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The equation of state is investigated for an Ising-like model in the framework of collective variables method. The

peculiar feature of the theory is that a non-classical van der Waals loop is extracted. The results are compared

with the ones of a trigonometric parametric model in terms of normalized magnetization, M̃ , and field, H̃ .
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Recently, in [1] it was shown that considering the system of Ising spins in an external field within

the collective variables (CV) method [2, 3], a contribution to free energy can be singled out that is an

analogue of Landau free energy. As a consequence, a non-classical van der Waals (vdW) loop is obtained.

In the present paper, the shape of the loop is investigated. A comparison is made with similar results

of [4], where vdW loop was obtained for a system with a scalar order parameter using a trigonometric

parametric model for scaling behaviour near criticality. The discussion on whether such a loop exists

naturally and whether it has any physical manifestations can be found in [5]. Our purpose in this paper

is to compare the results from CV theory with the other ones.

We consider a system of N Ising spins on a simple cubic lattice of spacing c. The Hamiltonian of such

a system is well known

H =−
1

2

∑

i , j

Φ(ri j )σiσ j −H
∑

i

σi . (1)

Here, the spin variables σi take on ±1, H is the external field, and Φ(ri j ) is a short-range interaction

potential between spins located at the i -th and j -th sites of separation ri j . The interaction potential can

be chosen in the form of exponentially decreasing function, Φ(ri j ) = const ·exp(−ri j /b), with b being an

effective range.

The partition function Z =
∑

{σ} e−βH, where β = (kBT )−1 is the inverse temperature, can be writ-

ten in terms of collective variables ρk [2, 3]. In “ρ4-model” approximation, the explicit form for such a

representation is as follows:

Z = Z0

∫

(dρ)N0 exp

[

a1

√

N0ρ0 −
1

2

∑

k∈B0

d(k)ρkρ−k −
a4

4!
N−1

0

∑

ki∈B0

ρk1
. . .ρk4

δk1+...+k4

]

. (2)

Here, the quantity d(k) contains the Fourier transform of the interaction potential

d(k) = a2 +βΦ̃(0)Φ̄−βΦ̃(k). (3)

For Φ̃(k), we use the so-called parabolic approximation

Φ̃(k) =

{

Φ̃(0)
(

1−2b2k2
)

, k É B0 = B s−1
0 ,

Φ0 = Φ̃(0)Φ̄, B0 < k É B,
(4)
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Table 1. Numerical values of some quantities used in the present calculations.

b/c s0 βcΦ(0) Φ s E1 E2

0.3 2.0 1.6411 0.32898 3.5977 24.551 8.306

f0 h0 c1k ϕ0 Φ f n0

0.5 0.760 1.176 0.5938 0.105 0.5

where Φ0 is some average value for Φ̃(k) with large k, which is defined by parameter Φ̄.

Strictly speaking, the wave vector k takes on the values from the first Brillouin zone

B = {k = (kx ,ky ,kz )| ki =−
π

c
+

2π

c

ni

Ni
; ni = 1,2, . . . , Ni ; N 3

i = N ; i = x, y, z}. (5)

In what follows, however, we will keep to the spherical approximation for the Brillouine zone so that

B = π/c is the boundary of this zone, and B0 = π/(cs0) = π/c0 is the boundary of B0. The discussion on

the choice for s0 and Φ̄ can be found in [6]. In general, s0 should depend on the ratio of the effective

interaction range b to the lattice constant c. In the present calculation, we fix b/c = 0.3 and s0 = 2. This

yields Φ̄= 0.329 and numerical values for other coefficients needed to represent the results are presented

in table 1. The quantities ai from (2) are expressed as follows:

a1 = sd/2
0 h, a2 = 1− s−d

0 , a4 = 2s−d
0 , (6)

where d = 3 is the space dimension, and h =βH is dimensionless field. In (2), the collective variables ρk

with B0 < k É B have already been integrated out so that N0 = N s−3
0 is a number of variables remaining

to be integrated.

