a two-center bipolaron, ®(ry,
1,) is chosen as a product of the Pecar polaron functions
(1 + ar,pexp(—ar,)(1 + arpy)exp(—ary,) (where use is
made of the notation traditional for the two-center coor-
dinate system: r,; (r,») is the radius-vector of the first (sec-
ond) electron reckoned from the center a, rp; () is the
same for the center b). Both in [4] and in [8] the energy
minima were much higher than a corresponding mini-
mum obtained in [2] with the use of the wave function (1).
The essence of variational calculations suggests that pref-
erence should be given to the WF that gives a deeper
energy minimum. However, final conclusions of which of
two bipolarons is more preferable energetically can be
made only in the case when the electron correlations in
the wave function (2) are taken into account. This means
the choice

®(ry,rp) =
= (L+arg)(1+amy)A+yma)expl-altg +1p2)). (3

236

However, though the wave function (3) has rather sim-
ple form, one runs into severe obstacles when trying to
find analytically the two-center integrals. Therefore, the
problem of a two-center bipolaron cannot be solved in
the way as it was done for the one-center bipolaron. But
if WF are chosen in the form of a combination of
Gaussian orbitals, analytical calculations become
straightforward and the problem is reduced to variation
of a multiparametrical functional.

Recently interest in polaron and bipolaron subject
field has surfaced again due to expansion of this field of
investigations to anisotropic crystals, low-dimensional
structures and systems with quantum wells [6, 10-13]. The
problem of the choice of a bipolaron spatial configura-
tion and consideration of electron correlations is actual
for such systems, too.

The aim of this work was to calculate the bipolaron
energy depending on the distance between the centers of
polarization wells taking into account both electron cor-
relations and the permutation symmetry of the electron
system.

In spite of the fact that bipolaron is the elementary
two-electron system in polar crystals, its functional in-
cludes the most complex for the explanation part corre-
sponding to nonlocal potential describing the interac-
tion of the electron system with a phonon field. The given
interaction has no analogs in the nuclear and molecular
systems. From this point of view the description of the
bipolarons bound with a field of static charges only in-
significantly complicates a task. Therefore, we examine
a general case of this bound bipolaron and execute spe-
cific numerical accounts both for free and the bound
states.

2. Main formulae and relations

Let us choose the Hamiltonian of a system consisting of
two electrons and a phonon field in the form:

H =y aga, +
K

+ ka (ak —a’y Nexplikr, ) +explikr,))-

K
2 2 2
—h*Al—h*A2+ ° +Hg, (4)
2m 2m 8m|f1‘r2|

where V :—iE M, é:i—i, V is the crystal
kY Ve € &, &

volume, wis the frequency of optical phonons, k is the
wave vector of the phonons, a|2' and @ are the opera-
tors of creation and annihilation of phonons with the wave
vector k, &, and gq are the high-frequency and static
dielectric constants respectively, rq, r, are electron coor-
dinates. The first term in (4) corresponds to Hamiltonian
of the field of optical phonons, the second one represents
Hamiltonian of electron-phonon interaction in a two-elec-
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tron system written in the Frélich form, the third and the
fourth terms stand for kinetic energy of electrons, the
fifth term describes Coulomb repulsion of electrons, H,
describes all Coulomb interactions of electrons with static
charges and those among themselves.

Canonical transformation of Hamiltonian (4)

exp(S,)H exp(=S,), with S; =Y Cy (ax —ay) and vari-

ation over parameters Cj, (shift transformation) yields the

following expression for the functional of the bipolaron
ground state

Sa= ) Crlax ~a) (5)
R

Vee = (W(r1, 1) |W(r,r2)), (6)

Eoorlz

ﬁc = (“P(I‘l, rz) |Hc|l1"(r1, r2)> (7)

_ K2

T :—7D<W(r1,r2)\A1+A2\W(rl,r2)> (8)
2m

Uy =V (W(ry,10) | explikry) +exp(ikry) W(rg,1p)) ©)

In what follows we will use effective atomic units
putting 7=1,e=1, mD:],.soo =1,i.e. the unit of energy
will be Ry" =e’m’ /%2 and the unit of length will be
effective Bohr’s radius ag = hzsoo m e~

Summing functional (5) over the wave vector and inte-
grating it we express it in the form traditional for
bipolaron problems:

Jgp =T +Vee +He +Vet , (10)
2 2
— 262 _|W(r, )| 7| W(ra.ra)
o = _TJ.| | | | dledT34 . (1 1)
€ r13

Note, that in this formulation of the problem we do not
use the concept of adiabatic approximation anywhere. We
perform variational calculations of the initial Hamilto-
nian (4) which after canonical transformation changes to
functional (5). Transformation of this sort leads to the
results of strong-coupling limit and gives the first term in
the expansion of the polaron (bipolaron) energy in terms
of 1/a (where a is the Frolich binding constant, a >> 1)
proportional to a?,

e? /m*
a=—y—.
ne V2w

The probe WF will be chosen as a linear combination
of Gaussian orbitals:

Ws(r, r2) = D1, 1) + (-)SD(rp, 1) » (13)

where S = 0 for the singlet state (symmetric with respect
to the operation of permutation of electron coordinates)
and S = 1 for the triplet (antisymmetric) bipolaron state.

(12)
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Inturn
®(ry,10) =
n

= Z G eXIO(‘ ayrd - 2ay (n ) - ag szz)
1=1

(14)

where ry, r; is the radius-vector of the first (second) elec-
tron reckoned from the coordinate origin placed halfway
between the points a and b. The axis Oz is directed from
the center « to the center . The distance between the
points a and b is equal to R. The quantities C;, ay;, as;, as;
are variational parameters. The electron correlations are
taken into account by the term 2a,;(r;i%) in (14), (r; Of,) is
the scalar product of vectors r; and r».

Polaron WF is chosen in the form:

Wplr)= Y 6 exptair?)
1=1

(15)

where C;, 0; are variational parameters.

On proceeding to the one-center bipolaron at ay; = as;
WF (14) is equivalent (with an accuracy of the notation
of variational parameters) to the WF used in [5] for the
one-center bipolaron and in the limit case of the absence
of anisotropy coincides with the wave function suggested
in [6] for calculation of the energy of the one-center
bipolaron in anisotropic crystals.

3. Calculation results
3.1. Singlet bipolaron

Qualitative analysis of correlation effects can conven-
iently be carried out with the use of a simplest three-pa-
rameter wave function:

(16)

Fig.1 shows the dependencies of the energy of the
ground (singlet) state on the distance between the centers
of polarization wells of two polarons. It is seen that as
the distance between the polarons increases the functional
of the bipolaron system breaks down into functionals cor-
responding to the two polarons, the bipolaron energy tends
to doubled polaron energy calculated in this approxima-
tion (1/37), and the importance of electron correlations
decreases. The Fig.1 also displays the dependencies of cor-
responding energies for the system without regard for elec-
tron correlations (curves 1 and 2). In going to the multipli-
cative form at R = 0 (curve 1 is calculated for a; = a3,
a, = 0 and corresponds to symmetrized product of
Gaussian orbitals), the bipolaron functional breaks down
into doubled polaron functional. The choice of WF in
the more general form (a; # a3, a, =0) leads to arising of
two minima, one of which (less deep) corresponds to the
one-center bipolaron and the other — to the two-center
one (curve 2). Taking into account electron correlations
results in a unique minimum at R = 0, which corresponds
to the one-center bipolaron (curve 3 calculated for (¢ =
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Fig. 1. Dependence of the bipolaron energy on the distance
between centers of polarization wells for one exponent (n = 1):
curve 1 corresponds to one variational parameter (a; = as;,
ay; = 0 — electron correlations are absent), curve 2 is constructed
for two variational parameters (a; , a3;,, ar; = 0 — electron corre-
lations are absent), curve 3 — two variational parameters
(ay; = asj, as;), curve 4 — three variational parameters (ay; , a3;, @2j).

=as, ap # 0)). For the three-parameter WF (curve 4
calculated for a; # a3, a, # 0), the deepest and unique
minimum corresponds to R =0 (the one-center bipolaron),
so the two-center bipolaron obtained without regard for
electron correlations is associated with less appropriate
choice of WF.

