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An analogy of the Fokker-Planck equation (FPE) with the Schrödinger equation allows us to use quantum me-

chanics technique to find the analytical solution of the FPE in a number of cases. However, previous studies have

been limited to the Schrödinger potential with a discrete eigenvalue spectrum. Here, we will show how this ap-

proach can be also applied to a mixed eigenvalue spectrum with bounded and free states. We solve the FPE with

boundaries located at x =±L/2 and take the limit L →∞, considering the examples with constant Schrödinger

potential and with Pöschl-Teller potential. An oversimplified approach was proposed earlier by M.T. Araujo and

E. Drigo Filho. A detailed investigation of the two examples shows that the correct solution, obtained in this

paper, is consistent with the expected Fokker-Planck dynamics.
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1. Introduction

The one–dimensional Fokker-Planck equation (FPE) for the probability density p(x, t), depending on

variable x and time t , assumes the generic form [1–7]

∂p(x, t)

∂t
=−

∂

∂x

[

f (x, t)p(x, t)
]

+
∂2

∂x2

[
D(x, t)

2
p(x, t)

]

. (1.1)

Here, the drift coefficient or force f (x, t) and the diffusion coefficient D(x, t) depend on x and t in general.

The Fokker-Planck equation is related to the Smoluchowski equation. Starting with pioneering works by

Marian Smoluchowski [1, 2], these equations have been historically used to describe the Brownian-like

motion of particles. The Smoluchowski equation describes the high-friction limit, whereas the Fokker-

Planck equation refers to the general case.

The FPE provides a very useful tool for modelling a wide variety of stochastic phenomena arising

in physics, chemistry, biology, finance, traffic flow, etc. [3–6]. Given the importance of the Fokker-Planck

equation, different analytical and numerical methods have been proposed for its solution. As it is well

known, the stationary solution of FPE can be given in a closed form if the condition of a detailed balance

holds. The study of the time-dependent solution is a much more complicated problem. The FPE (1.1) with

a general time-dependence and a special x-dependence of the drift and diffusion coefficients has been

studied analytically in [7] using Lie algebra. This method is applicable when the Fokker-Planck equation

has a definite algebraic structure, which makes it possible to employ the Lie algebra and the Wei-Norman

theorem. Generally, there are only a few exactly solvable cases. A simple example is a system with con-

stant diffusion coefficient and harmonic interaction of the form f (x) =−dV (x)/dx with harmonic poten-

tial V (x) ∼ x2. The case with double-well potential is already quite non-trivial and requires a numerical

approach [8].

The known relation between the Fokker-Planck equation and the Schrödinger equation can also be

used. This approach allows us to apply the well known methods of quantum mechanics. In particular,
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analytical solutions can be found in the cases, where the eigenvalues and eigenfunctions for the consid-

ered Schrödinger potential are known. For a general Schrödinger potential, numerical treatments used

in quantum mechanics, such as the Crank-Nicolson time propagation with implicit Numerov’s method

for second order derivatives [9], are very useful. To apply it to Schrödinger-type equation, we just need to

replace the real time step ∆t by an imaginary time step ∆t →−i∆t . In quantum mechanics, this is called

imaginary time propagation and is used for calculation of both ground states and excited states. The an-

alytical studies of mapping the FPE to Schrödinger equation have been so far restricted to a treatment

of discrete eigenstates. An attempt has been made in [10] to extend this approach to the potentials with

a mixed (discrete and continuous) eigenvalue spectrum. However, we have found a basic error in this

treatment, indicated explicitly in the end of section 4.3.

The aim of our work is to show how the problem with mixed eigenvalue spectrum can be treated

correctly. We will show this in two examples: one with constant Schrödinger potential and another with

Pöschl-Teller potential. The same example has been incorrectly treated in [10]. To avoid any confusion

one has to note that the Pöschl-Teller potential is referred to as Rosen-Morse potential in [10].

