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The quantum spin-1/2 two-leg ladder with an anisotropic X Y Z Heisenberg intra-rung interaction and Ising
inter-rung interactions is treated by means of a rigorous approach based on the unitary transformation. The
particular case of the considered model with X–X intra-rung interaction resembles a quantum compass ladder
with additional frustrating diagonal Ising interactions. Using an appropriately chosen unitary transformation,
the model under investigation may be reduced to a transverse Ising chain with composite spins, and one may
subsequently find the ground state quite rigorously. We obtain a ground-state phase diagram and analyze the
interplay of the competition between several factors: the X Y Z anisotropy in the Heisenberg intra-rung cou-
pling, the Ising interaction along the legs, and the frustrating diagonal Ising interaction. The investigated model
shows extraordinarily diverse ground-state phase diagrams including several unusual quantum ordered phases,
two different disordered quantumparamagnetic phases, as well as discontinuous or continuous quantumphase
transitions between those phases.
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1. Introduction

Quantum spin ladderswith frustrated interactions are intensively studied during the last few decades,

since they exhibit a rather complex ground-state behaviour to be reflected in extraordinarily rich low-

temperature thermodynamics as well [1, 2]. Quite recently, a number of exact solutions have been ob-

tained for several particular examples of quantum spin- 1
2
two-leg ladders [3–7]. The railroad ladder con-

sidered by Lai and Montrunich [6] has a quite specific configuration of inter-spin interactions, namely,

the staggering of X –X and Y –Y couplings along the legs is supplemented by the uniform Z –Z coupling

present along the rungs. An exact solution of this specific quantum spin ladder has been found by adopt-

ing themethod originally developed by Kitaev [8], which proved a striking spin-liquid ground state in this

quantum spin ladder. On the other hand, the railroad ladder with the uniform Z –Z interaction along the

legs and the uniform X –X interaction along the rungs has been rigorously solved by Brzezicki and Oleś

[3–5]. To a certain extent, this exactly solved quantum spin ladder can be regarded as an one-dimensional

analogue of the quantum compass model on a square lattice, which describes the orbital ordering in

transition-metal compounds [9].

In this work, we will examine a more general model of the quantum spin- 1
2
two-leg ladder, which

includes the fully anisotropic X Y Z -Heisenberg coupling between spins from the same rung and two dif-

ferent Ising (Z –Z ) interactions between spins from neighbouring rungs considered along the legs and

across the diagonals, respectively. Nevertheless, it should be mentioned that the investigated quantum

spin ladder extends our previous exact calculations for the spin- 1
2
Heisenberg-Ising ladder with the X X Z

intra-rung coupling [7], whereas the quantum compass ladder investigated in detail by Brzezicki and Oleś
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[3–5] also represents a very special limiting case of the investigated model system. The main goal of the

present paper is to examine the simultaneous effect of two different kinds of frustration: the geomet-

ric frustration caused by the antiferromagnetic interaction between spins from an elementary triangle

plaquette and the competition between X –X and Y –Y intra-rung interactions with both Z –Z inter-rung

interactions.

The outline of the paper is as follows. In section 2, we define the model and show how to get the

ground state by a rigorous calculation based on the appropriate unitary transformation. The ground-

state phase diagram of the spin- 1
2

X Z -Ising and X Y -Ising ladders is explored in section 3. Finally, some

conclusions are drawn in section 4.

2. Model and solution

Consider the quantum spin- 1
2
Heisenberg-Ising ladder with an anisotropic X Y Z intra-rung coupling

and two different Ising-type couplings, which involve Z –Z spin-spin interactions along the legs and

across the diagonals of a two-leg ladder (see figure 1):

H =
N
∑

i=1

[(
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1
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Here, sα
j ,i

denote three spatial components α= x, y, z of the spin- 1
2
operator, the former subscript j = 1,2

determines the number of a leg and the latter subscript enumerates the lattice position in a particular leg.