As the number of exponents in expression (14) in-
creases, the qualitative picture shown in Fig.1 does not
change. Fig. 2 presents the dependencies of the bipolaron
energy for five exponents on the distance between the
centers of polarization wells of two polarons (with (2)
and without (1) regard for electron correlations). As com-
parison of Figs 1,2 suggests, the qualitative picture of the
relation between the values of the energy minima for the
one-center and two-center bipolarons does not change,
though the bipolaron coupling energy grows more than
twice. Further increase in the number of exponents in the
initial wave function does not lead to any noticeable quali-
tative changes. The unique energy minimum corresponds
to the one-center configuration as earlier.

Fig. 3a shows the dependencies of various contribu-
tions into the bipolaron energy (kinetic energy, energy
of electron-electron interaction, phonon contibution into
the total energy) for five terms of the wave function (14).
In Fig.4b the appropriate dependencies without the ac-
count of electron correlations for wave functions, chosen
as a symmetrized product of polaron VF (a;; = a3;,
ap; = 0) are shown.
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Fig. 2. Distance dependence of the bipolaron energy: curve 1 —
without regard for the correlation (aj; = as;, ay = 0, n =5), curve
2 — the most general function (variational parameters ay; , as;,, @;,
n =5).

So, the two-center bipolaron is energetically disad-
vantageous in an isotropic crystal, and the energy mini-
mum arising at R > 0 is associated with inappropriate
choice of WF without due regard for electron correla-
tions.

In many papers, relative values of the bipolaron bind-
ing energy are given (in the units of polaron energy cal-
culated in the same approximation), which leads to mis-
understanding in comparing the values of energy minima
obtained by different authors. To remedy this, we give
absolute values of the energy found using various WF.

The Pecar function (1) at N = &, /&g =0 leads to the
ground state energy Jp, = —0.1346292.

The polaron binding energy is given by

AE =Jp,-2J, (17)

Or, in relative units AE/2J, = 0.241, where J, =
= —0.0542564 is the exact value of the polaron energy
obtained numerically in the limit of strong binding in
[14]. This value of J, with all the significant digits is
found using the polaron WF in the form (15) for n = 5.
The region of existence of the bipolaron for the Pecar
WEF is determined by n =&, /€9 <nm=0.132.

In [2] absolute values of the ground state energy are
not given, and slightly overestimated results for the bind-
ing energy and the region of existence of the bipolaron
(AE/2J, = 0.25, n,, = 0.14) were associated with the
fact that the bipolaron energy was calculated with re-
spect to slightly overestimated value of polaron energy
obtained for WF chosen in the form (1 + ar)exp(—ar).
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Fig.3. a — Dependencies of various contributions into the bipolaron energy on the distance between the centers of polarization wells.

T(R) is the bipolaron kinetic energy, V,(R) is the energy of interelectron interaction, VAR) is the phonon contribution into the
bipolaron energy (T(R) > 0, V((R) > 0, VAR) > 0). Jp,(R) is the total bipolaron energy. The calculations are performed for variational
parameters ay; , as;, asi, n =5; b — the appropriate dependencies without the account of electron correlations for wave functions,

chosen as symmetrized product of polaron VF (a;; = as;, ay = 0).

The best value of the energy of the bipolaron ground
state obtained by usat n =0 (n=11) was J,=-0.136509 ,
or in dimensionless units AE/2J, = 0.258, n,,, = 0.143.

In the strong-coupling regime, the present approach
provides a larger binding energy and broader region of the
bipolaron stability then those obtained in [2, 4, 5, 8, 15].

Fig. 4 shows the dependencies AE/R (singlet state)
for different n.

3.2 Triplet bipolaron

In studies of photoconductivity o(w) in YBCO Deving
and Salje [16] found a wide absorption peak in the infra-
red frequency range (w = 5.500% cm™). According to
their interpretation, the peak corresponds to the transi-
tion of bosons from the ground (singlet) to the excited
metastable triplet state. These authors proposed that at
rather low temperatures singlet bipolarons coexist with
triplet ones, and just triplet bipolarons are responsible
for widening of Cu and O NMR lines in YBCO. In this
case, the population of triplet levels should increase with
temperature so that at 7= 200 K just triplet bipolarons
should have a dominant role in conductivity. Subsequently
this predicted in [16] change in the shape of the curve p—
T was actually observed at that temperature (see review
[17] and references therein).

We have calculated the energy of a triplet bipolaron
(analog of ortho-helium). The best numerical value ob-
tained for the energy of a one-center configuration of
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triplet bipolaron using of WF (13) at S =1, n = 0 was
= -0.076072.