2. Solution of FPE with constant diffusion coefficient

We start our consideration with the one-dimensional Fokker-Planck equation (1.1) in the following

formulation
∂p(x, t)

∂t
=−

∂

∂x

[

f (x)p(x, t)
]

+
D

2

∂2p(x, t)

∂x2
(2.1)

for the probability density distribution p(x, t), depending on the variable x and time t . Here, f (x) is the

nonlinear force and D is the diffusion coefficient, which is now assumed to be constant. We consider

natural boundary conditions

lim
x→±∞

p(x, t) = lim
x→±∞

∂p(x, t)

∂x
= 0 (2.2)

and take the most frequently used initial condition

p(x, t = 0) = δ(x − x0) (2.3)

in the form of the δ-function. This FPE (2.1) can be transformed into an equation of Schrödinger type

(see section 2.2). Unfortunately, the well known relation [see equation (2.25)], derived for the discrete

eigenvalue spectrum, cannot be applied if this equation has a continuous or mixed eigenvalue spectrum.

To overcome this problem, we follow a properly corrected treatment of [10]. Namely, we solve the FPE

with boundaries located at x =±L/2 and then take the limit L →∞ (see section 2.3). This approach is used

in quantum mechanics to describe unbounded states. To keep a closer touch with quantum mechanics,

here we will use the boundary conditions p(x =±L/2, t) = 0, further referred to as absorbing boundaries.

2.1. The stationary solution

The stationary solution pst(x) is the long-time limit of p(x, t) at t →∞, which follows from the equa-

tion

0 =
d

dx

[

f (x)pst(x)
]

−
D

2

d2pst(x)

dx2
. (2.4)

The force f (x) can be expressed in terms of the potential V (x) via f (x) =−dV (x)/dx. It yields

0 =−
d

dx

[
dV (x)

dx
pst(x)+

D

2

dpst(x)

dx

]

. (2.5)

Due to the natural boundary conditions, we have zero flux

jst(x) ≡−
dV (x)

dx
pst(x)−

D

2

dpst(x)

dx
=C with C = 0 . (2.6)
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Thus, we have

dpst(x)

dx
=−

2

D

dV (x)

dx
pst(x) , (2.7)

dpst(x)

pst(x)
=−

2

D
dV (x) , (2.8)

which yields the stationary solution

pst(x) =N
−1Y (x) , (2.9)

where

Y (x) ≡ exp

[

−
2

D
V (x)

]

(2.10)

has the meaning of an unnormalized stationary solution only in case of natural boundaries and N is the

normalization constant

N =
+∞∫

−∞

dx exp

[

−
2

D
V (x)

]

. (2.11)

This function Y (x) is further used to construct a time-dependent solution.

2.2. The time-dependent solution with discrete eigenvalues

Here, we derive a time-dependent solution, starting with the transformation p(x, t) → q(x, t) defined

by

p(x, t) = Y 1/2(x) q(x, t) ≡ exp

[

−
2

D

V (x)

2

]

q(x, t) . (2.12)

This transformation removes the first derivative in the original Fokker-Planck equation and generates

the equation of Schrödinger type for the function q(x, t), i. e.,

∂q(x, t)

∂t
=−VS(x)q(x, t)+

D

2

∂2q(x, t)

∂x2
, (2.13)

where

VS(x) =−
{

1

2

d2V (x)

dx2
−

2

D

[
1

2

dV (x)

dx

]2}

(2.14)

is the so-called Schrödinger potential. In the case of discrete eigenvalues, we apply the superposition

ansatz

q(x, t) =
∞∑

n=0

an(t)ψn(x) . (2.15)

After inserting (2.15) into (2.13), we get the eigenvalue problem

D

2

d2ψn (x)

dx2
−VS(x)ψn (x) =−λnψn (x) (2.16)

for eigenfunctions ψn(x) and eigenvalues λn Ê 0 with time-dependent coefficients an(t) given by

an(t)= an (0)exp(−λn t) . (2.17)

According to this, equation (2.15) can be written as

q(x, t) =
∞∑

n=0

an(0)e−λn tψn (x) . (2.18)

The eigenfunctions ψn(x) are orthonormal, i. e.,

+∞∫

−∞

ψn (x)ψm(x)dx = δnm (2.19)
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and satisfy the closure condition (completeness relation)

∞∑

n=0

ψn (x′)ψn(x) = δ(x − x′) . (2.20)

Equation (2.16) can be written as a Schrödinger-type eigenvalue equation with Hermitian Hamilton op-

erator H :

H ψn(x) =λnψn(x) with H =−
D

2

d2

dx2
+VS(x) . (2.21)

The coefficients an(0) in (2.18) are calculated using the initial condition

p(x, t = 0) = Y 1/2(x)q(x, t = 0) = δ(x − x0) . (2.22)

According to (2.18), this relation can be written as

Y −1/2(x)δ(x − x0) =
∞∑

m=0

am(0)ψm (x) . (2.23)

In the following, we multiply both sides of this equation by ψn (x) and integrate over x from −∞ to +∞.

