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The optical absorption spectrum in an analytically solvable model of a
localized-electron and phonons is investigated using the operator alge-
bra in NonEquilibrium Thermo Field Dynamics (NETFD). The position and
the curvature of the adiabatic potentials for the ground and for the excited
electronic states are assumed to differ from each other. The structures of
the absorption spectra are investigated for various situations including the
cases of slow modulation and of fast one. The method of NETFD is ex-
plained in order to be self-contained in solving the problem.
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1. Introduction

In this paper, we will apply the method of NonEquilibriumThermo Field Dynam-
ics (NETFD) [1–5], a canonical formalism of quantum systems in far-from-equili-
brium state, to an analytically soluble model of a localized-electron and phonons
[6,7]. We will investigate the optical absorption caused by the localized-electron un-
der the influence of phonons. In the course of the application, we will show how the
operator algebra of NETFD works as if it were of quantum mechanics although the
system is dissipative [8,9].

The dynamics in the system of a localized-electron and phonons is specified by
the Hamiltonian [6,7]

Hel-ph = |g)Hg(g|+ |u)Hu(u|+Hph, (1)

with (~ = 1)

Hg = ωgb
†b, (2)
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Hu = ωel + ωub
†b+ g1

(

b† + b
)

, (3)

Hph = ωphb
†b, (4)

where ωel is the energy spacing between the upper and the ground electronic states.
It is assumed that the curvatures ωg of the adiabatic potential Hg belonging to
the electronic ground state and ωu of Hu attached to the excited electronic level are
mutually different, and that the positions of the centres of these adiabatic potentials
are shifted. Hph is the Hamiltonian for the interaction mode ωph of the phonon
system. b (b†) represents the annihilation (creation) operator of the interaction mode
which satisfies the canonical commutation relation

[b, b†] = 1. (5)

The states |g) and |u) are, respectively, the ground and the upper electronic levels
which satisfy the completeness condition for the model of two electronic states, i.e.,

|g)(g|+ |u)(u| = 1. (6)

In section 2, minimal concepts and techniques of NETFD will be explained by
making use of the model of a damped oscillator in order to be self-contained. An
emphasis is put on the operator algebraic method in solving the problem. In compar-
ison to the algebraic method, in appendix A, the same model will be treated by the
method of path integral within NETFD. Furthermore, the model will be treated, in
appendix B, with the mapped equation (the Fokker-Planck equation) by making use
of the Boson coherent states within the anti-normal ordering. Before the invention
of NETFD, the latter method had been mainly used in solving problems in dissipa-
tive systems (for example, see [10–12]). In section 3, an analytically soluble model
of a localized-electron and phonons system will be treated by the operator algebra
within NETFD in order to derive the absorption spectrum. Some discussions will
be given in section 4.

2. Method of NETFD

We will introduce the operator method of NETFD using the simplest but non-
trivial model of a damped oscillator by comparing it with other methods in nonequi-
librium statistical mechanics in terms of NETFD. For more information regarding
the general method of NETFD refer to [5].

2.1. Schr ödinger equation for damped oscillator

The dissipative dynamics of a damped oscillator is described by the Schrödinger
equation

∂

∂t
|0(t)〉 = −iĤ|0(t)〉, (7)

for the thermal ket-vacuum |0(t)〉 within NETFD with the hat-Hamiltonian

Ĥ = H − H̃ + iΠ̂ . (8)
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Here,
H = ωa†a, (9)

represents the Hamiltonian of a harmonic oscillator, and

Π̂ = −κ
[

(1 + 2n̄)
(

a†a + ã†ã
)

− 2 (1 + n̄) aã− 2n̄a†ã†
]

− 2κn̄, (10)

is the infinitesimal time-evolution operator describing dissipative dynamics, where
ω and κ are, respectively, the angular frequency of the oscillator and its relaxation
rate. The latter is assumed to be positive. The quantity n̄ represents the Planck
distribution function defined by

n̄ =
(

eω/T − 1
)−1

, (11)

with temperature T . The operators a, a†, ã and ã† satisfy the canonical commutation
relation:

[a, a†] = 1, [ã, ã†] = 1, [a, ã] = 0, etc. (12)