As the distance between the centers of polarization
wells increases, the energy corresponding to the triplet

0.0104
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(]
I 0.09
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& -0.010
=
3 0.06
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Fig. 4. The bipolaron binding energy as a function of distance
between the centers of polarization wells for various parameters 1.
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term of bipolaron monotonically decreases (from
—0.76072 at R = 0) by complete analogy with 3S,,- term of
a hydrogen molecule. At R = 0 the distance dependence
of the energy exhibits rather a sharp maximum, which
suggests instability of a triplet 23S state that can arise,
for example, under nonequilibrium conditions during
exchage scattering at bipolarons of zone electrons. In
this case, bipolarons break down into isolated polarons.
Note also that the use of WFs (13), (14) for the calcu-
lation of the energy of pair- and orthohelium has enabled
us to get full agreement with experimental results, which
suggests considerable flexibility of the WFs used.

3.3. Exchange interaction between polarons

Noteworthy is the occurrence of antiferromagnetic (AF)
exchange interaction between polarons. At rather large
distances, WF of a polaron can be presented as a
symmetrized (singlet state) or antisymmetrized (triplet
state) product of the polaron WF. Then the interaction
energy of two polarons has the form (with an accuracy of
the terms quadratic in overlapping integral K)

Eint = E1 =SS (18)

where S; and S; are spins of the first and the second elec-
tron,

E :i Mdr (19)

' €o lf12 -

J@(:iKl—iKzK, (20)
Eoo £

K, J,a(l)b(l)a(Z)b(Z) "

a(D)b(D)b(2)?

Ky = [ ——————dr;,,
2 I Mo 12

K = J'a(l)b(l)drl,

where we use the notation traditional for two-center co-
ordinate systems: a(1), b(1) are the WFs of a polaron
centered at points @ and b, respectively (a(1) = Wp(ra),
b(1) = Wylron).

The first term in (20) corresponds to the ferromagnetic
Coulomb exchange, the second one describes
antiferromagnetic (AF) interaction between polarons
caused by phonon contribution.

Thus, atlargedistances (if €9 >>€o, Jgy = -3K ? /e, R),
polarons push off and the spin-depending part of the in-
teraction (total exchange) has AF character. Therefore,
the Wigner crystallization accompanied by AF ordering
can occur in a polaron system.

It also follows that for a bipolaron state to be formed
the potential barrier should be overcome.

240

AF interaction between polarons can be responsible
for the decrease in the paramagnetic component in the
magnetic susceptibility of a polaron gas as the polaron
concentration increases even though bound bipolaron
states are not formed.

Instability of triplet bipolaron with respect to its break-
ing down into individual polarons, obtained by us in the
framework of Frulich Hamiltonian describing the inter-
action of electrons with optical phonons, does not ex-
clude a possibility for the formation of triplet states in a
two-electron system caused by the interaction of electrons
with elementary excitations of different nature, for ex-
ample, with spin waves. Formation of self-localized elec-
tron states in antiferromagnetics with the low Neel tem-
perature (“spin polaron” in an AF crystal) was consid-
ered in [18, 19]. The authors of [17] proposed that high
temperature superconductivity is associated just with spin
polarons that form a bound state by full analogy with a
bipolaron.

4. Bound bipolarons

As an example of bound bipolarons we shall consider the
exchange coupled pairs of paramagnetic centers (PC) in
polar crystals. For such system the part of Hamiltonian,
describing interaction of an electron subsystem with a
field of Coulomb charges, has the following form:

e2 e2 e2 ez e2
Hy = ———- ——

€ofar €o0fa2 €olbr  €0Mp2

R @D

where the first and the second terms describe interaction
of the first and the second electron with a charge local-
ized in a point (a), and the third and fourth ones describe
interaction the first and the second electron with a charge
localized in a point (b), correspondingly, the fifth term
describes interaction of static charges among themselves.

The configuration of considered system corresponds
to that of the molecule of hydrogen “placed in phonon
field”. In contrast with the molecular systems, the dis-
tance between PC in a crystal are determined by a struc-
ture of a crystal lattice, instead of distance R,,, corre-
sponding to a minimum of the functional of the exchange
coupled pairs. For the same reason, in contrast with the
molecular systems, the triplet terms (for which on the curve
dependence of the energy from a distance between PC a
minimum is not present, as, for example for the triplet
3S,-term) are observable.

