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An analogy of the Fokker-Planck equation (FPE) with the Schrédinger equation allows us to use quantum me-
chanics technique to find the analytical solution of the FPE in a number of cases. However, previous studies have
been limited to the Schrédinger potential with a discrete eigenvalue spectrum. Here, we will show how this ap-
proach can be also applied to a mixed eigenvalue spectrum with bounded and free states. We solve the FPE with
boundaries located at x = +L/2 and take the limit L — oo, considering the examples with constant Schrédinger
potential and with Péschl-Teller potential. An oversimplified approach was proposed earlier by M.T. Araujo and
E. Drigo Filho. A detailed investigation of the two examples shows that the correct solution, obtained in this
paper, is consistent with the expected Fokker-Planck dynamics.
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1. Introduction

The one-dimensional Fokker-Planck equation (FPE) for the probability density p(x, t), depending on
variable x and time ¢, assumes the generic form [147]
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0 D(x,t)
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p(x, 1)

Here, the drift coefficient or force f(x, t) and the diffusion coefficient D(x, f) depend on x and ¢ in general.
The Fokker-Planck equation is related to the Smoluchowski equation. Starting with pioneering works by
Marian Smoluchowski [1, [2], these equations have been historically used to describe the Brownian-like
motion of particles. The Smoluchowski equation describes the high-friction limit, whereas the Fokker-
Planck equation refers to the general case.

The FPE provides a very useful tool for modelling a wide variety of stochastic phenomena arising
in physics, chemistry, biology, finance, traffic flow, etc. [3-6]. Given the importance of the Fokker-Planck
equation, different analytical and numerical methods have been proposed for its solution. As it is well
known, the stationary solution of FPE can be given in a closed form if the condition of a detailed balance
holds. The study of the time-dependent solution is a much more complicated problem. The FPE with
a general time-dependence and a special x-dependence of the drift and diffusion coefficients has been
studied analytically in [7] using Lie algebra. This method is applicable when the Fokker-Planck equation
has a definite algebraic structure, which makes it possible to employ the Lie algebra and the Wei-Norman
theorem. Generally, there are only a few exactly solvable cases. A simple example is a system with con-
stant diffusion coefficient and harmonic interaction of the form f(x) = —dV(x)/dx with harmonic poten-
tial V(x) ~ x*. The case with double-well potential is already quite non-trivial and requires a numerical
approach [8].

The known relation between the Fokker-Planck equation and the Schrédinger equation can also be
used. This approach allows us to apply the well known methods of quantum mechanics. In particular,
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analytical solutions can be found in the cases, where the eigenvalues and eigenfunctions for the consid-
ered Schrodinger potential are known. For a general Schrédinger potential, numerical treatments used
in quantum mechanics, such as the Crank-Nicolson time propagation with implicit Numerov’s method
for second order derivatives [9], are very useful. To apply it to Schrodinger-type equation, we just need to
replace the real time step Af by an imaginary time step At — —iA¢. In quantum mechanics, this is called
imaginary time propagation and is used for calculation of both ground states and excited states. The an-
alytical studies of mapping the FPE to Schrodinger equation have been so far restricted to a treatment
of discrete eigenstates. An attempt has been made in [10] to extend this approach to the potentials with
a mixed (discrete and continuous) eigenvalue spectrum. However, we have found a basic error in this
treatment, indicated explicitly in the end of section[4.3]

The aim of our work is to show how the problem with mixed eigenvalue spectrum can be treated
correctly. We will show this in two examples: one with constant Schrdodinger potential and another with
Poschl-Teller potential. The same example has been incorrectly treated in [10]. To avoid any confusion
one has to note that the Poschl-Teller potential is referred to as Rosen-Morse potential in [10].