Apparently, the interaction terms J x
1

, J
y

1
, J z

1
account for the quite anisotropic X Y Z -Heisenberg coupling

between two spins belonging to the same rung, while the interaction terms J2 and J3 take into consider-

ation the Ising-type interactions between the nearest-neighbor spins along the legs and across the diago-

nals of the two-leg ladder. It should be pointed out that the z-component of the total spin Sz
i
= sz

1,i
+ sz

2,i

Figure 1. (Color online) A schematic representation of the considered Heisenberg-Ising two-leg ladder.

The intra-rung X Y Z -Heisenberg coupling is represented by thick lines, while Z–Z Ising interactions

along the legs and across the diagonals are displayed by thin solid and broken lines, respectively.

on i th rung commutes with the Hamiltonian, i.e. [(Sz
i

)2, H ] = 0, and this property allows us to present

the model in an integrable form. To obtain a ground state of the investigated quantum spin model quite

rigorously, it is advisable to closely follow the procedure worked out previously for the quantum spin- 1
2

Heisenberg-Ising ladder with X X Z intra-rung interaction. After the unitary transformation [7]
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1,i , s
y

1,i
= 2s̃

y

1,i
s̃x

2,i , sz
1,i = 2s̃z

1,i s̃x
2,i ,
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2,i , s
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2,i , (2.2)

one may rewrite the Hamiltonian (2.1) into the following pseudospin representation:

H =
N
∑

i=1

{(

J x
1

2
− J

y

1
s̃z

1,i

)

s̃z
2,i +

J z
1

2
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1,i +
[

J2
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2,i s̃x
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}

, (2.3)

which shows the symmetry of themodel in amore explicit way. It is quite obvious that only z-components

of spin operators from the first leg are present in the Hamiltonian (2.3), which means that s̃z
1,i

are good

quantum numbers. By contrast, different spatial components of spin operators from the second leg are

still involved in the Hamiltonian (2.3) and thus, they still represent quantum spins with regard to the
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presence of two non-commuting parts s̃x
2,i

and s̃z
2,i

of each spin operator. Altogether, the Hamiltonian

(2.3) can be identified as the Ising chain of composite spins in a transverse field, whereas the values of

the effective interaction and the effective transverse field locally depend on a particular choice of eigen-

values of the classical Ising spins s̃z
1,i

. Following [7], one may also establish the following correspondence

between new and initial states:

|↓̃1,i ↓̃2,i 〉 = |φi
0,0〉 =

1
p

2

(

| ↓1,i ↑2,i 〉− | ↑1,i ↓2,i 〉
)

, |↓̃1,i ↑̃2,i 〉 = |φi
1,0〉 =

1
p

2

(

| ↓1,i ↑2,i 〉+ | ↑1,i ↓2,i 〉
)

,

|↑̃1,i ↓̃2,i 〉 = |φi
1,−〉 =

1
p

2

(

| ↑1,i ↑2,i 〉− | ↓1,i ↓2,i 〉
)

, |↑̃1,i ↑̃2,i 〉 = |φi
1,+〉 =

1
p

2

(

| ↑1,i ↑2,i 〉+ | ↓1,i ↓2,i 〉
)

,

(2.4)

where |φi
0,0

〉 denotes the singlet state of the i th rung and the other three states |φi
1,±〉, |φ

i
1,0

〉 form the

triplet state of the i th rung. It should be stressed that the square of zth component of the total spin Sz
i

on the i th rung acquires two different values. It either equals (Sz
i

)2 = 0 for |φi
0,0

〉 and |φi
1,0

〉, or (Sz
i

)2 = 1

for |φi
1,±〉. To get the partition function one has to diagonalize the Hamiltonian (2.3) for all particular

configurations of s̃z
1,i

and sum up all contributions in the trace of statistical operator. However, it is quite

evident from the transformed Hamiltonian (2.3) that the chain decomposes into two independent parts

whenever two neighboring spins s̃z
1,i

and s̃z
1,i+1

have opposite orientation (i.e., take on different eigen-

values). In this respect, the composite chain is divided into a set of finite chains of different sizes for

any chosen configuration of s̃z
1,i

. Generally, this problem seems to represent a quite formidable task, but

the ground state of the investigated model can be found quite rigorously using the same arguments as

given in [7]. Since the ground-state energy of two finite but isolated spin- 1
2
Ising chains in a transverse

field is always higher than the ground-state energy of one unique spin- 1
2
Ising chain in a transverse field

obtained by joining both independent finite chains, the ground state of the model under investigation

should accordingly correspond only to the uniform configuration of all s̃z
1,i

. Therefore, one may single

out only two different uniform configurations with all s̃z
1,i

= 1
2
or all s̃z

1,i
= − 1

2
from which the ground

state of the Heisenber-Ising ladder can be derived. The effective Hamiltonian (2.3) for the two uniform

configurations acquires the following form:

H± =
N
∑

i=1

[

1

2

(

J x
1 ∓ J

y

1

)

s̃z
2,i ±

1

4
J z

1 +2(J2 ± J3) s̃x
2,i s̃x

2,i+1

]

. (2.5)

The ground state energies per site of both effective Hamiltonians can be exactly calculated using the

Jordan-Wigner fermionization [10, 11]:

e±0 ==−
(

J∓
1
+|J2 ± J3|

)

π
E

[
√

1−
(

γ±)2

]

±
J z

1

4
, (2.6)

where

γ± =
J∓

1
−|J2 ± J3|

J∓
1
+|J2 ± J3|

, J± =
(

J x
1
± J

y

1

)

2

and

E(κ) =

π
2

∫

0

dθ
√

1−κ2 sin2θ

is the complete elliptic integral of the second kind.

Both Hamiltonians H+ and H− imply a precise mapping correspondence between the spin- 1
2
Heisen-

berg-Ising two-leg ladder and the spin- 1
2
quantum Ising chain in a transverse field, which can be, how-

ever, characterized by different values of the effective interaction and transverse field. Bearing this

in mind, one should expect quantum phase transitions of two different types. The first kind of zero-

temperature phase transitions may correspond to a continuous (second-order) quantum phase transition

inherent to the transverse Ising chain, which arises for one particular ratio between the effective inter-

action and transverse field. Beside this, there may also occur discontinuous (first-order) quantum phase
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transitions whenever a crossing of the lowest-energy levels inherent to both effective Hamiltonians (2.5)

takes place. In the following two sections, we will illustrate all the aforementioned features of quantum

phase transitions on ground-state phase diagrams of two particular cases of the model under considera-

tion.

3. Ground state of X Z -Ising and X Y -Ising ladders

In this section, we will consider two particular cases of the investigated model (2.1) by switching off

either the y - or z-component of X Y Z -Heisenberg coupling (i.e., either J
y

1
= 0 or J z

1
= 0). It is notewor-

thy that the two aforementioned particular cases represent a direct extension of the quantum compass

ladder [3–5] to which the considered model reduces when neglecting the z-component of the Heisenberg

coupling (J z
1
= 0), one of the two transverse components of the Heisenberg coupling (i.e., either J x

1
= 0 or

J
y

1
= 0) and the frustrating Ising interaction across the diagonals (J3 = 0). Furthermore, the problem of

two-dimensional quantum compass model is quite complex and the exact solution for this model has not

been found yet.

Let us first consider all possible phases that may appear in the ground state of the model under in-

vestigation. Each uniform configuration of s̃z
1,i

corresponds to the transverse Ising chain, which has three

possible ground-state phases. The ground-state phases for all s̃z
1,i

=− 1
2
appear if e−

0
< e+

0
. It is worthwhile

to remark that the ground-state phases belonging to this effective model were thoroughly analyzed in our

preceding paper [7] and let us, therefore, give here just their definition for the sake of easy reference:

• Quantum paramagnetic (QPM1) state for 1
2

(J x
1
+ J

y

1
) > |J2 − J3|: the Heisenberg-Ising ladder is in

the gapped disordered state with no spontaneous magnetization. The rung singlet dimers dominate

on the Heisenberg bonds and in the very special case J2 = J3, the ground state factorizes to a set of

the completely non-correlated rung singlet dimers.