Taking into account (2.19), it yields the so far unknown coefficients

an(0) = Y −1/2(x0)ψn(x0) . (2.24)

The final result of this calculation reads

p(x, t) =

√

Y (x)

Y (x0)

∞∑

n=0

e−λn tψn(x0)ψn (x) . (2.25)

Note that this method can also be used for other boundary conditions. The solution in the general form

of (2.25) is well known from older studies, e. g., [11] and can be found in many textbooks, e. g., [3, 4].

2.3. The time-dependent solution with mixed eigenvalue spectrum

Consider now the problem with two absorbing boundaries located at x =±L/2 instead of the natural

boundary conditions. In this case, we have a discrete eigenvalue spectrum, and equation (2.25) can be

used (with summation over exclusively those eigenfunctions which satisfy the boundary conditions in a

box of length L) to calculate the probability distribution pL(x, t), i. e.,

pL(x, t) =

√

Y (x)

Y (x0)

∞∑

n=0

e−λn,L tψn,L(x0)ψn,L(x) , (2.26)

where λn,L are eigenvalues andψn,L(x) are the corresponding eigenfunctions, which fulfill the boundary

conditions. Let us split this infinite sum into two parts: for λn,L <λcon and λn,L Êλcon, where λcon is the

smallest continuum eigenvalue in the case of natural boundaries. This eigenvalue spectrum is shown

schematically in figure 1, where the value of λcon is shown by a horizontal dotted line, the eigenvalues

λn,L <λcon — by solid lines and the eigenvalues λn,L Êλcon — by dashed lines. Let M(L) be the maximal

value of n for which λn,L < λcon and kn−M(L),L =
[

2(λn,L −λcon)/D
]1/2

for n > M(L) and ψcon
kn−M(L),L

(x) =
ψn,L(x) for n > M(L). Hence, we have

pL(x, t) =

√

Y (x)

Y (x0)

M(L)∑

n=0

e−λn,L tψn,L (x0)ψn,L(x)

+

√

Y (x)

Y (x0)
e−λcon t

∞∑

m=1

e
− 1

2 Dk2
m,L tψcon

km,L
(x0)ψcon

km,L
(x) . (2.27)

The solution with natural boundaries is the limit case L →∞

p(x, t) = lim
L→∞

pL(x, t) (2.28)
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Figure 1. A schematic view of the eigenvalue spectrum for the problem with two absorbing boundaries

at x =±L/2. The Schrödinger potential VS(x) together with the boundaries at x =±L/2 is indicated by a

solid curve and vertical lines.

or

p(x, t) =

√

Y (x)

Y (x0)

N−1∑

n=0

e−λn tψn(x0)ψn(x)

+

√

Y (x)

Y (x0)
e−λcon t lim

L→∞

∞∑

m=1

e
− 1

2 Dk2
m,L tψcon

km,L
(x0)ψcon

km,L
(x) , (2.29)

where N = limL→∞ M(L) is the number of bounded states in the case with natural boundaries. Since the

eigenfunctions cannot be normalized at L →∞, it is appropriate to write equation (2.29) for unnormal-

ized eigenfunctions ψ̄con
km,L

(x),

p(x, t) =

√

Y (x)

Y (x0)

N−1∑

n=0

e−λn tψn (x0)ψn(x)

+

√

Y (x)

Y (x0)
e−λcon t lim

L→∞

∞∑

m=1

e
− 1

2 Dk2
m,L

t N
−1

∆kL
︸  ︷︷  ︸

g−1(k ,L)

ψ̄con
km,L

(x0)ψ̄con
km,L

(x)∆kL , (2.30)

where the normalization constant N is given by

N =
L/2∫

−L/2

dx |ψ̄con
k (x)|2 (2.31)

and the expression under infinite sum is divided and multiplied by ∆kL = km+1,L −km,L .