2. Solution of FPE with constant diffusion coefficient

We start our consideration with the one-dimensional Fokker-Planck equation (I.I) in the following

formulation

opx,t) 0 D &*p(x,1)
a1 ox [f)plx, 0]+ > o2 2.1)

for the probability density distribution p(x, t), depending on the variable x and time ¢. Here, f(x) is the
nonlinear force and D is the diffusion coefficient, which is now assumed to be constant. We consider
natural boundary conditions

op(x,t
lim p(x,8)= lim plx. 1) =0 (2.2)
x—+00 x—too0 Ox
and take the most frequently used initial condition
p(x,t=0)=0(x— xp) 2.3)

in the form of the §-function. This FPE (Z.I) can be transformed into an equation of Schrodinger type
(see section [2.2). Unfortunately, the well known relation [see equation (2.25)], derived for the discrete
eigenvalue spectrum, cannot be applied if this equation has a continuous or mixed eigenvalue spectrum.
To overcome this problem, we follow a properly corrected treatment of [10]. Namely, we solve the FPE
with boundaries located at x = +L/2 and then take the limit L — oo (see section[2.3). This approach is used
in quantum mechanics to describe unbounded states. To keep a closer touch with quantum mechanics,
here we will use the boundary conditions p(x = £L/2, ) =0, further referred to as absorbing boundaries.

2.1. The stationary solution

The stationary solution ps(x) is the long-time limit of p(x, ) at ¢ — oo, which follows from the equa-
tion

d D d*ps ()
0= ix [f0)pse(x)] - TR (2.4)
The force f(x) can be expressed in terms of the potential V (x) via f(x) = —dV (x)/dx. It yields
d [dV(x) D dpsi(x)
=—— ——. 2.
0="&x | ax P37 @3)
Due to the natural boundary conditions, we have zero flux
. dv(x) D dpgt(x) .
Jal) = == pal0) = o p;—tx =C with C=0. 2.6)

13002-2



How to solve Fokker-Planck equation?

Thus, we have

dpsi(0) _ 2 dv()

ix D dx pst(x), 2.7
d 2
AP _ 2 4yix, 2.8)
Pst(x) D
which yields the stationary solution
psi(x) =N Y (x), (2.9)
where 5
Y (x) =exp ) V(x) (2.10)

has the meaning of an unnormalized stationary solution only in case of natural boundaries and ./ is the
normalization constant

—%V(x) . (2.11)

+00
N = f dxexp
—00
This function Y (x) is further used to construct a time-dependent solution.

2.2. The time-dependent solution with discrete eigenvalues

Here, we derive a time-dependent solution, starting with the transformation p(x, t) — g(x, t) defined

by
2 V(x)

D 2

This transformation removes the first derivative in the original Fokker-Planck equation and generates
the equation of Schrodinger type for the function g(x, 1), i. e.,

p(x, 1) =YY2(x) q(x,1) = exp q(x,1). (2.12)

0q(x, 1) D 60%q(x, t)
o7 Z—VS(X)LI(XJ)‘FEW, (2.13)
where
V(x)__{leV(x)_E 1dV(x) 2} 2.14)
SUTT12 a2 D2 dx '

is the so-called Schrodinger potential. In the case of discrete eigenvalues, we apply the superposition
ansatz

g, 0= an(O)y,(x). (2.15)

n=0
After inserting @.J5) into 2.13), we get the eigenvalue problem

D d*yn(v)

2 dx2 = Vs(X)yn(x) = _/ann(x) (2.16)

for eigenfunctions ¥, (x) and eigenvalues 1,, = 0 with time-dependent coefficients a, () given by
an(t)=a,0)exp(—A,1) . 2.17)

According to this, equation (2.15) can be written as
- 1
qlx, 1) =) apn(0)e "y, (x). (2.18)
n=0

The eigenfunctions vy, (x) are orthonormal, i. e.,

+00
fwn(x)wm(x)dx=6nm (2.19)
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and satisfy the closure condition (completeness relation)

()

Yn(xXYp(x) =6(x—x"). (2.20)

n=0

Equation (2.16) can be written as a Schrodinger-type eigenvalue equation with Hermitian Hamilton op-

erator - )

D d
FOY 1 (X) = A p(x) with H = 342 + Vs(x). (2.21)

The coefficients a,(0) in @.I8) are calculated using the initial condition

px,t=0)=Y"2(x)q(x,t=0) = 5(x—xp) . (2.22)

According to (Z.18), this relation can be written as
/ o0
Y206 —x0) = Y. amOym(x). (2.23)
m=0

In the following, we multiply both sides of this equation by ¥, (x) and integrate over x from —oo to +oo.
Taking into account @2.19), it yields the so far unknown coefficients

an(0) =Y "2 (xo)y,(x0) - (2.24)
The final result of this calculation reads

YO & -ae
e n;oe W (X)W n (X) . (2.25)

plx, )=

Note that this method can also be used for other boundary conditions. The solution in the general form
of (2.29) is well known from older studies, e. g., [11] and can be found in many textbooks, e. g., [3, 4].

