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The collision smearing of the nucleon momenta about their initial values during relativistic nucleus-nucleus
collisions is investigated. To a certain degree, our model belongs to the transport type, and we investigate
the evolution of the nucleon system created at a nucleus-nucleus collision. However, we parameterize this
development by the number of collisions of every particle during evolution rather than by the time variable.
It is assumed that the group of nucleons which leave the system after the same number of collisions can be
joined in a particular statistical ensemble. The nucleon nonequilibrium distribution functions, which depend on
a certain number of collisions of a nucleon before freeze-out, are derived.
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1. Introduction

The problem of isotropization and thermalization in the course of collisions between heavy relativis-
tic ions attracts much attention, because the application of thermodynamic models is one of the basic phe-
nomenological approaches to the description of experimental data. Moreover, the assumption regarding
a local thermodynamic equilibrium, along with other factors, is successfully used in various domains of
high-energy physics. Meanwhile, many questions concerning this problem remain open for discussion.

The main goal in the investigations of the collisions of relativistic nuclei is to extract the pertinent
physical information on the nuclear matter and its constituents. In the present paper we propose a trans-
parent analytical model of the nucleon spectrum which occurs in the course of relativistic heavy-ion
collisions. Our model is aimed at extracting the physical information from the nucleon spectra which
concerns the nonequilibrium processes.

Let us look at the cross-section of a multiparticle production during the collision of two nuclei “A”
and “B” (see figure[I). In order to describe of the nucleon subsystem one can parameterize the final state
of the nucleon ensemble by 4-vector Ky = (En, Ky). In the center of mass of this N-nucleon ensemble,
where K = 0, the total cross-section reads

_ dl\;anucleon3 ﬁ w(p,) =W(py, psr---» PN)O | En— i wp,)|, (1)
dEpidipe...dPpyn 5 Ex n=1

where w(p) = / m2 + p2 (in the final state, the particles are regarded as free ones) and we adopt the
system of units where the speed of light ¢ = 1. Due to the presence of the §-function, which “fixes” the
energy of the nucleon system, the last expression () looks like a probability in the microcanonical ensem-
ble. Then, it is reasonable to make the Laplace transform with respect to the energy Ey of the nucleon
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It turns out that now one can describe the final state of the nucleon subsystem through one of the two
parameters: the total energy Ex or the parameter f.

All the above formulae were introduced for a brief discussion of the basics of the statistical model (for
details see [1,[2]). Actually, the statistical model neglects all the dynamics accumulated in the transition
probability W in favor of the features of the phase space. Formally this is expressed like approximation:

W(py, py-.., Py) = const. 3

Then, from @) one immediately obtains the multi-nucleon cross-section parameterized by S:

dNUnuc]eon ﬁ w(p ) — ﬁ WVL e—ﬁw(Pn) (4)
d3p1d3p2---d3pN n=1 " g n=l

where W,, are some constants and ]'[2’:1 W, = const.

On the other hand, the statistical description, which arises after freeze-out, is conceptually restricted
just to several conserved quantities: total energy of the system E, number of particles NV, and conserved
charges such as the baryon number. Of course, this dependence can be transferred to the descriptions
by means of conjugate quantities: parameter § and chemical potentials which are in correspondence
with N and the conserved charges. As we see from @), this description provides a certain information on
the spectrum of the registrated particles. Meanwhile, any dynamical information on multiscattering pro-
cesses during collisions is lost. At the same time, it is well understood that a microscopic description can
be carried out just on some level of approximation. For instance, if it is possible to factorize the transition
probability W, i.e., to write it in the form W (p,, p,,..., py) = I"[I,:[:1 W(p,,), we come to factorization of
the multi-nucleon cross-section for the particles of one species

dNUnucleon N _ l—[N w -pop,)
dpdip,...d3py 1w(p") g Pnle ' ®
en n= B n=

The approximation of the sequential rescatterings of a particle during collision of nuclei which is pro-
posed in the present paper is exactly in this framework. We follow the chain of reactions (rescatterings)
of every nucleon that goes through a number of hadron transformations, and we obtain a single-particle
spectrum of the nucleon W,, (p) which depends on the number M of collisions (reactions) of the nucleon
(of the baryon characterized by the baryon number B = 1).