The infinite sum can be split into two parts: one with odd m and the other with even m. If the

Schrödinger potential is symmetric, then one of these two parts contains only odd eigenfunctions ψ̄o
k

(x),

whereas the other part has only even eigenfunctions ψ̄e
k

(x). In the limit L →∞, these two sums can be

represented by corresponding integrals, yielding

p(x, t) =

√

Y (x)

Y (x0)

N−1∑

n=0

e−λn tψn (x0)ψn(x)

+

√

Y (x)

Y (x0)
e−λcon t

∞∫

0

dk e−
1
2 Dk2 t g−1

e (k)ψ̄e
k (x0)ψ̄e

k (x)

+

√

Y (x)

Y (x0)
e−λcon t

∞∫

0

dk e−
1
2 Dk2 t g−1

o (k)ψ̄o
k (x0)ψ̄o

k (x) , (2.32)
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where

ge(k) = lim
L→∞



2∆kL

L/2∫

−L/2

dx |ψ̄e
k (x)|2



 , (2.33)

go(k) = lim
L→∞



2∆kL

L/2∫

−L/2

dx |ψ̄o
k (x)|2



 . (2.34)

This representation is useful if the eigenvalues and eigenfunctions are known.

3. The analytical solution of FPE with constant force

Let us consider a constant force term. In this case, the Fokker-Planck equation (2.1) reads

∂p(x, t)

∂t
=−vdrift

∂p(x, t)

∂x
+

D

2

∂2p(x, t)

∂x2
. (3.1)

This is a drift-diffusion problem for the potential V (x) =−vdriftx normalized to V (x = 0) = 0. No station-

ary solution exists for this problem, because the normalization constant N in equation (2.11) diverges in

this case. Nevertheless, the transformation (2.12) p(x, t) = Y (x)1/2q(x, t) with

Y (x) = exp

[

−
2

D

V (x)

2

]

= exp
[vdrift

D
x
]

(3.2)

can be used here to obtain an equation of Schrödinger type (2.13) with constant Schrödinger potential

VS =
1

2D
v2

drift . (3.3)

The stationary Schrödinger-type equation corresponding to (2.21) reads

d2ψn(x)

dx2
−

[

v2
drift

D2
−

2

D
λn

]

ψn(x) = 0. (3.4)

Let us now add two absorbing boundaries located at x =±L/2, where ψ(x =±L/2) = 0.

Only in the case of real kn =
[

2λn /D − v2
drift

/D2
]1/2 > 0 equation (3.4) has non-trivial solutions

ψn (x) = A cos(kn x)+B sin(kn x) , (3.5)

which satisfy the boundary conditions. These solutions are

ψn,L (x) =







√
2
L

cos
(

kn,L x
)

if n is even,
√

2
L sin

(

kn,L x
)

if n is odd,
(3.6)

where n = 0,1,2, . . . and

kn,L =
π

L
(n+1) . (3.7)

According to (3.6)–(3.7), we have from (2.33) and (2.34)

ge(k) = go(k) =π . (3.8)

Taking into account that

λcon = lim
L→∞

min{λn,L} = lim
L→∞

min

{

D

2
k2

n,L +
v2

drift

2D

}

=
v2

drift

2D
(3.9)
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holds, we obtain from equation (2.32) the expression

p(x, t) = exp

[
1

D
vdrift(x − x0)

]

exp

[

−
v2

drift

2D
t

]

×
1

π

∞∫

0

dke−
1
2 Dk2t

[

cos(kx)cos(kx0)+ sin(kx)sin(kx0)
]

. (3.10)

Using the well known identities

cos(kx)cos(kx0)+ sin(kx)sin(kx0) = cos[k(x − x0)] (3.11)

and
∞∫

0

dk e−αk2

cos(βk) =
√

π

4α
e−β

2/4α , (3.12)

after simplification we obtain the well known result

p(x, t) =
1

p
2Dt

exp

[

−
(x − x0 − vdriftt)2

2Dt

]

, (3.13)

which describes a moving and broadening Gaussian profile.

4. Fokker-Planck dynamics with Pöschl-Teller potential

Here, as a particular example we consider the force

f (x) =−b tanh (αx) (4.1)

with some positive constants b and α. This corresponds to the diffusion problem in the potential

V (x) =
b

α
ln (coshαx) , (4.2)

normalized to V (x = 0) = 0.

