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The effect of a homogeneous external field on the three-dimensional uniax-
ial magnet behaviour near the critical point is investigated within the frame-
work of the nonperturbative collective variables method using the p* mod-
el. The research is carried out for the low-temperature region. The analytic
explicit expressions for the free energy, average spin moment and suscep-
tibility are obtained for weak and strong fields in comparison with the field
value belonging to the pseudocritical line. The calculations are performed
on the microscopic level without any adjusting parameters. It is established
that the long-wave fluctuations of the order parameter play a crucial role
in forming a crossover between the temperature-dependence and field-
dependence critical behaviour of the system.
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1. Introduction

We propose an approach for describing the critical behaviour of a three-dimen-
sional (3D) uniaxial magnet. Despite the variety of investigations, the problem has
not been solved exactly so far [1]. Another reason of studying this model is its
possible application to the study of nonmagnetic systems, such as binary alloys,
simple fluids, micellar systems and so on. The second order phase transitions in
the systems belonging to the 3D Ising universality class are also expected in high-
energy physics [2]. Most investigations are devoted to the calculations of universal
characteristics of the system, particularly, critical exponents and amplitude ratios
of thermodynamic functions.

The description of the system taking into account the effect of the external field
appears to be a more complicated problem. It is well known that the presence of
the field causes the smearing of second order phase transition. In the vicinity of the
critical point, the singularities of some thermodynamic functions transform into the
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maxima at fixed values of the field and temperature. These values correspond to the
case when the effects of the field and temperature on the critical behaviour of the
system are equivalent. Therefore, the simple series expansions in the scaling variable
are not valid in this region, since this variable is of the order of unity [3]. In this
region, the relations of thermal properties of the spin models to the properties of
the clusters of spins in geometrical terms [4] are of great interest.

Early investigations regarding the 3D Ising model in the external field are re-
ported in [5]. It is performed along the critical “isoterm” (7' = T.) using the series
expansion technique. In [6], the description of the system is carried out employi-
ng the transfer matrix method. The asymptotic form of the low-temperature free
energy for this model was obtained. However, this description is valid only for low
temperatures. The results presented in [7] were obtained using the quantum field
theory and renormalization group (RG) technique. All calculations are based on the
perturbative expansion at fixed d = 3 dimension. The equation of state is deter-
mined numerically using the parametric representation. The main difficulty in using
this approach is to extrapolate the field theory results from 7' > T; to T' < T, region
(T, is the critical temperature). To solve this problem, it is necessary to proceed
with analytical continuation in the complex 7-plane (7 is the reduced temperature
(1 =(T'—1T.)/T.)). Consequently, the calculations of thermodynamic functions and
their ratios of amplitude are complex. In order to determine the equation of state
in parametric representation, one should employ some adjusting parameters. This is
another disadvantage of this approach. The equation of state in parametric represen-
tation can be also obtained using the high-temperature expansion results [8]. There
are other investigations devoted to this problem, that are performed by numerical
methods [9-12].

In this article, the description of the 3D Ising-like magnet near the critical point
in the external field by the nonperturbative collective variables (CV) method [13,14]
is presented for the case of T' < T.. Using the transition from the spin variables to
the collective variables, which play the role of the modes of spin density oscillations,
one can calculate both universal and nonuniversal characteristics of the system. Par-
ticularly, we determine the explicit expressions for free energy, average spin moment
and susceptibility as functions of the external field, which is introduced in the Hamil-
tonian from the outset. These calculations are based on the non-Gaussian quartic
measure density (p* model). Since, the investigations are preformed on the micro-
scopic level and the interaction potential contains some microscopic parameters,
one can investigate the thermodynamic characteristics of the system as functions of
these parameters.

2. Basic relations

We consider the simplest one-component spin model on the simple cubic lattice
with period ¢ in a homogeneous external field h. For calculations, we use the following
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approximation of Fourier transform

B(0)(1 — 20°k2), k € By,
(k) = { By — d(0)d, ke B\B, (1)

where ®(0) = 874 (b/c)’, and regions B and By are defined as

T 2mn; B .

B = {k (l{f ]{3 ]{7)|I€ ——E—f—?ﬁZ, nz—1,2,...,NZ,Z—ZE,y,Z}, (2)
T 2w n; B .