We argue that the number of nucleon collisions (reactions) at AGS and SPS energies is finite and the
maximal number of collisions Mpax is not more than Mp,ax = 43. Apart from this, all the nucleons which
are freezed out during a particular nucleus-nucleus collision, can be subdivided into groups. In every
group, the nucleons went through the same number M of collisions. We determined that the most popula-
ted groups are for the number of collisions M which are in the range: M = 14 —17. Starting from the initial
moment of the nucleus-nucleus collision, we follow the sequential collisions of every nucleon through the
opposite nucleus (see figure[). Nevertheless, the original nucleon can be transformed during a particular
collision into another particle, for instance into delta isobar A*. Then, we follow a new particle which
carries the same charges (the baryon number, electrical charge, etc.) as the original nucleon. During the
last collision (it can be a decay), all these “intermediate” particles transform back into nucleons. Hence,
we can investigate just nucleons in the final state. Starting from this point, every group of nucleons in the
final noninteracting state is the subject of a statistical model. For the multiscattering stage of evolution,
we treat UrQMD [3, 4] as a source of “experimental data” which we use to adjust the parameters of our
model.

We propose a mutually complementary combination of these two approaches, i.e., an approximate
description of the dynamical stage of evolution of nucleons during the nucleus-nucleus collision which is
completed with a statistical description of the nucleon freezed out stage. Our approach is based on “The
multiscattering-statistical model” elaborated by us.
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2. The multiscattering-statistical model

Consider successive variations of the momentum of a nucleon from nucleus A (see figure [[) which
moves along the collision axis from left to right through the nucleus B. Every m-th collision induces the
momentum transfer, q,,, for this nucleon. Consequently, after M collisions, the nucleon acquires the
momentum k:

ko — ko+tq, — kot+tq,+q, — -+ — ko+Q=k. (6)

where Q = Z%Zl q,, is the total momentum transfer finally obtained by our nucleon after M collisions
(see figure[2). If the M-th collision is the last one, then the nucleon is free after having been freezed out
from the system. As a matter of fact, it will be a group of such nucleons which experienced the same num-
ber of collisions M before the freeze-out. The relation of these nucleon groups (nucleon sub-ensembles)
to the spectrum is discussed in the next section.

N-particle system "A' MN-particle system "B'
6 0 O™ &k /6% o
O A : o
OQOOOO: ST © % o
o O o) (] zZ
.0 0% o Fgo
200 o <
Figure 1. Two colliding identical nuclei. Two- Figure 2. Transformation of the initial nucleon mo-
stream system is created during the collision of mentum, kg, as a result of M collisions; Q =
every nucleon from nucleus “A” with nucleons Z%:I q,, is the total momentum transfer after M
from nucleus “B” and vice versa. collisions, g, is the momentum transfer in the m-th

collision.

We assume that all the momentum transfer g, obtained by the nucleon from the nucleus “A” during
its travel through the system “B” are some random quantities. Then, when the number of collisions M
is big enough in accordance with the central limit theorem, the distribution of the random quantity Q
should be a Gaussian one

1
Gy (k)= —exp
Z

M

552 @)

M} B {_(k—ko—<Q>M)2}’

1
G(Q) = —exp+ —
z p{ 204,
where we take into account the equation (@), i.e., Q = k — ko, and explicitly write the dependence on
the final momentum of the nucleon k. Here, z is the normalization constant. Actually, this distribution
depends on the number M of random quantities ¢, g, ..., g, which coincides with the number of
collisions M experienced by the nucleon before being freezed out.
Further, we design the many-particle distribution function Gy (Ens; k1, k2, ..., kn) as

~ 1 ~ ~ ~
Gy(Ep k) = —— Gy (Epps k), k=(ki, ko, ..., ky), 8
M(En; k) A En) M(En; k) (ky, k2 N) ®
where )
~ ~ N k,—ko—(Q) N
Gpm(Enm; k) = Hexp{—( no 5 Q) }6 EM—Zw(kj)], 9)
n=1 207 =1

and make the Laplace transform with respect to the total energy Eps

Gm (B k) = f dEy e PEMGr(Ers k),  Zm(P) = f dEpn e PEM Apr(Epy). (10)
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Basically, from now on, any physical quantity that depends on the nucleon momenta, can be averaged
using the many-particle distribution function

~ 1 ~ ~
G k) = ———G i k). 11
M (B; k) Zn P M (B; k) (11)

If we introduce expression (3 into (I0), then in the framework of the multiscattering-statistical model
(MSS-model) we obtain