Figure 2 shows that this potential is actually a smoothed version of the V-shaped potential. The corre-

sponding Schrödinger potential in this case is

VS(x) =
b2

2D
−

(
b2

2D
+

bα

2

)
1

cosh2(αx)
. (4.3)

Figure 2. Graphical representation of equation (4.2) for b = 1 and several values of parameter α.
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Figure 3. Pöschl-Teller potential (4.4) for V0 = 1 and several values of the parameter α.

If we compare it [see equation (4.4) and figure 3] with the well known Pöschl-Teller potential

VPT(x) =VS(x)−
b2

2D
=−

V0

cosh2 (αx)
, (4.4)

we see that equation (4.3) represents the shifted by b2/2D Pöschl-Teller potential with V0 = b2/2D+bα/2.

Aswe can see from figure 3, the Pöschl-Teller potential gives amixed (discrete and continuous) eigenvalue

spectrum. Therefore, equation (2.25) cannot be directly used to solve the FPE. We have to use (2.32).

The eigenvalue equation (2.16) for the potential (4.3) reads

D

2

d2ψn(x)

dx2
−

[
b2

2D
−

(
b2

2D
+

bα

2

)
1

cosh2(αx)

]

ψn (x) =−λnψn(x) . (4.5)

By introducing dimensionless variables x̃ = αx, l̃ = b/Dα and λ̃n = 2λn /Dα2 − l̃ 2, we write (4.5) in a

dimensionless form

−
d2ψn (x̃)

dx̃2
− l̃

(

l̃ +1
) 1

cosh2 x̃
ψn(x̃) = λ̃nψn (x̃) . (4.6)

Analytical solutions for both bounded and unbounded eigenfunctions of equation (4.6) are known and

can be found in [12, 13].

4.1. Bounded solutions for Pöschl-Teller potential

The equation (4.6) has N = max{m ∈N |m < l̃+1} bounded states n = 0,1,2, . . . , N−1, whereN is a set

of all natural numbers N= {0,1,2, . . .}. Here, we consider the eigenfunctions with λ̃n = 0 as unbounded,

because they cannot be normalized.

The eigenvalues can be calculated from the following equation [12]

λ̃n =−(l̃ −n)2 , for n < N ; n ∈N . (4.7)

Note that at least one bounded state with λ̃0 = −l̃ 2 always exists for l̃ > 0, which corresponds to λ0 = 0.

The bounded eigenfunctions are known [12]

ψn (x̃) = cosh−l̃ (x̃)×
{

Ne(n)F
(

− 1
2 n, 1

2 n− l̃ ; 1
2 ;−sinh2 x̃

)

if n is even,

No(n)sinh(x̃)F
(

1
2
− n

2
, n

2
+ 1

2
− l̃ ; 3

2
;−sinh2 x̃

)

if n is odd,
(4.8)

where F denotes a hypergeometric function, which can be represented by Gaussian hypergeometric se-

ries

F(α,β;γ;ζ) =
Γ(γ)

Γ(α)Γ(β)

∞∑

k=0

Γ(α+k)Γ(β+k)

Γ(γ+k)

ζn

n!
. (4.9)
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The normalization constants are

Ne(n) =
[

2
(

l̃ −n
)

(

l̃ − 1
2

n
)

(n+1)

1

B
(

1
2

, l̃ − 1
2

n
)

B
(

1
2

,1+ 1
2

n
)

]1/2

, (4.10)

No(n) =
[

2
(

l̃ −n
)

l̃ − 1
2 (n+1)

1

B
(

3
2

, l̃ − 1
2

(n+1)
)

B
(

1
2

, 1
2

(n+1)
)

]1/2

, (4.11)

where B(a,b) is the beta function B(a,b) = Γ(a)Γ(b)/Γ(a +b).