2.3. The time-dependent solution with mixed eigenvalue spectrum

Consider now the problem with two absorbing boundaries located at x = +L/2 instead of the natural
boundary conditions. In this case, we have a discrete eigenvalue spectrum, and equation can be
used (with summation over exclusively those eigenfunctions which satisfy the boundary conditions in a
box of length L) to calculate the probability distribution pyr(x, £), i. e.,

Y (o]
pLx, 1) = Ricoh Y e Mty 1 (x0)YaL(x), (2.26)
Y (x0) =0

where A, 1, are eigenvalues and v, 1. (x) are the corresponding eigenfunctions, which fulfill the boundary
conditions. Let us split this infinite sum into two parts: for A, 1 < Acon and A,z = Acon, Where Acop is the
smallest continuum eigenvalue in the case of natural boundaries. This eigenvalue spectrum is shown
schematically in figure [I where the value of Aoy is shown by a horizontal dotted line, the eigenvalues
An,L < Acon — by solid lines and the eigenvalues 1,1 = A¢on — by dashed lines. Let M(L) be the maximal
value of n for which A,z < Acon and Kn-m,1 = [2(An, = Acon) /D] for n > M(L) and 9" (x) =
Wn,(x) for n> M(L). Hence, we have '

Yo "W 5
, t - n,L
pr(x, 1) Vo) 2 e Wi, L (X0)Wn,L(X)
Y(x) _ X _1lpg
Txo)e Acon t Z e 2ka.L t,l//;:c(::L (xO)wi?nI:lL (x) . (2.27)
m=1
The solution with natural boundaries is the limit case L — oo

plx, 1) = Llinolo pL(x, 1) (2.28)
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L2 \/ L/2 x

Figure 1. A schematic view of the eigenvalue spectrum for the problem with two absorbing boundaries
at x = +L/2. The Schrédinger potential Vg(x) together with the boundaries at x = +L/2 is indicated by a
solid curve and vertical lines.

Y NE
pl,t) = m e Y (X)) Y n(X)
n=0

LD tant fim § PR SO0 ()0 (), (2.29)
Y (x0) L—oo =) k. Kim.

or

where N =lim;_., M(L) is the number of bounded states in the case with natural boundaries. Since the
eigenfunctions cannot be normalized at L — oo, it is appropriate to write equation for unnormal-
ized eigenfunctions 5" (x),

km,L
Y &
xt = e’ X X
p(x,1) Y (x0) = Y (X0)Wn(x)
Y(x) _ X i -t )
Txo)e /‘lcon[gl_l:rolo Z e szm,Lt A_kL wi"’:L(xo)wi?fL(x)AkL, (230)
m=1
g (kL)
where the normalization constant .4 is given by
Li2
N = f dx |5 (%) 2 (2.31)
~L/2

and the expression under infinite sum is divided and multiplied by Akz = k41,1 — ki, L-

The infinite sum can be split into two parts: one with odd m and the other with even m. If the
Schrédinger potential is symmetric, then one of these two parts contains only odd eigenfunctions 1/'/2(x),
whereas the other part has only even eigenfunctions wz(x). In the limit L — oo, these two sums can be
represented by corresponding integrals, yielding

Y N-1
pit) = 4/ - ((;‘:) e Mty (xo) Y (x)
n=0

Y® L iz ]
+ Y(xo)e Acont!dke sz tgel(k)lllz(xo)u/z(x)
+ Y(x) e—/lcontfdke‘%DkZ tg(:l(k)u_/z(xo)u-/z(x), (2.32)
Y (xo) J
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where
L/2
ge(k) = lim |24k, f dx|s (01|, (2.33)
-L/2
L/2
go(k) = lim |2Ak; f dx g (0)1* | . (2.34)
—L/2

This representation is useful if the eigenvalues and eigenfunctions are known.