B, = {k (ko by )b = =T 4 222 z_1,2,...,NOZ,z_gc,y,z}.(s)

The quantities A and b are the microscopic parameters of the interaction potential
[13], @ is the small constant, N3, = Ny, co = cso, No = 55N, d = 3 is the dimension
of the space and N is total number of sites. The parameter sy (sop > 1) determines
the region of values k € By, where the parabolic approximation for ®(k) is valid.
It should be noted that the interaction potential is an exponentially decreasing
function of the distance rj between particles at sites j and 1, ®(r;) = Aexp(—ry/b).
In the general form, the Fourier transform of this potential is determined as ®(k) =
®(0)/(1 4 b*k?)%. For small values of the wave vector, the parabolic approximation
is effective.

The starting point of these calculations is the partition function of the Ny-
multiple integral with respect to CV [15]:

7 = 7z e | (dp)Nf’eXP[‘al Nopo—* > d(k)prepi

kEBo
a3 1/2
Vo E: Pk, - 'pk35k1+~~+k3

3! kq,...,k3
k; €8
N ' Z Pk, - -pk4(5k1+---+k4]a (4)
sy
where
d(k) = ay — p®(0) + 26°3®(0)k*, B = 1/kT. (5)

The appearance of the terms with odd powers of CV is caused by the presence
of the field. Coefficients Zy, ag, @z and a; are functions of the external field [15].
The detailed procedure of calculating (4) by the step-by-step integration method is
presented in [13,14]. It can be represented as RG transformation of the Wilson type
with renormalization parameter s (s > 1). After performing n, + 1 iterations, as a
result, we obtain the partition function in the following form:

an+1

Z = ZOQOQl s anjnp+1 [Q(P(np))}

The partial partition functions are written as

Qn = [Q(P" )Q(d,)] ™.

S (6)
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Here jy,+1 = \/ﬁNn"H_l, and general expressions for Q(P"V) and Q(d,) are given
n [16]. The quantity I, 41 from (6) is presented as [15]

L1 = /(dP)N"pH exp[ ay" N ;ﬁu Po— 5 Z A1 (K) prep—xc
2 \cB,

1 np+1) —l 2
3'(1( ’ nilﬂ{l Z Pk - pk36k1+“'+k3

kEBp
1 np+1)
_Ia( ’ an1+1 Z Pk - - - Piy Ok 4ty | - (7)
ki’éi%p

The region B, = B, 41 has the form similar to (3) for the lattice with period
Cny41 = Cos" 1, where s is the RG parameter (s > 1). The coefficients in (7) are
expressed through initial coefficients using the recurrence relations (RR). Passing

on from quantities al(n) to wy, T, v, and u, by relations

a§”> = s "w,, d,(0) = 572",
aén) = s 3", ai") = s 1"y, , (8)

new quantities w,, r,, v, and u, are defined by solutions of RR linearized near the
fixed point (w* = 0, r* = —f,30(0), v* = 0, u* = ©o(BP(0))?). In the case of
T < T, they have the form

Wy, = —cp W ET — epoh'T, (0) ( 1/25(1)( ))_1 Ey,

rn=1" = o) B(0) T 5 + cia Ty (05> 82(0)) B,
Uy = —cpoh’ EQ,
=u" — Cm (5@( ) T42)90(1)/271E§ + e EY. 9)

Here b/ = (3h is the reduced external field, 71 = —7, £ are eigenvalues of the RG
transformation matrix (£, = 20.977, Ey = 7.374, F3 = 1.838 and E, = 0.397)
[15]. Other quantities are some coefficients, which do not depend on the field and
temperature [16]. The condition of small deviations of quantities w,, r,, v, and u,
from the fixed point defines some value n = n,,, at which the system leaves the critical
regime region (the exit point). Taking into account the eigenvalues Fj, one can see,
that deviations are mainly formed in the first two equations of (9) by temperature
7 and field A variables. In order to obtain explicit dependences for thermodynamic
functions, we use the approximation, that the exit point n, is only a function of one
of the variables A’ and 7. One chooses the variable, which has a stronger effect on
the critical behaviour than the other one. Hence, there are two cases: the weak field
region is determined by the equality

1H7:1
lnE2

Np = by = — -1, (10)
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where the quantity ., defines the exit point by the temperature value, and for the
strong field region we have

Inh
In El

N, =np = — 1, (11)

where ny, is the exit point controlled by the field. Here h = R'/foand 7 = c,(fl)ﬁ / fo-
The equality i, = ny corresponds to the case when the effects of the temperature
and the field on the critical behaviour of the system are equivalent. In the field-
temperature plane in double logarithmic scale of the plot, this case is represented
by the so-called pseudocritical line

iLc = 7~—1567 (12)

where the quantities 5 and J are the critical exponents.