4.2. Unbounded solutions for Pöschl-Teller potential

The unbounded solutions have a continuous eigenvalue spectrum with 0 É λ̃ <∞. Thus, we can in-

troduce k̃ = λ̃1/2 (with k̃ = k/α). The Pöschl-Teller potential is symmetric. Therefore, the eigenfunctions

are the even and odd functions known from [13]

ψ̄k̃,l̃ (x̃) = A ·ψe

k̃ ,l̃
(x̃)+B ·ψo

k̃ ,l̃
(x̃) , (4.12)

ψ̄e

k̃,l̃
(x̃) = (cosh x̃)l̃+1 F

(

r, s;
1

2
;−sinh2 x̃

)

, (4.13)

ψo

k̃,l̃
(x̃) = (cosh x̃)l̃+1 sinh(x̃)F

(

r +
1

2
, s +

1

2
;

3

2
;−sinh2 x̃

)

, (4.14)

where A and B are constants, and

r =
1

2

(

l̃ +1+ ik̃
)

, s =
1

2

(

l̃ +1− ik̃
)

. (4.15)

Since these are unbounded solutions, eigenfunctions cannot be normalized within x ∈ (−∞;+∞).

As we see, the eigenfunctions are rather complicated in general case. The expressions become es-

sentially simpler for integer values of l̃ . Therefore, without loosing the general idea, we will show the

solutions of the Fokker-Planck equation for l̃ = 1 and l̃ = 2.

4.3. The solution of FPE for Pöschl-Teller potential with parameter l̃ = 1

For l̃ = 1 (which implies b = αD) we have only one bounded state with the eigenvalue λ̃0 = −1 and

the eigenfunction [equation (4.8) for n = 0]

ψ0(x̃)=
1

p
2cosh(x̃)

. (4.16)

The unbounded eigenfunctions (4.13) and (4.14) are

ψ̄e

k̃
(x̃) = cos(k̃ x̃)−

1

k̃
tanh(x̃)sin(k̃ x̃) , (4.17)

ψ̄o

k̃
(x̃) = sin(k̃ x̃)+

1

k̃
tanh(x̃)cos(k̃ x̃) . (4.18)

As proposed in section 2, we add two absorbing boundaries located at x̃ =±L̃/2. Due to these bound-

ary conditions, we have only discrete values of k̃ . Let us denote them by k̃L̃,m for even functions and by

κ̃L̃,m for odd functions. The values of k̃L̃,m and κ̃L̃,m , obtained from the boundary conditions, are positive

solutions of the transcendent equations

k̃L̃,m = tanh(L̃/2)tan(k̃L̃,m L̃/2), (4.19)

κ̃L̃,m tan(κ̃L̃,m) =− tanh(L̃/2), (4.20)
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where m = 1,2,3, . . . denotes the m-th smallest positive solution. The equations for normalized eigenfunc-

tions now read as

ψe

k̃L̃,m
(x̃)=N

−1/2
e (k̃L̃,m , L̃) ·

[

cos(k̃L̃,m x̃)−
1

k̃L̃,m

tanh(x̃)sin(k̃L̃,m x̃)

]

, (4.21)

ψ0
κ̃L̃,m

(x̃)=N
−1/2

o (κ̃L̃,m , L̃) ·
[

sin(κ̃L̃,m x̃)+
1

κ̃L̃,m

tanh(x̃)cos(κ̃L̃,m x̃)

]

, (4.22)

where normalization constants for odd and even eigenfunctions are

Ne(k̃ , L̃) =
(

k̃2 +1
)[

k̃L̃ − sin(k̃L̃)
]

2k̃3
, (4.23)

No(k̃, L̃)=
(

k̃2 +1
)[

k̃L̃ + sin(k̃L̃)
]

2k̃3
. (4.24)

In the limit case L̃ →∞, equations (4.19)–(4.20) for the allowed k̃ values, as well as equations (4.23)–

(4.24) for the normalization constants simplify to

k̃L̃→∞,m =
2mπ

L̃
, ∆k̃L̃→∞ =

2π

L
, (4.25)

κ̃L̃→∞,m =
(2m −1)π

L̃
, ∆κ̃L̃→∞ =

2π

L
, (4.26)

Ne(k̃, L̃ →∞) =No(k̃, L̃ →∞) =
L

2

k̃2 +1

k̃2
, (4.27)

and we also have

ge(k̃) =∆k̃L̃→∞ ·Ne(k̃, L̃ →∞) =π
k̃2 +1

k̃2
, (4.28)

go(κ̃) =∆κ̃L̃→∞ ·No(κ̃, L̃ →∞) =π
κ̃2 +1

κ̃2
. (4.29)