3. The analytical solution of FPE with constant force
Let us consider a constant force term. In this case, the Fokker-Planck equation reads

ap(x,t)__v _Opx, 1) D& px, 1)
or 9T T2 ax2

3.1

This is a drift-diffusion problem for the potential V(x) = —vg4yifx normalized to V(x = 0) = 0. No station-
ary solution exists for this problem, because the normalization constant .4” in equation Z.11) diverges in
this case. Nevertheless, the transformation @12 p(x, t) = Y (x)"?q(x, t) with

2 V(x)

D 2

Y(x)=exp =exp [%x] 3.2)

can be used here to obtain an equation of Schrédinger type (2.13) with constant Schrédinger potential

1 2
VS = 5 Udrift . (33)

The stationary Schrodinger-type equation corresponding to (2.21) reads

2
Vdrife
D2

Pyn(x)

e Yn(x)=0. (3.4)

2
—A
Do

Let us now add two absorbing boundaries located at x = +L/2, where w(x =+L/2) =0.

Only in the case of real kj, = [2A,,/D - v(zirift/ D?| 250 equation (3.4) has non-trivial solutions
Wn(x) = Acos(kpx) + Bsin(k,x), (3.5)

which satisfy the boundary conditions. These solutions are

2 . .
% cos (kp,Lx if n is even,
W) = \/g (ki) (3.6)
V/Zsin (kn 1x) if nis odd,
where n=0,1,2,... and
k1= %(m 1. 3.7)

According to (3.6)-(3.7), we have from (2.33) and 2.34)
8e(k)=golk)=7. (3.8)

Taking into account that

2 2
Varite | _ Varift (3.9)
2D

D
Acon = lim min{A = lim min{ = k2, +
R Jurpiel An,r} L—o0 { 2 nL 2D
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holds, we obtain from equation (2.32) the expression

2

p(X, n = exp l Vdrift (X — Xo) exp |— Varift ¢
D 2D
(0]
1 -iDk*t . .
x— | dke™2 [ cos(kx) cos(kxo) + sin(kx) sin(kxo)]. (3.10)
T
0
Using the well known identities
cos(kx) cos(kxp) +sin(kx) sin(kxp) = cos[k(x — xp)] 3.11)

and

[o.0]
fdk e~k cos(fk) = \lﬁe_ﬁzl‘l“, (3.12)
0

after simplification we obtain the well known result

(3.13)

P, £) = (= %Xo ~ varife)* ]

2Dt

1
ex
V2Dt P

which describes a moving and broadening Gaussian profile.

4. Fokker-Planck dynamics with Poschl-Teller potential
Here, as a particular example we consider the force
f(x) = —btanh (ax) 4.1

with some positive constants b and a. This corresponds to the diffusion problem in the potential

b
V(x)=—In(coshax), 4.2)
a
normalized to V(x =0) =0.
Figurelshows that this potential is actually a smoothed version of the V-shaped potential. The corre-
sponding Schrédinger potential in this case is

b? v’ ba 1
Vs =510 " 2 ) cosZian “.3)
2D \2D 2 Jcosh”(ax)
10 : , :
b=1.0, 0=0.2
SEENS b=1.0, a=1.0 — — - o
8F b=1.0, q=5.0 -=----- all
N R
VAN A
~ 6 \\ . // d
X R ;
X 5t . ]
> N ,
4 \ R . , i
3 \ ".', i
2 L N\ N ",; 7/ |
1 - N . /, i
0 1 N |
10 -5 0 5 10
X

Figure 2. Graphical representation of equation (4.2) for b = 1 and several values of parameter a.
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Figure 3. Poschl-Teller potential (.4) for Vj = 1 and several values of the parameter «a.

If we compare it [see equation (4.4) and figure [3] with the well known Péschl-Teller potential

Vpr(x) = Vs(x) — b—2 = % , (4.4)
2D cosh? (ax)

we see that equation @3) represents the shifted by b?/2D Péschl-Teller potential with Vy = b?/2D+ba/2.
As we can see from figure[3] the Péschl-Teller potential gives a mixed (discrete and continuous) eigenvalue
spectrum. Therefore, equation cannot be directly used to solve the FPE. We have to use (2.32).

The eigenvalue equation for the potential (4.3) reads

D d*y,(x)
2 d;Z a Yn(x) = =AW n(x) . (4.5)

b_z_(b_2+b_“) 1
2D \2D " 2

cosh?(ax)

By introducing dimensionless variables X = ax, I =b/Da and ;ln =2A,/Da? - ZZ, we write ina
dimensionless form
Py,(®) -
- 1//7”() .y ( I+ 1)

e Yn(X) = Ann (). (4.6)

cosh? %

Analytical solutions for both bounded and unbounded eigenfunctions of equation are known and
can be found in [12,13].