In NETFD, any operator O is accompanied by its partner (tilde) operator Õ
where the tilde conjugation ∼ is defined by [13]

{O1O2}∼ = Õ1Õ2, (13)

{c1O1 + c2O2}∼ = c∗1Õ1 + c∗2Õ2, (14)
{

Õ
}∼

= O, (15)
{

O†
}∼

= Õ†, (16)

for operators O’s and complex c-numbers c’s. The tilde and non-tilde operators are
mutually commutative at equal time (see (12)):

[O1, Õ2] = 0. (17)

The vectors 〈1|O† and 〈1|Õ in the thermal space are identical:

〈1|O† = 〈1|Õ, (18)

where 〈1| represents the thermal bra-vacuum. We assume that the initial ket-vacuum
|0〉 = |0(t = 0)〉 is specified by

a|0〉 = fã†|0〉, (19)

with a real quantity f .
The vacuum expectation value of the number operator a†a:

n(t) = 〈1|a†a|0(t)〉, (20)

is the one-particle distribution function satisfying the Boltzmann equation

d

dt
n(t) = −2κ [n(t)− n̄] . (21)
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The initial condition of the one-particle distribution function is given by

n(t = 0) = n =
f

1− f
, (22)

which is derived by making use of the relation [5]

〈1|aã|0〉 = 〈1|ãa|0〉, (23)

with the help of (19), (12) and (18). Note that the thermal vacuums 〈1| and |0〉
are normalized as 〈1|0〉 = 1. Note also that (23) is consistent with the fact that the
thermal vacuums 〈1| and |0〉 are tilde invariant:

〈1|∼ = 〈1|, |0〉∼ = |0〉. (24)

2.2. Hat-Hamiltonian

The hat-Hamiltonian (8) is a tildian operator satisfying

{

iĤ
}∼

= iĤ, (25)

which is not an Hermitian operator. Note that

H† = H, (26)

{

Π̂
}∼

= Π̂ , (27)

Π̂ † 6= Π̂ . (28)

With the help of (18), it is an easy task to check that the hat-Hamiltonian (8) has
got zero eigenvalue for the thermal bra-vacuum, i.e.,

〈1|Ĥ = 0. (29)

This is a manifestation of the conservation of probability, i.e., 〈1|0(t)〉 = 1 (inde-
pendent of time), and is indicating that the bra-vacuum 〈1| does not depend on
time.

Now, we introduce a set of basic vectors [13]

|m, ñ) = |m)|ñ), (30)

where it is assumed that |m) forms the ortho-normal and complete set, i.e.,

(m|m′) = δm,m′ ,
∑

m

|m)(m| = 1, (31)

with
(m| = |m)†, (32)
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and, then, |ñ) = |n)∼ also forms the ortho-normal and complete set, i.e.,

(ñ|ñ′) = δn,n′,
∑

n

|ñ)(ñ| = 1. (33)

We see that the ortho-normality and the completeness for |m, ñ) are given, respec-
tively, by

(m, ñ|m′, ñ′) = δm,m′δn,n′,
∑

m,n

|m, ñ)(m, ñ| = 1, (34)

with
|m, ñ)† = (m, ñ|. (35)

Note that the basic vectors (30) satisfies

|m, ñ)∼ = |n, m̃), (m, ñ|∼ = (n, m̃|. (36)

Let us investigate the matrix element of the hat-Hamiltonian (8), i.e.,

(k, ℓ̃|Ĥ|m, ñ) = (k, ℓ̃|H|m, ñ)− (k, ℓ̃|H̃|m, ñ) + (k, ℓ̃|iΠ̂ |m, ñ). (37)

The first two terms are evaluated as

(k, ℓ̃|H|m, ñ) = (k|H|m) (ℓ̃|ñ)
= (k|H|m) δℓ,n, (38)

and

(k, ℓ̃|H̃|m, ñ) = (k|m) (ℓ̃|H̃|ñ)
= δk,m (ℓ̃|H̃|ñ)
= δk,m {(ℓ|H|n)}∼

= δk,m {(ℓ|H|n)}∗

= δk,m (n|H†|ℓ)
= δk,m (n|H|ℓ). (39)