Inserting these relations as well as λcon = l̃ 2α2D/2 (following from λ̃con = 2λcon/Dα2− l̃ 2 = 0) into (2.32),

we finally obtain the time-dependent solution of the Fokker-Planck equation

p(x, t) =
1

2cosh2(αx)

+
cosh(αx0)

πcosh(αx)
e−

1
2 Dα2t

∞∫

0

dk̃ e−
1
2 Dα2k̃2t k̃2

k̃2 +1
ψ̄e

k̃
(αx)ψ̄e

k̃
(αx0)

+
cosh(αx0)

πcosh(αx)
e−

1
2 Dα2t

∞∫

0

dk̃ e−
1
2 Dα2k̃2t k̃2

k̃2 +1
ψ̄o

k̃
(αx)ψ̄o

k̃
(αx0) . (4.30)

If the initial condition is given by x0 = 0, then ψo

k̃
(0) = 0 and ψe

k̃
(0) = 1 hold, which allows us to obtain a

simpler expression

p(x, t) =
1

2cosh2(αx)
+

1

πcosh(αx)
e−

1
2 Dα2t

×
∞∫

0

dk̃ e−
1
2 Dα2k̃2t k̃2

k̃2 +1

[

cos(k̃αx)−
1

k̃
tanh(αx)sin(k̃αx)

]

. (4.31)

The solution for parameters b = 2, D = 2 and α = 1, corresponding to l̃ = 1, with the initial loca-

tion of the delta-peak at x0 = 5 is shown in figure 4 for different time moments t . As we can see, the
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Figure 4. The probability distribution at different time moments t , calculated for the parameters b = 2,

D = 2 and α= 1 (l̃ = 1) starting at x0 = 5.

probability distribution moves to the left. It broadens at the beginning. For larger times, it becomes nar-

rower again and converges to the stationary solution pst(x) = limt→∞ p(x, t) = [cosh2(αx)]−1 = ψ0(x)2

[see equations (4.30) and (4.16)], which is a symmetric distribution around x = 0. The stationary solution

is practically reached at t = 10. This behavior is expected from the drift-diffusion dynamics.

For small times t → 0, we have a delta-peak located at x = x0 in accordance with the given initial

condition (2.3). For comparison, the “general solution” of [10] does not satisfy this initial condition due

to a wrong construction, where the contribution of bounded states is simply summed up with a Gaus-

sian probability density profile (calculated with an error). The latter corresponds to unbounded states

for zero Schrödinger potential at L →∞, as it is evident from (3.13) and (3.3) at vdrift = 0. Therefore, the

result appears to be correct only at t → ∞ when the Gaussian part vanishes. It is clear that the whole

set of eigenfunctions should be calculated self-consistently for the given potential to obtain a correct and

meaningful result, since only in this case the completeness relation (2.20) holds and all different eigen-

functions are orthogonal. Thus, the basic error of [10] is that some of the eigenfunctions are calculated

for zero Schrödinger potential in [10], whereas all of them should be calculated for the true Schrödinger

potential.

4.4. The solution of FPE for Pöschl-Teller potential with parameter l̃ = 2

For l̃ = 2 (which implies b = 2αD) we have two bounded states with eigenvalues λ̃0 =−4 and λ̃1 =−1.

The corresponding eigenfunctions are

ψ0(x̃) =
p

3

2cosh2(x̃)
, (4.32)

ψ1(x̃) =
√

3

2

sinh(x̃)

cosh2(x̃)
. (4.33)

The unbounded eigenfunctions are

ψ̄e

k̃
(x̃) =

[

1+ k̃2 −3tanh2(x̃)
]

cos(k̃ x̃)−3k̃ tanh(x̃)sin(k̃ x̃) , (4.34)

ψ̄o

k̃
(x̃) =

[

1+ k̃2 −3tanh2(x̃)
]

sin(k̃ x̃)+3k̃ tanh(x̃)cos(k̃ x̃) . (4.35)

By adding again two absorbing boundaries at x̃ = ±L̃/2, we have discrete values of k̃ , i. e., k̃L̃,m for

even functions and κ̃L̃,m for odd functions. In the limit L̃ → ∞, we again obtain the classical infinite-

square-well relations for eigenstates:

k̃L̃→∞,m =
(2m −1)π

L̃
, (4.36)

κ̃L̃→∞,m =
2mπ

L̃
. (4.37)

13002-11



M. Brics, J. Kaupužs, R. Mahnke

Figure 5. The probability distribution at different time moments t , calculated for the parameters b = 2,

D = 4 and α= 1 (l̃ = 2) starting at x0 = 5.