3. Free energy of the system and equation of state

According to the formula (6), it is convenient to write down the free energy in
the form: [15]
F, = Fy+ Fcr + Frr + FT. (13)

The term Fj corresponds to the contribution from the noninteracting spins (in the
case of ® = 0). It has the following form

1 _
Foy=—kTN (1112 + Incosh i’ + 56@(0)@) . (14)

The term Fcg is the result of RG transformations and represents the contribution
from the short-wave oscillation modes. The expression for Fr is written as

FCR = —]{,‘TNO [eop — €1p7~_1 + 62p7~—12 + 63}7;1’2
+(—Fio + Fu%lES‘“H — F12%12E§(np+1))33(np+1)] : (15)

For the quantity Frgr, we have
FTR = —kTN()SiS(anrl) {fplc — Ny Ins — fp116%1E5p+1 — fp1267~'12E22(np+1)} . (16)

This is the free energy of the regime, which corresponds to the transition from short-
wave to long-wave oscillation modes of the order parameter. In expressions (15) and
(16), the quantities Fy;, e, fp1c and fpi. are independent of the field [16].
The term from (13), which represents the contribution from the long-wave fluc-
tuations, has the form
Fr=—kTInI,, . (17)
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The quantity I, 4, is calculated using the series of substitutions of variables. The
first of them is

Px = Nk + Uh\/ﬁfsk-

Thus, we obtain

1
]np—i-l = exp [Eo(O'h)] /(dT])N”P+1 exp [Ao\/ﬁ’f]o — 5 Z dh<k)7]k77—k

keBnp+1

1 —1/2
——thnp+/1 > M T Ok etk

3! ey s
kzeBnp+1
1 —1
_@ahan—&—l Z Mgy - - nk45k1+'~-+k4 : (18)
: Ki,...,ky
kiEBnp+1
Here
~ 1 m N
Ay = amh — dyn 11 (0)on — 6a§ pt) o3 N
1 m N
dy(k) = dp(0) + 280(0)b2k2, d(0) = dy, 11(0) + ~ay"Mo? :
2 anJrl
\ N O\ \
bh = Uhafl v D) (r) s ap = afl r+1) (19)
np+1
and

(20)

a(”p+1) N
o
2 24 "N, 41

= 1
EO(Uh) =N [almahh - 7dnp+1(0)0-}21 - 4

The quantity oy, can be found employing the condition dFEy (o}, ) /00y, = 0. Performing
the substitution of the variable

_np+1
op =00S 2, (21)
we arrive at the cubic equation
7 np+l 1 3.3 —2(np+1
althl" — Tnp+100 — éunp+10'080 S 3 (nptl) — 0. (22)

The solution of (22) is chosen using the condition of free energy minimization. It
also nullifies the quantity Ay from (19). The quadratic term in the expression of
the exponent in (18) becomes positive and dominating in comparison with other
terms for all £ # 0. Thus, we can perform the integration in (18) with respect to the
variables n, except the variable 7. The next step in the calculations lies in returning
to the variable py by means of

UOZPO—Uh\/N-

754



Behaviour of the order parameter

The average value of the variable py plays the role of the order parameter of the
system. Therefore, performing the integration with respect to this variable , we
get the main contribution to the total free energy and average spin moment. The
integration is carried out performing the substitution py = ppv/N and using the
steepest descent method. As a result, the quantity I,,,,1 assumes the following form:

]”p—i-l - keg+1 <dh7(rk3)> ’ \/N/dph exp [NEO} ) (23)

k#£0

where

O | o 1 »
Ey = almElpHS 2ty o np+1S A PH)pZ — ﬁsgunﬁls ( ”+1)pr. (24)

Using the condition 0FEy/dpy, = 0, we find the root of the cubic equation satisfying
the condition of the free energy minimization in the form

np+l

Ph = OopS 2 . (25)
Thus, the quantity I,, 4, can be written as
1
T 2
L= ]I (ﬁ) exp [N Ey(oon)] , (26)
kEBnp+1 h( )
k#0
where
. nA17 1 1
EO(UOh) = S_d(np'i'l) almE1p+1hO'0h — érnp+10_8h — Esgunﬁlogh . (27)

As one can see, this quantity is the function of the variable py, whose average value
is the order parameter as it was mentioned above. Thus, the expression (27) is the
microscopic analog of the Landau free energy as well as the relation (25) is the
equation of state.