• Stripe Leg (SL) state for 1
2

(J x
1
+ J

y

1
) < J3 − J2: the Heisenberg-Ising ladder shows a ferromagnetic

order along the legs and antiferromagnetic order along the rungs, i.e., the magnetizations of two

chains are oriented opposite to each other (〈sz
1,i
〉 = 〈sz

1,i+1
〉 = −〈sz

2,i
〉 = −〈sz

2,i+1
〉, 0). The following

staggered magnetization can be defined as the relevant order parameter of this phase

mz
SL =

1

2N

N
∑

i=1

(

〈sz
1,i 〉−〈sz

2,i 〉
)

=
1

2

[

1−
(

J x
1
+ J

y

1

)2

4(J2 − J3)2

]

1
8

,

which undergoes the obvious quantum reduction of magnetization.

• Néel state for 1
2

(J x
1
+ J

y

1
) < J2 − J3: the nearest-neighbor spins both along the legs and rungs ex-

hibit predominantly antiferromagnetic ordering. The dependence of staggered magnetization as

the relevant order parameter is quite analogous to the previous case

mz
AF =

1

2N

N
∑

i=1

(−1)
i
(

〈sz
1,i 〉−〈sz

2,i 〉
)

=
1

2

[

1−
(

J x
1
+ J

y

1

)2

4(J2 − J3)2

]

1
8

.

The most fundamental difference between the ground states of the Heisenberg-Ising ladder with the

X X Z - and X Y Z -Heisenberg intra-rung interaction can be found in the phases arising from the uni-

form configuration with all s̃z
1,i

= 1
2
. While in the former model with the X X Z intra-rung interaction,

all ground-state phases are classical in their character [7], the emergent ground-state phases of the latter

model with the more anisotropic X Y Z intra-rung coupling display significant quantum features. One

may indeed identify the following three quantum ground states for a particular case e+
0
< e−

0
with all

s̃z
1,i

= 1
2
:

• Quantum paramagnetic (QPM2) state for 1
2
|J x

1
− J

y

1
| > |J2 + J3|: the equivalent transverse Ising

chain H+ (2.5) is in the gapped disordered state with no spontaneous magnetization 〈s̃x
i
〉 = 0 and
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non-zeromagnetization 〈s̃z
i
〉, 0 induced by the effective transverse field. For the initial Heisenberg-

Ising ladder, one consequently gets the ground state with the prevailing dimer state |φi
1,−〉 on the

rungs.

• Stripe Rung (SR) state for 1
2
|J x

1
−J

y

1
| < J2+J3: the equivalent transverse Ising chain exhibits a spon-

taneous antiferromagnetic orderingwith 〈s̃x
i
〉 = (−1)i mx , 0. Due to relationships (2.2), one obtains

for the Heisenberg-Ising ladder 〈sz
1,i
〉 = −〈sz

1,i+1
〉 = 〈sz

2,i
〉 = −〈sz

2,i+1
〉, 0. Thus, the Heisenberg-Ising

ladder shows an antiferromagnetic order along the legs and ferromagnetic order along the rungs.

The staggered magnetization as the relevant order parameter in this phase is non-zero and it ex-

hibits evident quantum reduction of the magnetization given by:

mz
SR =

1

2N

N
∑

i=1

(−1)
i
(

〈sz
1,i 〉+〈sz

2,i 〉
)

=
1

2

[

1−
(

J x
1
− J

y

1

)2

4(J2 + J3)2

]

1
8

.

• Ferromagnetic (FM) state for 1
2
|J x

1
− J

y

1
| < −(J2 + J3): the effective transverse Ising chain shows a

ferromagnetic ordering. Due to transformation relationships (2.2), all the spins of the ladder have

the same magnetization in the z-direction. The ground state corresponds to the ferromagnetic spin

state

mz
FM =

1

2N

N
∑

i=1

(

〈sz
1,i 〉+〈sz

2,i 〉
)

=
1

2

[

1−
(

J x
1
− J

y

1

)2

4(J2 + J3)2

]

1
8

.

Altogether, it could be concluded that the X Y anisotropy in the Heisenberg intra-rung coupling is re-

sponsible for quantum features of otherwise classical SR and FM states and, moreover, it may also lead

to the appearance of a new disordered phase QPM2. Two paramagnetic phases QPM1 and QPM2 have

quite similar features: they are both disordered states with the energy gap in their excitation spectrum

and, consequently, their pair spin-spin correlation functions decay exponentially. Both quantum param-

agnetic phases can be distinguished by the square of zth component of the total spin (Sz
i

)2 on i th rung,

which is equal to (Sz
i

)2 = 0(1) in QPM1 (QPM2).