Calculation of the partition function, equation (2), is performed according to Yukhnovskii’s

method [2]. It is based on the idea of step-by-step integration of the partition function over the subsets of

collective variables, first with B1 < k É B0, then with B2 < k É B1, and so on while averaging the Fourier

transform of the interaction potential on each step (a consequence of this averaging is that the critical

exponent η, characterizing the decay of correlation length, equals zero — as is in the case of local poten-

tial approximation). Here, Bn = Bn−1/s = B0/sn , where s is the renormalization group (RG) parameter.

This is equivalent to the Kadanoff scheme of constructing spin blocks [7, 8]. Every time when integrating

over a subset of CV, a factor — let us denote it by Qn — appears in the partition function. On performing

step-by-step integration of the partition function over np subsets, one arrives at

Z = Z0

[

Q(d)
]N0

(

np
∏

n=1

Qn

)

ZLGR , (7)

where Z0 and Q(d) give analytical contributions to free energy and are not important for the critical

behavior, Qn is the partial partition function due to fluctuations with Bn < k É Bn−1, ZLGR is the contri-

bution from k small— the limiting (inverse) Gaussian regime of fluctuations. Each of the partial partition

functions Qn is characterized by its own set of coefficients a(n)
1 , dn(0), a(n)

4 , for which the recurrence re-

lations (RR) hold [9]. The RR have a fixed point as a partial solution. That is why the quantity np is chosen

from the requirement that for n É np the RR can be linearized near the fixed point. In this case, the system

possesses the RG symmetry and is said to be in the critical regime of the order parameter fluctuations.

The quantity np is called the exit point from the critical regime.

The analytic expressions for the exit point were found for the limiting cases, h = 0 [2] and τ= 0 [10]

np =



















−
ln |h̃|

ln E1
−1, at τ= 0,

−
ln |τ̃|

ln E2
−1, at h = 0,

(8)
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where τ= (T −Tc)/Tc is the reduced temperature, E1 = 24.551 and E2 = 8.306 are the eigenvalues of the

matrix of the RG transformation linearized near the fixed point of RR,

τ̃=
c1k

f0
τ, h̃ =

sd/2
0

h0
h, (9)

where f0 = 0.5 defines the fixed-point coordinates, c1k = 1.176, h0 = 0.760. In general case, the expression

for np cannot be obtained analytically. For example, in [11] this quantity was computed numerically as a

solution to a certain equation. In any case, np should satisfy the conditions (8) in the mentioned limiting

cases. Based on this requirement, in [10] the expression was constructed for the exit point in the form

n(±)
p =−

ln
(

h̃2 +h(±)
c

2
)

2ln E1
−1, (10)

where some temperature fields, h(+)
c = |τ|βδ and h(−)

c = |τ1|
βδ, are introduced, β and δ are the critical

exponents1 of magnetization. In our approach,

β= 0.302 and δ= d +2 = 5, (11)

where d = 3. The signs “+” and “−” are related to T > Tc and T < Tc, respectively. In what follows, we

will mainly omit the superscript ±. Finally, τ1 = −E
n0

2 τ, where n0 denotes the difference between n(+)
p

and n(−)
p for h = 0. In [12], n0 = 0.5 is chosen to recover the universal ratio of critical amplitudes for the

correlation length, ξ+/ξ− = 1.896(10) [13].

In expression (7), the quantity ZLGR is still to be expressed. A detailed explanation of how to compute

it can be found in [12, 14]. We just recall that it is expressed in the form

ZLGR = ZGZTR ·eNE0(σ), (12)

where ZTR is from the so-called transition region of fluctuations, ZG is from the region of k small, and

the contribution eNE0(σ) is the most important due to the collective variable ρ0. In the present research,

main attention is paid to this part of the partition function. The quantity E0(σ) has the form

E0 = e0h
(

h̃2
+h(±)

c

2
) 1

2(d+2)
−e2

(

h̃2
+h(±)

c

2
) d

d+2
. (13)

The following notation is used

e0 =σ0s−1/2, e2 =
1

2
σ2

0s−3

(

rnp+2 +
1

12
s3

0σ
2
0unp+2

)

, (14)

where

rnp+2 = βΦ̃(0) f0 (−1±E2Hc) ,

unp+2 =
[

βΦ̃(0)
]2
ϕ0

(

1±Φ f E2Hc

)