These are consistent with
{

(k, ℓ̃|Ĥ0|m, ñ)
}∗

= (m, ñ|Ĥ†
0|k, ℓ̃) = (m, ñ|Ĥ0|k, ℓ̃), (40)

for Ĥ0 = H − H̃. On the other hand,

{

(k, ℓ̃|Ĥ0|m, ñ)
}∗

=
{

(k, ℓ̃|Ĥ0|m, ñ)
}∼

= −(ℓ̃, k|Ĥ0|ñ,m). (41)

(40) and (41) tells us that the complex conjugate of (k, ℓ̃|Ĥ0|m, ñ) can be represented
by two different matrix elements. Similarly, for the third term, we have

(m, ñ|Π̂ †|k, ℓ̃) = (ℓ, k̃|Π̂ |n, m̃). (42)
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2.3. Density matrix

We can represent the thermal vacuums as

|0(t)〉 =
∑

n,m

Pn,m(t)|n, m̃), (43)

〈1| =
∑

n

(n, ñ|. (44)

The normalization of 〈1|0(t)〉 reduces to

1 = 〈1|0(t)〉 =
∑

k

∑

n,m

Pn,m(t)(k, k̃|n, m̃) =
∑

k

Pk,k(t), (45)

where we used the ortho-normality in (34). With the tildian hat-Hamiltonian satis-
fying (25), we see that the thermal ket-vacuum preserves its tilde-invariance, i.e.,

|0(t)〉∼ = |0(t)〉, (46)

which reduces to the Hermiticy of the density matrix Pn,m(t) [5], i.e.,

P ∗
m,n(t) = Pn,m(t). (47)

Therefore, we see that Pn,n(t) is real, and that, with the normalization (45),

0 6 Pn,n(t) 6 1. (48)

2.4. Heisenberg equation

Introducing the time-evolution operator V̂ (t) by

d

dt
V̂ (t) = −iĤV̂ (t), (49)

with the initial condition V̂ (0) = 1, we can define the Heisenberg operator

A(t) = V̂ −1(t)AV̂ (t), (50)

which satisfies the Heisenberg equation

d

dt
A(t) = i[Ĥ(t), A(t)], (51)

for dissipative systems. Here,

Ĥ(t) = V (t)−1ĤV (t), (52)

is the hat-Hamiltonian in the Heisenberg representation. Note that the time-evolu-
tion of the unstable thermal vacuum is given by

|0(t)〉 = V̂ (t)|0〉, (53)
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and that

V̂ (t)∼ = V̂ (t). (54)

Note also that the dissipative operators a(t) etc. in the Heisenberg representation
preserve the equal-time canonical commutation relation

[a(t), a†(t)] = 1, [ã(t), ã†(t)] = 1. (55)

The equation of motion for the averaged quantity n(t) = 〈1|a†(t)a(t)|0〉 is derived
by means of the Heisenberg equation (51) by taking its vacuum expectation:

d

dt
〈1|a†(t)a(t)|0〉 = i〈1|[Ĥ(t), a†(t)a(t)]|0〉, (56)

which reduces to the Boltzmann equation (21) as it should be.

Let us introduce the thermal doublet notation by

a(t)µ=1 = a(t), a(t)µ=2 = ã†(t), (57)

ā(t)µ=1 = a†(t), ā(t)µ=2 = −ã(t), (58)

with

a(t) = V̂ −1(t)aV̂ (t), ã†(t) = V̂ −1(t)ã†V̂ (t), (59)

a†(t) = V̂ −1(t)a†V̂ (t), ã(t) = V̂ −1(t)ãV̂ (t). (60)

Then, the canonical commutation relation can be written as

[a(t)µ, ā(t)ν ] = δµν . (61)

Making use of the thermal doublet notation, the hat-Hamiltonian (8) reduces to

Ĥ = ωāµaµ + iΠ̂ + ω, (62)

Π̂ = −κāµAµνaν + κ, (63)

with

Aµν =

(

1 + 2n̄ −2n̄
2(1 + n̄) −(1 + 2n̄)

)

. (64)

The Heisenberg equations for the semi-free particle become

d

dt
a(t)µ = i[Ĥ(t), a(t)µ]