(kn—ko—(Q)
20‘?\4

. 1 Mu
Gum(B,,; k) I1 exp{ -Bwlk,) -

)2 Ny,
= = (kn), (12)
ZM (ﬁM n=1 } rgl fM

where Z,,(8,,) = [zM B M)]NM and the single-particle distribution function is as follows:

(k- ko~ (Q) ) }

2
20’M

1
2y (By)

with z,,(B,,) as the single-particle partition function. Note, a derivation of the analogous distribution can
be found in [5,6].

fuk) = exp{ —B,,wk) - (13)

3. Two-stream dynamics

Based on the obtained results, we are coming to a description of a two-stream system which is cre-
ated in the course of relativistic nucleus-nucleus collisions. The description is based on the following
assumptions:

1. Starting from the initial state (first touch of the colliding nuclei), at an arbitrary moment of time,
there are two systems of nucleons: one system consists of nucleons with a positive z-component of
the nucleon momentum, i.e., p; =0 (we refer to this system as “A”) and the second system consists
of the nucleons with a negative z-component of the nucleon momentum, i.e. p, < 0 (we refer to this
system as “B”, see figure [1). Even after the freeze-out, there is a good enough separation of these
systems along p-axis.

2. The number of collisions of every nucleon (hadron) is finite because the lifetime of the fireball is
limited. To determine the maximal number of collisions, My, in a particular experiment we use
the results of UrQMD simulations [3, 4].

3. Since the colliding nuclei are spatially restricted, different nucleons experience a different number
of collisions, and it is intuitively clear that the collision histories of the inner nucleons and sur-
face nucleons will be different. That is why, we subdivide all the freezed out nucleons (nucleon
ensemble) into different nucleon sub-ensembles in accordance with the number of collisions M
the nucleons went through before being freezed out. Then, the nucleons from every sub-ensemble
give their own contribution to the total nucleon spectrum.

It is time to write a two-stream distribution function Fj;(p) which, in accordance with the first as-
sumption, should take into account the spectrum produced from both particle streams, “A” and “B”. Being
normalized to unity, a two-stream distribution function looks as follows:

1
Fau(p) = 5 | fif () + GRCIE 1)
where ) )
1 k (kz— Koz = (Q2) )
(a) k) = _ k N S — 15
R v v R e % w
and ) )
k (kz+k0z+<Qz>M)
(b) k — _ k _7J‘ — 16
R R il L R "
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with ko = (0, 0, ko) and we assume (03%) py = (0’?,) M = (0%)m . Here, the single-particle partition function

reads z,,(8,,) = [ d®k/(2n)? IE,?) (k). Now, the slope parameter f3,, reflects also a collective motion of the
M-th nucleon sub-ensemble moving in the laboratory system.

‘ Au+Au. 10.8. 40. 80 AGeV. Pb+Pb. 158 AGeV ‘ ‘ Au+Au, 2, 10.8, 20, 40, 80 AGeV; Pb+Pb, 158 AGeV
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Figure 3. (Color online) The populations N of the Figure 4. (Color online) The z-component of the
nucleon sub-ensembles which depend on the num- mean momentum transfer versus the number of
ber of collisions M. The result is obtained from the collisions.

UrQMD simulations for the most central collisions.

Keeping in hands the two-stream distribution functions Fp;(p), where M =1, 2, ... Mpyax, One can
construct the nucleon spectrum which occurs in the course of a central nucleus-nucleus collision. If we
denote the number of particles in a particular sub-ensemble, where the nucleons experienced M colli-
sions, by Ny, then in the c.m.s. of the colliding nuclei, the total nucleon spectrum is as follows:

dN Mmax Mmax
= = Y NuFm(p), with Y Ny = N, 17)
d°p M=1 M=1

where Nitq is the total number of net nucleons. The number of nucleons Ny in every sub-ensemble cal-
culated for different energies with the help of the microscopic transport model UrQMD [3, 4] is depicted
in figure Bl Every sub-ensemble of nucleons can be described as an ideal gas which moves with some
collective velocity.