(15)

with Hc = τ̃
(

h̃2 +h(±)
c

2
)−1/2βδ

. The quantity σ0 is the solution of the following cubic equation

σ3
0 +pσ0 +q = 0 (16)

with the coefficients

p = 6s−3
0

rnp+2

unp+2
, q =−6s−9/2

0 s5/2 h0

unp+2

h̃
(

h̃2 +h(±)
c

2
)1/2

. (17)

1Denotation β for the temperature critical exponent of magnetization is widespread in literature, the same notation β is also

widely accepted for the inverse temperature. We hope that the context will prevent the reader from confusing one quantity with

another.
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Based on (7) and (12), the Gibbs free energy can be expressed as a sum of three terms

F (τ,h) =−kBT ln Z = Fa +F (±)
s +F (±)

0 . (18)

Here, the term Fa is the analytical part of the free energy and does not affect the critical behaviour. The

term F (±)
s is expressed as

F (±)
s (τ,h) =−kBT Nγ(±)

s

(

h̃2
+h(±)

c

2
) d

d+2
, (19)

where γ±
s includes contributions from the critical regime and from the limiting Gaussian regime (inverse

Gaussian regime in the case of T < Tc). The explicit expression for it can be found in (5.6) of [14]. Finally,

the quantity F (±)
0 from (18) is

F (±)
0 (τ,h) =−kBT N E0(σ). (20)

This contribution to the Gibbs free energy is due to the collective variable ρ0, which, as is known from

the theory of collective variables [2], is related to the order parameter. Therefore, F (±)
0 is the free energy

of ordering and can be regarded as the analogue of Landau free energy. In the case of zero external

field, such an analogue was found earlier in [15]. The order parameter of the considered system — the

magnetization — is then calculated by means of the thermodynamic formula

M0 =−
1

N

∂F (±)
0

∂H
=

∂E0(σ)

∂h
,

which leads to the expression that can be written in a compact form as

M0 =σ00

(

h̃2
+h(±)

c

2
) 1

2δ
, (21)

where δ= 5 is the critical exponent describing the field dependence of magnetization and

σ00 =






e0

(

1+
1

5

h̃2

h̃2 +h(±)
c

2

)

−
6

5
e2

s3/2
0

h0

h̃
(

h̃2 +h(±)
c

2
)1/2

−

(

∂e2

∂h

)

σ

(

h̃2
+h(±)

c

2
)1/2






. (22)

We have compared M0 with full magnetization M defined by

M =−
1

N

∂F

∂H
=−

1

N

(

∂F (±)
s

∂H
+
∂F (±)

0

∂H

)

= Ms +M0 . (23)

Figure 1. (Color online) Dependence of magnetization

on the field. Dashed line: full magnetization M , equa-

tion (23); Solid line: contribution M0 tomagnetization

due to Landau free energy, equation (21). Tempera-

tures are τ=±0.001.

Figure 2. (Color online) Magnetization (21) as a

function of the field below the critical tempera-

ture, τ=−0.001.
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The results are demonstrated in figure 1. As is seen, the magnetization of the system in stable states

[magnetization and field have the same sign, sgn (M) = sgn(h)] is well described with M0 alone. For

T > Tc, the difference between M and M0 is hardly observable in the scale of picture. For T < Tc, the

deviation of M0 from M is also minor in the regions of both M > 0, h > 0 and M < 0, h < 0. When

the system goes into metastable states [sgn(M) =−sgn (h)], the situation becomes worse as the spinodal

curve is approached, i.e., the curve of maximummagnitudes of the field for which a sign ofmagnetization

can still be opposite to a sign of the field. In this case, the term Ms in (23) becomes dominant. This is due

to the fact that we have used ZG in the form as it was calculated in [12, 14, 16], with Gaussian measure. It

is clear now that this accuracy is not sufficient to correctly account for the contributions from F (±)
s in the

metastable region. However, it is indeed sufficient in the stable region. Therefore, here we will present

only the results of investigation on the basis of F (±)
0 . Note, that in order to get the vdW loop, it is necessary

to take into account all solutions of equation (16), but not only those minimizing the free energy.