= −i [ωδµν − iκAµν ] a(t)ν , (65)

d

dt
ā(t)µ = i[Ĥ(t), ā(t)µ]

= ā(t)ν i [ωδνµ − iκAνµ] . (66)
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2.5. Annihilation and creation operators

Let us introduce the annihilation and creation operators,

γ(t)µ=1 = γ(t), γ(t)µ=2 = γ̃+◦(t), (67)

γ̄(t)µ=1 = γ+◦(t), γ̄(t)µ=2 = −γ̃(t), (68)

by
γ(t)µ = B(t)µνa(t)ν , γ̄(t)µ = ā(t)νB−1(t)νµ, (69)

with the time-dependent Bogoliubov transformation:

B(t)µν =

(

1 + n(t) −n(t)
−1 1

)

, (70)

where n(t) is the one-particle distribution function satisfying the Boltzmann equa-
tion (21). The annihilation and creation operators satisfy the canonical commutation
relation

[γ(t)µ, γ̄(t)ν ] = δµν , (71)

and annihilate the bra- and ket-vacuums at the initial time:

γ(t)|0〉 = 0, 〈1|γ̃+◦(t) = 0. (72)

The equation of motion for the thermal doublet γ(t)µ is derived as

d

dt
γ(t)µ =

dB(t)µν

dt
a(t)ν +B(t)µν

d

dt
a(t)ν

= −i [ωδµν − iκτµν3 ] γ(t)ν , (73)

where the matrix τµν3 is defined by

τ 113 = −τ 223 = 1, τ 123 = τ 213 = 0. (74)

For the second equality in (73), we used the Boltzmann equation (21). The solution
of (73) is given by

γ(t)µ = exp {−i (ωδµν − iκτµν3 ) (t− t′)} γ(t′)ν . (75)

Introducing the annihilation and creation operators

γµ=1 = γt, γµ=2 = γ̃+◦ , (76)

γ̄µ=1 = γ+◦ , γ̄µ=2 = −γ̃t, (77)

in the Schrödinger representation by the relation

γ(t)µ = V̂ −1(t)γµt V̂ (t), γ̄(t)µ = V̂ −1(t)γ̄µt V̂ (t), (78)

with V̂ (t) being specified by (49), we can rewrite the hat-Hamiltonian (8) as

Ĥ = ω
(

γ+◦γt − γ̃+◦ γ̃t
)

− iΠ̂ , (79)
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with

Π̂ = −κ
(

γ+◦γt + γ̃+◦ γ̃t + 2 [n(t)− n̄] γ+◦ γ̃+◦
)

. (80)

It is easily derived by means of the doublet notation (62).
Substituting (79) into the quantum master equation (8), we have

∂

∂t
|0(t)〉 = −2κ [n(t)− n̄] γ+◦ γ̃+◦|0(t)〉

=
dn(t)

dt
γ+◦ γ̃+◦|0(t)〉. (81)

It is solved to give

|0(t)〉 = exp

[
∫ t

0

dt′
dn(t′)

dt′
γ+◦ γ̃+◦

]

|0〉

= exp
[

[n(t)− n(0)] γ+◦ γ̃+◦
]

|0〉. (82)

This expression tells us that the vacuum is the functional of the one-particle dis-
tribution function n(t). The dependence of the thermal vacuum on n(t) is given
by

δ

δn(t)
|0(t)〉 = γ+◦ γ̃+◦|0(t)〉. (83)

The Schrödinger equation (7) can be rewritten as

{

∂

∂t
+

dn(t)

dt

δ

δn(t)

}

|0(t)〉 = 0. (84)

It is easy to see from the normal product form (79) of Ĥ that it satisfies (29),
since the annihilation and creation operators satisfy

γt|0(t)〉 = 0, 〈1|γ̃+◦ = 0. (85)

The hat-Hamiltonian (8) can be also written in the form

Ĥ = ω
(

d†d− d̃†d̃
)

− iκ
(

d†d+ d̃†d̃
)

, (86)

where dµ=1 = d, dµ=2 = d̃† and d̄µ=1 = d†, d̄µ=2 = −d̃ are defined by

dµ = B̄µνaν , d̄µ = āνB̄−1νµ, (87)

with

B̄µν =

(

1 + n̄ −n̄
−1 1

)