Taking the logarithm, transiting to the spherical Brillouin zone and integrating
with respect to k in the expression (26), we arrive at the formula for free energy of
long-wave fluctuations:

1

F = —kTN{{(an)lns— ;

1
I+ 5 w} st + Eo(a()h)} 530wt (0g)

The quantity /) has the form
2 D AL Di\?
I=W(Dy+ D)) —=+2—2—2(=2 tan | —-
o = In(Dy + D7) 3 + D (D’l arctan D)
and coefficients D}, and D] are defined as

2
1 o [ 7h
D6 = Tnp-i-l + §Sgunp+10'8h, Dll = 2ﬁ¢(0)802 <C> .
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Collecting the contributions from all regimes of fluctuations according to (13), we
can now write down complete expressions for the free energy of the system in case
of strong and weak fields. Taking into account that in the case of n, = p, (see (10))
§73r 1) — 73 and 7 B4 = 1, the total free energy for the weak field region takes
on the form

Fe = —kT N |In cosh h/ + l() + llue%fw + lll“eiL’ﬂ% + lgil2 — l37~'1 + l47:12 s (29)

where

1 _
lo=1n2+ §ﬁcc1>(o)<1> + 55%€0p

_ 0 1 2 1 3 4
e = lije — o e 1900 T 5y Upr+150%0h

lllp,e = A1mO0h » l2 = 30_363}7 )
_ 1 - - 1 _
s = sy e, = 5ARO)fo/ciy. L= sy s + S BBO)DLF/ ()% (30)

Here (3. is the inverse critical temperature. The quantity lﬁ)@ is obtained by the
summation of coefficients proportional to 73 from different contributions.

0.10 -

0.08 |-

0.06 |-

h

0.04 -

0.02 |- : c

0_00- " I " 1 " 1 " ]
6.0x10° 1.2r>]<'10" 1.8x107 2.4x10”7

Figure 1. The contribution to the order parameter from the regime of long-wave
fluctuations as a function of the field for 7 = 107°.

According to the relation (11), we have s=3("+1) = 5 and Ep»*! = 473 Thus,

the free energy of the strong field region is written as
F.pn = —KkTN |Incoshh' +lo+1h8 — L7hs 70
~27 -2 72 ~ ~2
+l1257'1 h3 po + lgh — lng + l47’1 . (31)
Here pg = (9, and the coefficients satisfy the following relations:

_ 1 1
lge) = E07h + (IHS — 5[6 + 5 Inm + fplc — Fl())Sag,
Lie = =502 (Fi1 — for1e), lize = —85° (Fia + fo12e)- (32)
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The main contribution to the order parameter (25) for weak fields A’ < h. takes on
the form

ph = O'Oh7~'1§ (33)
and for strong fields A’ > h/
P = Oonh?, (34)
respectively. The quantity og, is the root of the cubic equation
n 1
armh Bt — Tnyp+100h — 6unp+103h88 =0 (35)

derived from (27). The dependences (33) and (34) are shown in figure 1. As one can
see, they coincide in the point ' = R, (k. = fohe). Tending to the pseudocritical line
region, the coefficient g, becomes essentially dependent on the field. In the point
R = h!, this dependence is the most substantial. Such a dependence is related to
the presence of the field in terms of the cubic equation (35). The quantity oqp, en-
sures a crossover between the temperature-dependence and field-dependence critical
behaviour. With the field further increasing, the dependence on the field is reduced,
and oy, in the case of A’ > h. becomes practically independent of the field.

The expressions (29) and (31) allow us to get other thermodynamic characte-
ristics of the system. Particularly, the total average spin moment can be obtained
using the well-known relation 0 = —(N~1 - dF/dh)7. In the case of the small fields,
the explicit expression for order parameter has the form

o) = tanh B + 20 fi 21 + Ly fy 57 (36)

The dependence of the coefficient ly1,. on the field and temperature is responsible
for the crossover between two types of the critical behaviour and for the divergence
of the second order derivatives of the free energy in the critical point. When h > he,
the total order parameter can be written as follows

_6
ol = tanh b’ + 2o fy 2 + oo h's + 7116 fo °H's
JURYE 9y 12

—O1enTIh'® 20 + o9 TR 70 (37)
The coefficients in expressions (36), (37) and in the following expressions for the
susceptibility can be obtained through the coefficients (30) and (32) by differentia-
ting the free energy of the system with respect to the field variable for the case of
h < he and h > he, respectively.