4.1. Bounded solutions for Pdschl-Teller potential

The equation has N=max{meN|m< I+ 1} bounded states n =0,1,2,..., N—1, where N is a set
of all natural numbers N = {0, 1,2,...}. Here, we consider the eigenfunctions with in =0 as unbounded,
because they cannot be normalized.

The eigenvalues can be calculated from the following equation [12]

A,=-U-m?, for n<N; neN. 4.7

Note that at least one bounded state with 1y = —I2 always exists for [ > 0, which corresponds to A9 = 0.
The bounded eigenfunctions are known [12]

Ne(mF(-3n,4n-1;3;—sinh? %) if n iseven,

No(n) sinh (%) F( —[;3;—sinh* %) if n isodd,

¥n (%) = cosh™ (%) x LT 4.8)
2" 2z2t2

where F denotes a hypergeometric function, which can be represented by Gaussian hypergeometric se-
ries

I'(y) i T(a+ T (B+k) "
L@TB) = I'y+k n’

Fla,B;7;0) = 4.9
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The normalization constants are

et = | 2L —— N (4.10)
(I-3n)(n+1)B(3,1-1n)B(3,1+3n)

Ho(n) = _2(=n) - . - 4.11)
I-3(m+1)B(3,1-3(n+1)B(3,3(n+1)

where B(a, b) is the beta function B(a,b) =TI'(a)I'(b)/T' (a+ b).

4.2. Unbounded solutions for Pdschl-Teller potential

The unbounded solutions have a continuous eigenvalue spectrum with 0 < A < co. Thus, we can in-
troduce k = A1/2 (with k = k/a). The Péschl-Teller potential is symmetric. Therefore, the eigenfunctions
are the even and odd functions known from [13]

Pei® = Ay D+ Byl (D), 4.12)
; 1
¥ (8 = (cosh D™ Er, 5= sinh’ ;"c) 4.13)
¥° (%) = (cosh )+ sinh(ic)F(r 1o L3 ginn2 x) (4.14)
k,l 2’ 2’ 2’ ) .

where A and B are constants, and

r==(I+1+ik), s==(I+1-ik). (4.15)

N | —
N | —

Since these are unbounded solutions, eigenfunctions cannot be normalized within x € (—oo; 4+00).

As we see, the eigenfunctions are rather complicated in general case. The expressions become es-
sentially simpler for integer values of I. Therefore, without loosing the general idea, we will show the
solutions of the Fokker-Planck equation for /=1 and [ = 2.

4.3. The solution of FPE for Péschl-Teller potential with parameter [ =1

For [ = 1 (which implies b = aD) we have only one bounded state with the eigenvalue Ao =-1and
the eigenfunction [equation (Z.8) for n = 0]

X)=——"—. (4.16)
o V2 cosh(%)
The unbounded eigenfunctions and are
- 1 -
u—/% (%) = cos(kx) — z tanh (%) sin(kX), 4.17)
- 1 -
1&% (%) =sin(kX) + I tanh(%) cos(kX). (4.18)

As proposed in section 2] we add two absorbing boundaries located at ¥ = +L/2. Due to these bound-
ary conditions, we have only discrete values of k. Let us denote them by k; ,, for even functions and by

K m for odd functions. The values of IEL m and K; .., obtained from the boundary conditions, are positive
solutions of the transcendent equations

ki ,, = tanh(L/2) tan(k; ,,,L/2), (4.19)

ki ptan(; ,,) = —tanh(L/2), (4.20)
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where m =1,2,3,... denotes the m-th smallest positive solution. The equations for normalized eigenfunc-
tions now read as

1
w%z (%) = A2k, D) - | cos(ky ,,, %) — —— tanh(X) sin(k7 ,,3) | , (4.21)
o Lm
1
wgi, (X)= 1/Z(KL D) sin(kj ,, %) + L— tanh(X) cos(k ,,, X) | , (4.22)
m
where normalization constants for odd and even eigenfunctions are
~ . (K?+1)[kL-sin(kD)]
Ne(k,L) = = ) (4.23)
2k3
_ . (k*+1) [IcL+51n(kL)]
Ho(k,L) = (4.249)

2k3

In the limit case L — oo, equations @I9)-@.20) for the allowed k values, as well as equations (£.23)-
for the normalization constants simplify to