. (88)

The initial ket-thermal vacuum, |0〉 = |0(0)〉, specified by (19), can be expressed
in terms of d and d̃† as

d|0〉 = (n− n̄) d̃†|0〉. (89)
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It is easy to see from the diagonalized form (86) of Ĥ that

d(t) = V̂ −1(t) d V̂ (t) = d e−(iω+κ)t, (90)

d̃††(t) = V̂ −1(t) d̃† V̂ (t) = d̃† e−(iω−κ)t. (91)

The difference between the operators which diagonalizes Ĥ and the ones which
make Ĥ in the form of normal product is one of the features of NETFD, and shows
the point that the formalism is quite different from usual quantum mechanics and
quantum field theory. This is a manifestation of the fact that the hat-Hamiltonian
is a time-evolution generator for irreversible processes. In thermal equilibrium state,
i.e., n(t) = n̄, they coincide.

2.6. Solution in the coherent state representation

Applying the coherent state (α, β̃| defined by (190) to (83), we have

δ

δn(t)
(α, β̃|0(t)〉 = (α, β̃|γ+◦ γ̃+◦|0(t)〉. (92)

With the help of
γ+◦ = a† − ã, (93)

we get

(α, β̃|γ+◦ γ̃+◦ |0(t)〉 = (α∗β − 1) (α, β̃|0(t)〉 − α∗(α, β̃|a|0(t)〉
−β(α, β̃|ã|0(t)〉+ (α, β̃|ãa|0(t)〉. (94)

By making use of
a = γt + n(t)γ̃+◦ , (95)

we see that

(α, β̃|a|0(t)〉 = (α, β̃|
(

γt + n(t)γ̃+◦
)

|0(t)〉
= n(t)(α, β̃|

(

ã† − a
)

|0(t)〉
= n(t)β(α, β̃|0(t)〉 − n(t)(α, β̃|a|0(t)〉, (96)

which reduces to

(α, β̃|a|0(t)〉 = n(t)

1 + n(t)
β(α, β̃|0(t)〉. (97)

Similarly, we have

(α, β̃|ã|0(t)〉 = n(t)

1 + n(t)
α∗(α, β̃|0(t)〉, (98)

and
(α, β̃|ãa|0(t)〉 = n(t)(α, β̃|0(t)〉+ n2(t)(α, β̃|γ+◦ γ̃+◦ |0(t)〉. (99)

Then, we finally obtain

(α, β̃|γ+◦ γ̃+◦|0(t)〉 =
(

α∗β

(1 + n(t))2
− 1

1 + n(t)

)

(α, β̃|0(t)〉. (100)
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Substituting (100), (92) becomes

δ

δn(t)
(α, β̃|0(t)〉 =

(

α∗β

(1 + n(t))2
− 1

1 + n(t)

)

(α, β̃|0(t)〉, (101)

which is solved to give

(α, β̃|0(t)〉 = exp

[

∫ n(t)

n(0)

dn

(

α∗β

(1 + n(t))2
− 1

1 + n(t)

)

]

(α, β̃|0〉

=
1 + n(0)

1 + n(t)
e

n(t)−n(0)
(1+n(0))(1+n(t))

α∗β
(α, β̃|0〉. (102)

Substituting the initial condition

(α, β̃|0〉 = 1

1 + n(0)
e
− 1

2
|α|2− 1

2
|β|2+ n(0)

1+n(0)
α∗β

, (103)

corresponding to (19) into (102), we obtain

(α, β̃|0(t)〉 = 1

1 + n(t)
e
− 1

2
|α|2− 1

2
|β|2+ n(t)

1+n(t)
α∗β

. (104)

In order to see the superiority of the present operator formalism in solving the
Schrödinger equation (7), we will treat it by making use of the path integral method
in appendix A, and of the Fokker-Planck equation mapped in anti-normal ordering
of the boson coherent state representation in appendix B.