Now, let us pay our attention to the ground-state phase diagram established for the particular case of

X Z -Ising ladder as depicted in figure 2 by considering J
y

1
= 0. Assuming the X Z intra-rung interaction,

one gets a striking competition between the X –X interaction along the rungs and the Z –Z interaction

along the legs, while the additional Z –Z interaction along rungs acts generally against the X –X inter-

action. It should be also mentioned that one may recover some known examples from the ground-state

phase diagram of the X Z -Ising ladder presented in figure 2. In fact, figure 2 (a) shows the particular lim-

iting case of a quantum compass ladder with an additional diagonal frustrating Ising interaction. Let us

follow the known results of a simple quantum compass ladder [3] to be obtained from our model by dis-

regarding the frustrating Ising interaction J3 = 0. Both Hamiltonians H+ and H− (2.5) become identical

under this special condition and, consequently, the ground state of the model is always two-fold degen-

erate due to the equality e−
0
= e+

0
. The investigated model is either in the SL or FM state for 1

2
J x

1
< −J2,

either in QPM1 or QPM2 state for 1
2

J x
1
> |J2|, either in SR or Néel state for 1

2
J x

1
< J2. Note that the quantum

phase transition from the disordered to the long-range ordered state takes place at |J2| = 1
2

J x
1
.

It is quite evident that the diagonal interaction J3 removes the two-fold degeneracy of the ground state

[see figure 2 (a)] by changing the effective spin interaction in the effective Hamiltonians H+ and H−. The
effect of the additional Z –Z intra-rung interaction is shown in figure 2 (b)–(d), where the results for a

different relative strength of J z
1
are presented. It could be understood from (2.5) that J z

1
lowers initially

the energy of the s̃z
1,i

= − 1
2
configuration by the amount 1

2
N J z

1
with respect to the energy of the s̃z

1,i
=

1
2
configuration. Therefore, the regions of the phases, which correspond to the s̃z

1,i
= 1

2
configuration,

become smaller with increasing J z
1
. For sufficiently strong J z

1
, QPM2 phase can completely disappear

from the ground-state phase diagram. Another distinctive feature is that J z
1
makes the singlet-dimer phase

favorable along the line J2 = J3 inside the region of QPM1 state.

The relevant ground-state behavior can be supported by the dependencies of respective order pa-

rameters as displayed in figure 3 (a). If there is no frustrating diagonal interaction, the model may stay
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Figure 2. (Color online) Ground-state phase diagram of the X Z -Ising ladder for J x
1
= 1, J

y
1
= 0 and four

different values of J z
1
: (a) J z

1
= 0; (b) J z

1
= 0.05; (c) J z

1
= 0.1; (d) J z

1
= 0.5. QPM1 is the paramagnetic phase

with the prevailing rung states |φi
0,0

〉. QPM2 is the paramagnetic phase with the prevailing rung states

|φi
1,−〉. Dotted lines indicate the rung singlet-dimer state.

Figure 3. (Color online) Order parameters (a) and nearest-neighbor correlation function (b) as a function

of intra-leg interaction J2 for J x
1
= 1, J z

1
= 0.1 and different J3 = 0,0.25,0.5,0.75. (a) The curves on the left

correspond to mSL, the curves on the right for J3 = 0.25,0.5,0.75 (J3 = 0) correspond to mSR (mAF).
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in the disordered QPM1 or the ordered SL and Néel phases. The corresponding nearest-neighbor corre-

lation function along the legs shows a continuous change with a weak singularity at the quantum critical

points indicated by filled circles in figure 3 (b). The curve for another particular case J3 = 0.25 looks sim-

ilar except that the diagonal interaction of this strength leads to a direct phase transition between two

disordered quantum paramagnetic states QPM1 and QPM2. This unusual transition can be recognized

from the relevant dependence of the nearest-neighbor correlation function,which sustains a jump at this

special critical point. It is interesting to note that the further increase of a frustrating Ising interaction

J3 demolishes both disordered phases QPM1 and QPM2. Thus, one may also detect the quantum phase

transition between two ordered SL and Néel phases, whereas the order parameters do not reach zero

continuously in this particular case.