The normalization constants in this case are

Ne

(

k̃ , L̃ →∞
)

=No

(

k̃, L̃ →∞
)

=
L

2

(

k̃2 +4
)(

k̃2 +1
)

. (4.38)

By applying the same steps as in the case of l̃ = 1, we obtain the solution

p(x, t) =
3

4cosh4(αx)
+

3

2

sinh(αx)sinh(αx0)

cosh4(αx)
e−

3
2 Dα2t

+
cosh2(αx0)

πcosh2(αx)
e−2Dα2t

∞∫

0

dk̃ e−
1
2 Dα2k̃2t 1

k̃2 +5k̃2 +4
ψe

k̃
(αx)ψe

k̃
(αx0)

+
cosh2(αx0)

πcosh2(αx)
e−2Dα2t

∞∫

0

dk̃ e−
1
2 Dα2k̃2t 1

k̃2 +5k̃2 +4
ψo

k̃
(αx)ψo

k̃
(αx0) . (4.39)

The solution for parameters b = 4, D = 2 and α = 1, corresponding to l̃ = 2, with the initial condition

given by x0 = 5 is shown in figure 5 for different time moments t . The evolution of the probability distri-

bution is very similar to that one shown in figure 4 for l̃ = 1, with the only essential difference that the

dynamics is faster and the distribution is somewhat narrower due to a deeper potential well.

5. Conclusions

Using the analogy of the Fokker-Planck equation with the Schrödinger equation, it has been shown

how the time-dependent solution can be constructed in the case of mixed eigenvalue spectrum with

free and bounded states. The method is based on the idea of introducing two absorbing boundaries at

x =±L/2, considering the limit L →∞ afterwards. Although this idea is similar to the one proposed ear-

lier in [10], it is obvious that the problem is quite non-trivial, so that the oversimplified (i.e., erroneous)

approach of [10] cannot be used— see discussion in the end of section 4.3. Analytical solutions have been

found and analyzed in two examples of the Schrödinger potential being constant (constant force) and a

shifted Pöschl-Teller potential. For the latter potential, the analytical solutions have been compared with

the results of the Crank-Nicolson numerical integration method, and the agreement within an error of

10−7 has been found. The time evolution of the calculated probability distribution in these examples is

consistent with the usual drift-diffusion dynamics.
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Як розв’язати рiвняння Фоккера-Планка, використовуючи

спектр змiшаних власних значень?

М. Брицс1, Я. Каупузс2, Р. Манке1

1 Iнститут фiзики, Унiверситет м. Росток, D–18051 Росток, Нiмеччина

2 Iнститут математики i комп’ютерних наук, Латвiйський унiверситет, LV–1459 Рига, Латвiя

Аналогiя рiвняння Фоккера-Планка (FPE) з рiвнянням Шредингера дозволяє використати метод квантової

механiки для знаходження аналiтичного розв’язку FPE для низки випадкiв. Проте, попереднi дослiдження

обмежувалися потенцiалом Шредингера з дискретним спектром власних значень. Тут ми покажемо, як

цей пiдхiд можна також застосувати до спектру змiшаних власних значень зi зв’язаними i вiльними ста-

нами. Ми розв’язуємо FPE з границями, що знаходяться при x = ±L/2 i беремо границю L →∞, розгля-

даючи приклади з постiйним потенцiалом Шредингера i потанцiалом Пешля-Теллера. Спрощений пiдхiд

ранiше запропонували M.T. Араухо та E. Дрiго Фiльйо. Детальне дослiдження двох прикладiв показує, що

коректний розв’язок, отриманий в цiй статтi, узгоджується з очiкуваною динамiкою Фоккера-Планка.

Ключовi слова: рiвняння Фоккера-Планка, рiвняння Шредингера, потенцiал Пешля-Теллера
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