2.7. Initial state

Before closing this section, let us derive the initial ket-vacuum (α, β̃|0〉 corre-
sponding to the statistical operator of the canonical ensemble with temperature T0,
i.e.,

|0〉 =
∞
∑

m=0

Pm,m|m, m̃), (105)

with
Pm,m = Z−1e−ωm/T0 , (106)

where Z is the partition function given by

Z = 1 + n(0), (107)

with
n(0) =

(

eω/T0 − 1
)−1

. (108)

We chose for the states |m, ñ) here the number states defined by

|n, m̃) =
(a†)n√
n!

(ã†)m√
m!

|0, 0̃), (109)
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which satisfies the eigenfunction of the number operators a†a and ã†ã satisfying

a†a|n, m̃) = n|n, m̃), ã†ã|n, m̃) = m|n, m̃). (110)

Note that the vacuum state |0, 0̃) is defined by

a|0, 0̃) = 0, ã|0, 0̃) = 0. (111)

With the number states, the coherent states can be represented as

|α, β̃) = e−
1
2
|α|2− 1

2
|β|2

∞
∑

m=0

∞
∑

n=0

αm√
m!

βn√
n!
|m, ñ), (112)

We can evaluate (α, β̃|0〉 as

(α, β̃|0〉 =
∑

n

Pn,n(α, β̃|n, ñ)

= (α, β̃|0, 0̃)
∑

n

Pn,n (α
∗β)n

= Z−1e−
1
2
|α|2− 1

2
|β|2 exp

(

α∗βe−ω/T0
)

, (113)

to give (103).

3. Localized-electron and phonon system

3.1. Formulation

The time-evolution of the system is described in NETFD by the quantum master
equation (the Schrödinger equation)

∂

∂t
|0(t)〉 = −iĤ|0(t)〉, (114)

with the hat-Hamiltonian
Ĥ = H − H̃ + iΠ̂ , (115)

where

H = Hel-ph −Hg

= ωelN + ωphb
†b+ g1(b

† + b)N + g2b
†bN, (116)

Π̂ = −κ
[

(1 + 2n̄)(b†b+ b̃†b̃)− 2(1 + n̄)b̃b− 2n̄b̃†b†
]

− 2κn̄, (117)

with
g2 = ωu − ωg. (118)

The operator
N = c†c, (119)
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is the number operator of the localized-electron in the upper level. In deriving the
expression (116) from (1), we used the correspondence

|g)(g| ⇐⇒ c†gcg, |u)(u| ⇐⇒ c†c, (120)

where the annihilation and creation operators of the ground and the upper electronic
states satisfy, respectively, the equal-time commutation relations

[cg, c
†
g]+ = 1, [c, c†]+ = 1. (121)

Here, we used the anti-commutator bracket: [X, Y ]+ = XY +YX . The completeness
condition (6) reads

c†gcg + c†c = 1. (122)

The interaction mode dissipates its energy to the rest of the phonon modes. This
dissipative time-evolution is described by the generator Π̂ , where κ is a positive
quantity and n̄ is given by

n̄ =
(

eωph/T − 1
)−1

, (123)

with T being the temperature of the rest of the phonon modes.
Introducing the thermal doublet notation:

bµ =

(

b

b̃†

)

, b̄µ =
(

b† , −b̃
)

, (124)

we can rewrite the hat-Hamiltonian (116) in the form

Ĥ = ωelN̂ + b̄µRµνbν + g1(N̄
µbµ + b̄µNµ) + ωph + g2Ñ + iκ, (125)

with
N̂ = N − Ñ, (126)

Rµν =

(

ωph + g2N − iκ(1 + 2n̄) 2iκn̄

−2iκ(1 + n̄) ωph + g2Ñ + iκ(1 + 2n̄)

)

. (127)

The hat-Hamiltonian (125) reads

Ĥ = ωelN̂ + (b̄µ + β̄µ)Rµν(bν + βν)− β̄µRµνβν + ωph + g2Ñ + iκ, (128)

with
βµ = g1(R

−1)µνNν , β̄µ = g1N̄
ν(R−1)νµ. (129)

Here, we introduced the thermal doublets

Nµ =

(

N

Ñ †

)

, N̄µ =
(

N † , −Ñ
)

, (130)

Inspecting that the unitary operator

Û = e−β̄
µbµ+b̄µβµ

, (131)
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performs the shift:

ÛbµÛ−1 = bµ − βµ, Û b̄µÛ−1 = b̄µ − β̄µ, (132)

we can transform the hat-Hamiltonian (128) into

ÛĤÛ−1 = Ĥ − β̄µRµνβν , (133)

where
Ĥ = Ĥ0 + iΠ̂ ′, (134)

with

Ĥ0 = ωelN̂ + ω̂ph(b
†b− b̃†b̃), (135)

Π̂ ′ = − i

2
g2(b

†b+ b̃†b̃)N̂ + Π̂ . (136)

Here, we introduced

ω̂ph = ωph +
1

2
g2

(

N + Ñ
)

. (137)

Note that Π̂ ′ is tilde invariant and that it can be rearranged as

Π̂ ′ = b̄µP µνbν + κ(1 +
ig2
2κ
N̂), (138)

with the help of

P µν =

(

− i
2
g2N̂ − κ(1 + 2n̄) 2κn̄

−2κ(1 + n̄) i
2
g2N̂ + κ(1 + 2n̄)

)

. (139)

Corresponding to the transformation (133), we need to transform the thermal
vacuum |0(t)〉 as

|0(t)〉〉 = Û |0(t)〉. (140)

Then, the quantum master equation (114) becomes

∂

∂t
|0(t)〉〉 = −i

(

Ĥ − β̄µRµνβν
)

|0(t)〉〉. (141)

Introducing the thermal vacuum |0′(t)〉〉 in the interaction representation by

|0′(t)〉〉 = eiĤ0t−iβ̄µRµνβν t|0(t)〉〉, (142)

(141) reduces to
∂

∂t
|0′(t)〉〉 = Π̂ ′|0′(t)〉〉. (143)

Here, we used the commutativity

[Ĥ0, Π̂
′] = 0. (144)
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The generator Π̂ ′ can be diagonalized as

Π̂ ′ = −κp(d†d+ d̃d̃†) + κ(1 +
ig2
2κ
N̂)

= Π ′′ + 2κn̄s, (145)

with
Π ′′ = −κp(d†d+ d̃†d̃), (146)

by means of the new operators

dµ =

(

d

d̃†

)

, d̄µ =
(

d† , −d̃
)

, (147)

defined through
dµ =

(

Q−1
)µν

bν , d̄µ = b̄νQνµ, (148)

with

Q(N̂)µν =

√

1 + n̄

p

(

1
1+s

n̄
1+n̄

(1 + s)

1 1

)

. (149)

In (145), we introduced quantities

p =

√

(

1 +
ig2
2κ
N̂

)2

+ 4n̄
ig2
2κ
N̂, (150)

s =
1

2n̄

(

1 +
ig2
2κ
N̂ − p

)

. (151)

Let us introduce annihilation and creation operators

γµt =

(

γt
γ̃+◦

t

)

, γ̄µt =
(

γ+◦

t , −γ̃t
)

, (152)

by

γµt = B(t)µνbν − Z(t)µνζ(t)ν , (153)

γ̄µt = b̄νB−1(t)νµ − ζ̄(t)νZ−1(t)νµ, (154)

with the time-dependent Bogoliubov transformation

B(t)µν = Z(t)µη
(

1 −f(t)
−1 1

)ην

, (155)

where

Z(t)µν =

(

Z1(t) 0
0 Z2(t)

)

, ζ(t)ν =

(

f0(t)
−f1

)

. (156)

Here, we introduced quantities

Z1(t)Z2(t) = [1− f(t)]−1 , (157)
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f(t) =
1

1+s
ke−κpt + n̄

1+n̄
(1 + s)eκpt

ke−κpt + eκpt
, (158)

f0(t) =

√

p
1+n̄

k0

ke−κpt + eκpt
, (159)

f1 = β1 − β2, (160)

with

k =
f − n̄

1+n̄
(1 + s)

1
1+s

− f
, k0 =

√

p
1+n̄

1
1+s

− f

(

β1 − fβ2
)

. (161)

The quantity f in (161) is defined through the initial thermal state condition for
the interaction mode, i.e.,

b|0ph〉 = f b̃†|0ph〉, 〈1ph|b = 〈1ph|b̃†. (162)