In the case of h < h,, the susceptibility is defined as

alll,ue 7

v
2

X&) = ol = tanh® B 20 £ + o SRR, (38)
When h > BC, we obtain
Xé_h) = ! 1 — tanh® 2/ 4 2l5 f5% 4 xoen ' 5 Berhh 5
’ kT 5
+Xlehhl - XZeh%lh/_%_% + Xgeh%lzh/_%_% ) (39)
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Due to the approximation that exit point n, is one-variable function, there is
some disagreement between the quantities o), O';_h)
Xi,_h) in the vicinity of the pseudocritical line (for example, (™) = 2.01 - 10° and

as well as between x{~) and

Xi,_h) = 2.02-10° at 7 = 107>, W’ = h.). Nevertheless, the region of disagreement
is quite narrow, since the long-wave fluctuations play the major role in the critical
phenomena.

4. Conclusions

The description of the effect of the external magnetic field on the 3D Ising-like
magnet near the critical point using the CV method in the low-temperature region
is presented. We get the explicit analytic expressions for the free energy, order pa-
rameter and susceptibility as functions of the field and temperature. For variable py,
which plays the role of the order parameter in the CV method, the field dependence
of the whole range of fields and temperatures in the vicinity of the critical point is
obtained. In the proposed approach, the crossover between critical behaviour con-
trolled by field or temperature variable is ensured mainly by the contribution from
the long-wave fluctuations. Therefore, this dependence is the main contribution to
the total equation of state. Since the calculations are carried out on the microscop-
ic level, we can obtain the dependences of the nonuniversal characteristics on the
microscopic parameters of the system (a lattice constant and parameters of the in-
teraction potential). Calculations are performed within the framework of the quartic
measure density, which allows one to obtain the qualitative description of the sys-
tem behaviour. For more accurate estimations, it is necessary to use the p® model
[17-19]. The calculations can be also extended to the classical n-vector magnetic
model [20].
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NMoeepiHka napamMeTpa NOpPSAKY NPOCTOro MarHeTUKa
B 30BHiLULHbOMY NONi

M.MN.Kosnoscbkui, I.B.Muniok, O.0.Mputyna

IHCTUTYT Pi3nkm kKoHaeHcoBaHnX cmctem HAH Ykpainu,
79011 JlbBiB, BYn. CBEHLUjubkOrO, 1

OtpumaHo 18 nunHg 2005 p., B OCTaTOYHOMY BUMIS4j —
31 »oBTHA 2005 p.

B pamkax HenepTypOaTMBHOIrO MeToAy KONEKTUBHUX 3MIHHUX HA OCHOBI
mMomeni p* OOCNIOXeHO BMAMB 30BHILUHLOMO MOJIA HAa KPUTWMYHY MOBe-
OIHKY TPUBMMIPHOIrO OAHOBICHOro marHetTuka. ocnigxeHHs npoBeaeHi
DS HU3bKoTeMnepaTypHoi obnacti. OTpyMaHi aHaniTUyHi BUpa3u ans
Bi/IbHOI eHeprii, cepefHbOro CniHOBOr0 MOMEHTY i CNPUNHATAUBOCTI
y BMMNAAKy CAabkux i CUIbHUX MOMIB MO BiOHOLIEHHIO OO BEMHUHU
Nons, WO 33a00BINIbHAE PIBHAHHSA MNCEBOOKPUTUYHOI iHii. Po3paxyHkn
NpoBeAeHi Ha MIKPOCKOMIYHOMY PiBHI 6€3 3aCTOCYBaHHSA OOMOMIKHUX
napamMeTpis. BCcTaHOBNEHO, WO BupiwansHy posfib Y GOpMyBaHHI ne-
pexoay MK TeMnepaTtypo3asiexXHOo i 3aNexXHOI0 Big, Nong KPUTUYHOO
MOBELIHKOK CUCTEMM BiAirpaloTb AOBroXBUIbOBI GJyKTyaLii napameTpa
NOPSIAKY.

Knio4oBi cnoBa: kputnyHa Touka, napameTp rnopsaky, Moaess I3vHra

PACS: 05.50.+q, 05.70.Ce, 64.60.Fr, 75.10.Hk
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