4. Extraction of physical parameters from the data

First we obtain from UrQMD [3, 4] the longitudinal distribution of nucleons for every M-th sub-
ensemble. The distributions for the stream “A” (positive p;) and the stream “B” (negative p;) were ob-
tained separately. We refer to this pool of distributions as “UrQMD data”. We fit the “UrQMD data” on the
longitudinal distribution of nucleons of the M-th sub-ensemble of the stream “A” exploiting the theoret-
ical distribution function integrated over a transverse momentum. The variations of the theoretical
distribution function were provided by four parameters: (Qz) s, B, (O'i) » and (02),,- The results of
the fit of the “UrQMD data” (nucleon longitudinal distributions) for the energies 10.8 and 158 AGeV are
depicted in figure

The dependence of the parameters with respect to the number of reactions, M, of the nucleon before
the freeze-out is shown in the following figures: The slope parameter T,, = 1/,, in figure[€] (the curves
marked with square symbols) and the temperature Ty (the curves marked with circle symbols); The mean
value of the shift of the distribution function, (Q.),,, in figure 4} The longitudinal variance (ai) M in
figure[8l Note, we use the system of units where the Boltzmann constant is unit, kg = 1.

Temperature of the hot ideal gas Ty is determined in the local rest frame of the gas. This temperature

is connected with the total kinetic energy of N particles (nucleons) in the local rest frame in the following
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Figure 5. The spectrum of the M-th nucleon sub-ensemble (M = 6,10, 18, 30) with respect to pz-
component of the nucleon momentum calculated using the UrQMD transport model for Au+Au collision
(black squares). The grey curves are the fits of the UrQMD data within the framework of the proposed
multiscattering-statistical model (MMS-model).

way:

E ¢
N

- 3T0+mNK1(mT;V)/KZ(mT;V). (18)

In our model E,¢ is the total kinetic energy of the sub-ensemble of nucleons in the rest frame of this
group of particles, m,, is the nucleon mass (E;¢ =y[E—-V P;|, y=1/V1-V?).

| AutAu, 10.8 AGeV | | Pb+Pb, 158 AGeV |
0,30 T T T T T T T T 0,8 T T T T T T T
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Figure 6. (Color online) Dependence of the slope parameter T,, (curve marked with squares) and tem-
perature Ty (curve marked with circles) on the collision number M for different energies of the nucleus-
nucleus collision: 10.8, 158 AGeV.

To obtain the transverse distribution we integrate the “A”-stream distribution function over the
longitudinal component of the nucleon momentum. The results of the description of the “UrQMD data”
on the nucleon transverse distribution for the energy 20 AGeV is depicted in figure [7] (left hand panel).
For this description, we use the same values of parameters (Qz) s, B,,» (02) a and (Ui) A Which were
obtained during the fit to the “UrQMD data” on nucleon longitudinal distributions. The experimental data
for transverse nucleon distributions in central Au+Au reactions at pja, = 11.6A GeV/c [7] were described
using the formula (@7, the result is depicted in figure [7 (right hand panel). We see a good agreement of
the description with experiment.
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Figure 7. (Color online) Fit of the UrQMD data (left panel) and description of the experimental data [7] on
nucleon transverse distribution in central Au+Au reactions at pj,, = 11.6A GeV/c (right panel).

5. Discussion and conclusions

The description of a many-particle system, which is in thermal equilibrium state, can be regarded
as quite understandable and complete by means of the temperature and chemical potential if the latter
is needed. Then, to obtain the value of the temperature, one has to fit the particle spectrum data using
one of single-particle distribution functions. The fitting procedure is nothing more as an extraction of the
physical quantity, i.e., “temperature”, from the data.

Au+Au, E=10.8 AGeV |

Pb+Pb, E=158 AGeV

61 T T T T T 20— T T T T T
2
5‘ 1 ~ Glong
N/\ —~~ 15< 2
o 4« 4 2 trans
3 >
> ®
Q, 31 1 @, 10
~ 27 ] ST
“o © 5] ]
¥ A W
04— T T r T T 0+ T T T T T
5 10 15 20 25 30 5 10 15 20 25 30
M M

Figure 8. (Color online) Longitudinal and transverse variances, (0%) M and (a‘j‘_)M, versus the number
collisions M for collision energies 10.8 and 158 AGeV.

Next, if we come to the description of a many-particle system in a nonequilibrium (nonstationary,
nonhomogeneous) state, a natural question arises: which set of parameters is needed to get a relevant
physical picture of the many-particle system, which state evolves in time? Of course, by the words “phys-
ical picture” one means a physical interpretation of the parameters of a model. The set of parameters of
a model, as well as the behavior of the evolution of the parameters take the form of a specific language
based on which we investigate, describe and “understand” our nonequilibrium many-particle system and
the processes inside it.

In the present paper for description of a nonequilibrium state we propose three parameters, which
are defined in “The Multiscattering-Statistical Model”.