Figure 4. (Color online) Ground-state phase diagram of the X Y -Ising model for J x
1
= 1, J z

1
= 0 and four

different values of J
y
1
: (a) J

y
1
= 0; (b) J

y
1
= 0.05; (c) J

y
1
= 0.1; (d) J

y
1
= 0.5. Dotted lines indicate the rung

singlet-dimer state.

In figure 4, the ground-state phase diagram of the X Y -Ising ladder is depicted by considering another

particular casewith J z
1
= 0. The effect of the Y –Y intra-rung interaction has some similaritieswith the one

of Z –Z intra-rung interaction, although the origin is completely different. The ground-state energy of H−

is generally lowered with respect to that of H+, because J
y

1
> 0 increases the effective transverse field in

H− and decreases it in H+. Owing to this fact, the regions of SL, QPM1, and Néel states that correspond to

the uniform configuration with all s̃z
1,i

=− 1
2
get extended with an increase of J

y

1
. One may also generally

conclude that J
y

1
> 0 acts against the QPM2 phase, which gradually shrinks with increasing J

y

1
until it

completely disappears at J
y

1
= 1

2
J x

1
. Similarly to the case with the Z –Z intra-rung interaction, the Y –Y

intra-rung interaction also induces the presence of the rung singlet-dimer state along a special line J2 = J3.
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4. Conclusions

In the present paper, the effect of the most general X Y Z anisotropy in the intra-rung interaction

on the ground state of the spin- 1
2
Heisenberg-Ising two-leg ladder was investigated in detail. It has been

shown that the most general kind of anisotropy,which breaks the rotational symmetry of the Heisenberg

interaction, may lead to the appearance of new quantum phases in the ground-state phase diagram. We

have also considered the special case of quantum compass ladder with an additional frustrated diagonal

interaction and showed that the singlet-dimer phase cannot appear in this particular case. The order

parameters and the nearest-neighbor correlation function were calculated and analyzed in detail in the

ground state. It has been demonstrated that the relevant behavior of the correlation function can help us

to reveal the quantum phase transition between two different disordered quantum paramagnetic phases.
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Основний стан спiн-1/2 двоногої драбинки

Гайзенберґа-Iзинґа з X Y Z взаємодiєю вздовж щаблiв

Т. Верхоляк1, Й. Стречка2

1 Iнститут фiзики конденсованих систем НАН України, вул. Свєнцiцького, 1, 79011 Львiв, Україна
2 Кафедра теоретичної фiзики i астрофiзики, Унiверситет П.Й. Шафарика, парк Ангелiнум, 9, 04001 Кошицi,

Словацька республiка

Квантову спiн-1/2 двоногу драбинку з анiзотропною X Y Z взаємодiєю Гайзенберґа вздовж щаблiв i Iзин-
ґовою взаємодiєю мiж спiнами на сусiднiх щаблях розглянуто в межах строгого пiдходу, який ґрунтується
на унiтарному перетвореннi. Частковий випадок моделi з X –X взаємодiєю вздовж щаблiв вiдображає
модель квантового компасу на драбинцi з додатковими дiагональними Iзинґовими взаємодiями. Вико-
ристовючи унiтарне перетворення, модель можна звести до поперечного ланцюжка Iзинґа з композит-
ними спiнами, i як наслiдок основний стан можна знайти строго. Ми отримуємо фазову дiаграму основ-
ного стану i аналiзуємо взаємовплив конкуренцiї кiлькох факторiв: X Y Z анiзотропiї взаємодiї Гайзенбер-
ґа, Iзинґової взаємодiї вздовж ланцюжкiв та фрустрованої дiагональної Iзинґової взаємодiї. Розглянута
модель демонструє складнi фазовi дiаграми основного стану, включаючи декiлька нетипових квантових
впорядкованих станiв, два рiзних невпорядкованих квантових станiв, а також квантовi фазовi переходи
першого i другого порядку мiж цими фазами.

Ключовi слова: квантова спiн-1/2 драбинка, точнi результати, основний стан, квантовий фазовий
перехiд
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