To estimate the role of the correlation effects for the
bound two-electron states, we shall choose as an example
the exchange coupled pairs of PC in a crystal. In Fig. 5
the dependences of energy of the ground state of the ex-
change coupled pairs of PC for parameters of metal-am-
monia solution are presented. The curve (1) corresponds
to the consideration performed without any account of
electron correlations (hydrogen-like WF), the curve (2)
corresponds to the energy of exchange coupled pairs de-
signed in view of electronic correlations for n = 5 in ex-
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Fig. 5. Dependencies of energy of the ground state of the ex-
change coupled pairs of PC for parameters of metal-ammonia
solution, curve (1) corresponds to the consideration performed
without account of electron correlations (hydrogen-like WF),
the curve (2) corresponds to the energy of exchange coupled
pairs designed in view of electronic correlations for n = 5 in
expression (14).

pression (14). The comparison of the size of the power
minimum shows that the account of correlation effects in
crystals with ion coupling lowers it down to 12 % in com-
parison with the appropriate value calculated without
consideration of electron correlations. Notice for com-
parison that in the atomic and molecular systems the given
value does not exceed 0.1%. Thus, the most sensitive to
the account of electron correlations is the unlocal part of
two-electron system functional in a crystal describing
electron interaction with a phonon field. Let’s present
also following values: the energy F,-center in metal- am-
monia solution is — 0.166, the energy of F'-center —
0.1535, the bipolaron energy — 0.1028, the polaron en-
ergy — 0.0459, the energy of F-center — 0.0723 corre-
spondingly. The value —0.093 corresponds to the triplet
state of F'-center, i.c. the given state in considered sys-
tem is energetically unstable, as well as the triplet
bipolaron.

5. Conclusions

In the work, the study of influence of electron correla-
tions on a power spectrum of two-electronic systems in a
crystal is carried out. As the model system the crystals
with strong electron-phonon interaction are chosen. The
research of influence of electron correlations on a spatial
configuration of the bipolaron in low-dimensional sys-
tems deserves independent consideration.

The results obtained will be generalized to crystals
with intermediate electron-phonon coupling in a special
paper. Notice, only, that the conclusion about the ener-
getic disadvantage of a two-center bipolaron remains
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unchanged. Formal generalization of the results obtained
by the strong coupling method to the range of intermedi-
ate values of the Frulich electron-phonon interaction
parameter a using the formula

2

3 =2Jgy—— ho,
1-n)
(where Jp, corresponds to the bipolaron energy in the strong
coupling limit in effective Rydberg Ry* =em’ / hzsf, )
naturally gives underestimated values for the bipolaron
energy and the critical parameter /. as compared to the
results obtained by the intermediate coupling method [15,
21]. Thus, the lowest values of the bipolaron energy for
a < 8 are obtained in [20] where at a =7, n =0, Jp, is
calculated to be —16.28 ficw, while formula (24) yields —
13.38 hew.

Notice that the variation parameter a = <r; — ry>
which is treated in [20] as the mean distance at which
electrons fluctuate is analogous to the variation param-
eter R used in this paper. Our results correlate well with
the fact that the only energy minimum of a bipolaron
corresponds to a = 0 [20].

In the range 8 < a < 25, the lowest value of the
bipolaron functional corresponds to the results of [15]
and for 25 < a'the upper bound of the bipolaron energy is
determined by the formula (24).

In spite of the fact that the study of influence of elec-
tronic correlations on a spatial of bipolaron configura-
tion, carried out by us, has shown that two — center
bipolaron is energetically unprofitable, we shall notice
that the first works devoted to study of the bipolaron and
which have proved a basic opportunity of its formation
were executed just for the two-center one [4]. And in [21],
also executed for the two-center configuration, it was
shown for the first time that the transition to anisotropic
systems results in stabilization of bipolaron. This cir-
cumstance, naturally, allocates works [4,21] in a number
of the subsequent works devoted to study of various as-
pects of the theory of bipolarons as basic ones, in spite of
the fact that trial VF were chosen not by the most success-
ful image.

At the same time the account of an oscillatory spec-
trum of the bipolaron in the vicinity of nonexistent mini-
mum, appropriates the two-center configuration of
bipolaron [9] is an example of study of a fictitious effect,
existence of which is impossible even to suppose.

(22)
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