In figure 2, the magnetization M0, equation (21), is presented as a function of the external field. As

is seen from the picture, the proposed approach gives a van der Waals loop. However, the critical be-

haviour is characterized by non-classical critical exponents from equation (11). In literature, arguments

can be found that a non-classical theory of critical phenomena cannot give vdW loop [17] because there

is no appropriate analytical continuation into the two-phase region. However, some phenomenological

approaches have been suggested [4, 5, 18] that incorporate both vdW loop and non-classical critical expo-

nents. We, in turn, have presented the microscopic approach in the framework of which a non-classical

vdW loop can be obtained.

In order to compare our results with the ones obtained by different methods, we appeal to work [4],

where the loop was obtained with the help of a trigonometric parametric model for the scaling behaviour

near criticality. Figure 3 presents the comparison. The dashed line is the result of Fisher with cowork-

ers [4]. The solid line denotes our results based on equation (21). Regarding the approximations, "ρ4-

model", and zero value of the small critical exponent η = 0, we see a good qualitative agreement in the

results, especially in the regions of h̃ ≈ 0 and of h̃ ≫ hc, H̃ > 2. Some qualitative discrepancy is observed

for the intermediate values of H̃ , i.e., for h̃ ≈ hc. In this domain, with increasing H̃ , our curve initially

withdraws from the dashed curve, further approaches and intersects it and then moves along with the

dashed curve below it all the time. Such a discrepancy is connected with the choice of the functional form

of np, equation (10). Although it provides correct values in the limiting cases, equation (8), it seems to fail

in the intermediate region, h̃ ≈ hc. Therefore, to improve our results we need a somewhat different func-

tional form in this value range. Another way to do so is to compute np numerically, but we do not lose

hope to solve the problem analytically and will attempt to find amore appropriate expression for the exit

point in a future work.

-3 -2 -1 0 1 2 3
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M/M0(T)

h/[M0(T)/ (T)]
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   collective variables method

T>T
c
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c

Figure 3. Scaled van der Waals loop (T < Tc) and magnetization above the critical temperature (T > Tc).

The dashed curves represent the results obtained within the extended sine model [4]. The full curves

represent the results of the collective variables method, equation (21).
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Furthermore, we observe that the loop is wider in CV theory. The spinodal value of magnetization in

CV, M̃ = 0.55 is less than the corresponding value M̃ = 0.697 from [5], which means that the CV theory, at

least in "ρ4-model" approximation, provides a wider metastable domain.

In conclusion, this work is the first attempt to investigate the van der Waals loop using the collective

variables method, which is essentially a microscopic approach. This investigation is important because

there is lack of non-classical theories that give the vdW loop. Some quantitative disagreement of our

result in comparison with the ones obtained in [4], can be associated with the model approximation,

since the calculations are carried out using the simplest non-Gaussian approximation, i.e., ρ4-model. The

obtained result can be improved both in a formal way, by appropriately choosing the functional form of

the exit point np, and in a conceptual way, to which can be attributed (a) investigation of the system in

a higher approximation, i.e., ρn -model with n > 4 (for n = 6 see [19]), (b) the inclusion of corrections to

scaling [15], and (c) the averaging of the interaction potential [20], the latter resulting in η, 0. All of these

will be the scope of a forthcoming paper.
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Некласична петля ван дер Ваальса:

метод колективних змiнних

Р.В. Романiк, М.П. Козловський

Iнститут фiзики конденсованих систем НАН України, вул. I. Свєнцiцького, 1, 79011 Львiв, Україна

Проводиться дослiдження рiвняння стану iзинґоподiбної моделi в рамках методу колективних змiнних.

У використаному пiдходi одержується некласична форма петлi ван дер Ваальса. Проводиться порiвнян-

ня, в термiнах перенормованих змiнних намагнiченостi i поля, отриманих результатiв для петлi ван дер

Ваальса з результатами тригонометричної параметричної моделi представлення критичної поведiнки.

Ключовi слова: петля ван дер Ваальса, некласична критична поведiнка, скалярний параметр порядку
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