1. The slope parameter T (M) = 1/, which reflects as well a collective motion of the nucleon sub-
ensemble. Its dependence on the number of collisions M experienced by nucleons, which belong to
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M-th sub-ensemble, is depicted in figures[6l By means of the energy per particle (after the freeze-
out), this parameter is directly connected with the instant temperature Ty(M) of the M-th nucleon
sub-ensemble which is defined in the frame where the sub-ensemble is in rest.

2. The mean value of z-component of the total momentum transfer (Qz),s = ng:l(qz)m, which is
related to the kinematics of a particle-particle collision.

3. The variance of the Gaussian distribution. Actually, due to the different collision dynamics along
the different axis, the variance is split in two pieces: a) The longitudinal variance (¢%),,. b) The
transverse variance (0% ) - Infigures[8] the behavior of the transverse variance is confronted with
the longitudinal variance. We see a steady broadening of the transverse distribution with an in-
crease of the number of collisions M in the nucleon sub-ensemble. Indeed, the initial transverse
variance of nucleons is approximately zero on the scale of collision energy. The distribution of nu-
cleons around the initial value in the transverse direction becomes broader and broader with time.

We can conclude that the evolution of the physical parameters of “The Multiscattering-Statistical
Model” elaborated in the present paper gives a transparent insight into the dynamics of the net nucle-
ons in the course of relativistic nucleus-nucleus collisions. The appearance of the Gaussian distribution
as a factor in the nonequilibrium distribution function of nucleons, see {I5), is common in describing any
multiscattering process with a big but finite number of rescatterings of the particle when we can regard
every particular scattering independent of others. This condition is especially satisfied for the nucleons
in the course of high energy heavy-ion collisions when the particle wavelength A = /i/ p is much smaller
than the mean distance between the nucleons in a nucleus.
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HepiBHoBa)kHi PYHKLiT po3noginy HyKNOHIB Npun
pensaTNBICTUYHNX AAPO-AAEPHUX 3iITKHEHHAX

A. AHunwkiHE, B. Ha6oka2, X. Kneliman®

L IHCTMTYT TeopeTnyHoi ¢isnkm im. M.M. boronto6osa, 03680 Knis, YkpaiHa
2 KniBCbKMiA HaLjioHaNbHWIA yHiBepcuTeT iMeHi Tapaca LUesueHka, 03022 Knis, YkpaiHa
3 YHiBepcuTeT Keiin TayHa, PoHgebow 7701, MiBgeHHO-AdpukaHcbka Pecnybnika

JoCnigxy€eTbCa pO3MUTTS iMMYNbCIB HYKIOHIB HABKO/IO CBOIX MNOYAaTKOBUX 3HayeHb, sike BifOYBaETbCA B pens-
TUBICTUYHNX SAPO-AAePHUX 3iTKHEHHSsX. Halla Mojenb BiAHOCUTLCSA, NEBHOK MipOto, A0 TPAHCMOPTHUX, MU A0-
CNiANAN eBONIOLLiH0 HYKIOHHOI CMCTeMU, CTBOPEHOI B AAPO-AAEPHUX 3iTKHEHHSAX, ane M1 NapaMeTpusyemo Leii
PO3BUTOK He YacoM, a YMNCAOM 3iTKHEHb KOXHOI YacTUHKW. MprnycKaeTbes, Lo rpyna HYKAOHIB, fKi 3auLwatTb
CUCTeMy 3a3HaBLUM OAHAKOBY KiNbKiCTb 3iTKHEHb, MOXYTb 6yTW 06'€iHaHi B MEBHUIA CTAaTUCTUYHWIA aHCaMb/lb.
O6paxoBYETbCA HepiBHOBaXKHa GYyHKLis PO3MNOAiNYy HYKIOHIB B iMNYyAbCHOMY MPOCTOPI, fika 3a1eXWTb Bij nes-
HOrO Yncna 3iTKHeHb HYK/IOHa nepej BUNPOMIHIOBaHHAM i3 cucTeMu.

KntouoBi cnoBa: pesisiTuBiCTNYHI 3iTKHEHHS, HEPIBHOBaXHAa QYHKLiSi PO3MOAiNy, CrieKTp HYK/OHIB,
napamertpu3sawis eBonoyii

13201-9






	Introduction
	The multiscattering-statistical model
	Two-stream dynamics
	Extraction of physical parameters from the data
	Discussion and conclusions