2mmn ~ 27
kz—>oo,m = T y Ak]i—»oo = T y (425)
Cm-1n ~ 271
Ki—co,m =1 AR} oo = 7 (4.26)
o Li2+1
Nelk, L — 00) = No(k, L — 00) = 7 4.27)
and we also have
. ~ L. |
8e(k) =Akj_ - Ne(k,L—00) =7 = (4.28)
B B . 2 +1
8o(K) = AKj_ - No(K, L — 00) = = 4.29)

Inserting these relations as well as Acon = [2a@?D/2 (following from Acon = 2Acon/Da® — 12 = 0) into (2.32),
we finally obtain the time-dependent solution of the Fokker-Planck equation

1

X = —
P 2cosh?(ax)

cosh(axo) o iDa tfdk -5Da?k?t _

ncosh(ax) 1//k (ax) II/k (axo)

cosh(axo) __Da ”fdk ~1pa?k? t_

Ko, Y
2 P . 4.
ncosh(ax) Hwk(ax)wk(axo) (4.30)

If the initial condition is given by xo = 0, then w% (0) =0 and w% (0) = 1 hold, which allows us to obtain a
simpler expression

12 + 1 e—%Doc2 t
2cosh®(ax) mcosh(ax)

pl,t) =

- T ~ 1 ~
xfdk e‘%D“2k2t~— cos(kax) — = tanh(ax)sin(kax) | . (4.31)
k2+1 k

The solution for parameters b =2, D = 2 and a = 1, corresponding to I = 1, with the initial loca-
tion of the delta-peak at xp = 5 is shown in figure [4 for different time moments . As we can see, the
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3 T
t=0.0
25 F t=0. -
t=1.
_ 2 F t=2. .
= t=3.
X 1510 7
o

Figure 4. The probability distribution at different time moments ¢, calculated for the parameters b = 2,
D=2and a=1(l=1)starting at xg =5.

probability distribution moves to the left. It broadens at the beginning. For larger times, it becomes nar-
rower again and converges to the stationary solution pg(x) = lim;—. p(x,t) = [cosh?(ax)]! = Illo(x)2
[see equations and (@.18)], which is a symmetric distribution around x = 0. The stationary solution
is practically reached at ¢ = 10. This behavior is expected from the drift-diffusion dynamics.

For small times ¢ — 0, we have a delta-peak located at x = xp in accordance with the given initial
condition @2.3). For comparison, the “general solution” of [10] does not satisfy this initial condition due
to a wrong construction, where the contribution of bounded states is simply summed up with a Gaus-
sian probability density profile (calculated with an error). The latter corresponds to unbounded states
for zero Schrodinger potential at L — oo, as it is evident from and 3.3 at vqyif = 0. Therefore, the
result appears to be correct only at £ — co when the Gaussian part vanishes. It is clear that the whole
set of eigenfunctions should be calculated self-consistently for the given potential to obtain a correct and
meaningful result, since only in this case the completeness relation holds and all different eigen-
functions are orthogonal. Thus, the basic error of [10] is that some of the eigenfunctions are calculated
for zero Schrédinger potential in [10], whereas all of them should be calculated for the true Schrédinger
potential.

4.4. The solution of FPE for Pdschl-Teller potential with parameter =2

For [ = 2 (which implies b = 2aD) we have two bounded states with eigenvalues 19 = —4 and A; = —1.
The corresponding eigenfunctions are

3 V3
Vo) = o— 5 g (4.32)
~ 3 sinh(X)
Y1(X) = > m- (4.33)
The unbounded eigenfunctions are
¥5 (%) = [1+k* - 3tanh®(%)] cos(kX) — 3k tanh (%) sin(k), (4.34)
¥9 (%) = [1+ & - 3tanh® (%) ] sin (k) + 3k tanh (%) cos (k). (4.35)

By adding again two absorbing boundaries at X = +L/2, we have discrete values of k, i. e., ]Ei,m for
even functions and «; ,, for odd functions. In the limit L — oo, we again obtain the classical infinite-
square-well relations for eigenstates:

~ Cm-1n
ki—com=—"5— (4.36)

Rloom = 5 4.37)
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Figure 5. The probability distribution at different time moments ¢, calculated for the parameters b = 2,
D=4and a =1 (] =2) starting at xg =5.

The normalization constants in this case are

- . - . L, - -
%(k,L—»oo)z./%(k,L—»oo)=E(k2+4)(k2+l). (4.38)
By applying the same steps as in the case of / = 1, we obtain the solution
3 3 sinh(ax) sinh(axg) o3
plx,1 = - - O emzDa’t
4cosh*(ax) 2 cosh®(ax)

2
cosh”(axo) o-2Da’t

1
— fdk 7Da?k%t 1// (@x)ws (axp)
7 cosh (ax) k2+5k2+4"k k

cosh?(axg) —2Da tf 1Da?k2t
+————e dke 2P (@x) 2 (axp). (4.39)
7 cosh?(ax) k2 +5k2 + wk wk
The solution for parameters b =4, D =2 and a = 1, corresponding to I= 2, with the initial condition
given by xo = 5 is shown in figure 5] for different time moments ¢. The evolution of the probability distri-
bution is very similar to that one shown in figure @ for [ = 1, with the only essential difference that the
dynamics is faster and the distribution is somewhat narrower due to a deeper potential well.

5. Conclusions

Using the analogy of the Fokker-Planck equation with the Schrodinger equation, it has been shown
how the time-dependent solution can be constructed in the case of mixed eigenvalue spectrum with
free and bounded states. The method is based on the idea of introducing two absorbing boundaries at
x ==+L/2, considering the limit L — oo afterwards. Although this idea is similar to the one proposed ear-
lier in [10], it is obvious that the problem is quite non-trivial, so that the oversimplified (i.e., erroneous)
approach of [10] cannot be used — see discussion in the end of section[4.3] Analytical solutions have been
found and analyzed in two examples of the Schrodinger potential being constant (constant force) and a
shifted Poschl-Teller potential. For the latter potential, the analytical solutions have been compared with
the results of the Crank-Nicolson numerical integration method, and the agreement within an error of
10~7 has been found. The time evolution of the calculated probability distribution in these examples is
consistent with the usual drift-diffusion dynamics.
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Ak po3B'A3aTn PiBHAHHA PokKepa-MnaHKa, BUKOPUCTOBYHOUM
CNeKTp 3MillaHMX BIaCHUX 3HaYeHb?

M. Bpuudl 9. Kaynysd, P. MankeT

L IHcTUTYT disunkn, YHiBepcuteT M. Poctok, D-18051 PocTok, HimeuunHa

2 IHCTUTYT MaTemaTnKM | KOMM'HOTePHUX Hayk, JlaTBiicbKuiA yHiBepcuTeT, LV-1459 Pura, flaTsis

AHanorisa piBHAHHA ®okkepa-MnaHka (FPE) 3 piBHAHHAM LLpeanHrepa 403BONSE BUKOPUCTATU METO/ KBaAHTOBOI
MeXaHiKu1 ANS 3HaXOAKEHHA aHaniTM4Horo po3s’'asky FPE ana HM3Kkun sunagkis. MNpoTe, nonepejHi AocnigxXeHHs
obmexyBanuncs noteHuianom LpegnHrepa 3 ANCKPETHUM CNEKTPOM BAACHMX 3HaveHb. TyT MU Mokaxemo, K
Lieid Niaxia MOXHa TakoxX 3acToCyBaTh A0 CMeKTPY 3MillaHMX BAACHUX 3HaYeHb 3i 3B'A3aHNMU i BilbHUMW CTa-
Hamu. Mu po3s'szyemo FPE 3 rpaHmuamu, Lo 3HaxoAaTbca nNpu x = £L/2 i 6epemo rpaHuuto L — oo, po3rns-
Jarouyv NprKAaan 3 NocTiiHum noteHuianom LpeanHrepa i notaHuianom Mewnsa-Teanepa. CnpoLieHnid Nigxig
paHiwwe 3anponoHyeanun M.T. Apayxo Ta E. [lpiro ®inbiio. [leTanbHe AOCAiIKEHHA ABOX NPVKNAAIB NOKA3YE, LLIO
KOPeKTHWIA PO3B'A30K, OTPMMaHWIA B Ll CTaTTi, y3roAKyeTbCs 3 04ikyBaHO AnHaMikoto Pokkepa-MnaHka.

KntouoBi cnoBa: piBHaHHA ®okkepa-lnaHka, piBHAHHSA LUpeguHrepa, noteHyian Mewns-Teanepa
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