For simplicity, we are assuming that the system of the localized-electron and of the
phonon interaction mode are mutually independent at the initial time (t = 0):

|0(0)〉 = |0el〉|0ph〉. (163)

The annihilation and the creation operators annihilate the thermal vacuums:

γt|0′(t)〉〉 = 0, γ̃t|0′(t)〉〉 = 0, 〈〈1|γ+◦

t = 0, 〈〈1|γ̃+◦

t = 0. (164)

Expressing the diagonalization operators d, d̃† in terms of the annihilation and
creation operators, i.e.,

d =

√

1 + n̄

p

[

Z2(t)
1− n̄s

1 + n̄
γt + Z1(t)

(

f(t)− n̄(1 + s)

1 + n̄

)

γ̃+◦

t − Z1(t)Z2(t)e+(t)

]

,

(165)

d̃† =

√

1 + n̄

p

[

−Z2(t)
s

1 + s
γt + Z1(t)

(

−f(t) + 1

1 + s

)

γ̃+◦

t + Z1(t)Z2(t)e−(t)

]

,

(166)

with

e+(t) = f0(t)− f(t)f1 −
n̄

1 + n̄
(1 + s) [f0(t)− f1] , (167)

e−(t) = f0(t)− f(t)f1 −
1

1 + s
[f0(t)− f1] , (168)

and substituting them in (146), we have got the time-evolution operator Π̂ ′′ in the
form:

Π̂ ′′ = κ(1 + n̄)

{

2Z2(t)
2 s(1− n̄s)

(1 + s)(1 + n̄)
γ̃tγt
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+ Z1(t)Z2(t)

(

s

1 + s

[

f(t)− n̄

1 + n̄
(1 + s)

]

+

[

f(t)− 1

1 + s

]

1− n̄s

1 + n̄

)

(

γ̃+◦

t γ̃t + γ+◦

t γt
)

+ 2Z1(t)
2

[

f(t)− 1

1 + s

] [

f(t)− n̄

1 + n̄
(1 + s)

]

γ+◦

t γ̃
+◦

t

+ 2Z1(t)Z2(t)
s

1 + s

[

f(t)− n̄

1 + n̄
(1 + s)

]

+ 2Z1(t)
2Z2(t)

2 [e+(t)ẽ−(t) + e−(t)ẽ+(t)]

}

. (169)

Expression (169) is the normal ordered form of the generator Π̂ ′′, whereas ex-
pression (145) with (146) is the diagonalized form of the generator. Note that, in the
usual quantum mechanics or quantum field theory, the operator which diagonalizes
the Hamiltonian and the one which defines the normal ordering are the same. It is
one of the special features of transient nonequilibrium situations that the diagonal-
izing operator of hat-Hamiltonian is different from its normal ordering operator as
has been mentioned in the previous section.

The thermal vacuum ket-vector of the localized-electron system for arbitrary
time t (> 0) is given by

|0el(t)〉 = 〈1ph|0(t)〉 = G(t, N̂)|0el〉, (170)

where we have introduced

G(t, N̂) = eiβ̄
µRµνβν t−iωelN̂t+2κn̄stS(t, N̂), (171)

with
S(t, N̂) = 〈〈1ph|e[(−iω̂ph−κp)d

†d+(iω̂ph−κp)d̃
†d̃]t|0ph〉〉. (172)

The function S(t, N̂) satisfies the differential equation

dS(t, N̂)

dt
= 2κ(1 + n̄)Z1(t)Z2(t)

s

1 + s

[

f(t)− n̄

1 + n̄
(1 + s)

]

S(t, N̂)

− 1 + n̄

p
Z1(t)

2Z2(t)
2 [(−κp− iω̂ph)e+(t)ẽ−(t)

+ (−κp+ iω̂ph)e−(t)ẽ+(t)]S(t, N̂),

= −
[

d

dt
ln
(

1− r + re−2κpt
)

− E(t)

]

S(t, N̂), (173)

where

r = ns− n̄sp−1(1− ns), (174)

E(t) = −(1 + n̄)Z2
1 (t)Z

2
2(t) [(−κp− iω̂ph)e+(t)ẽ−(t)

+(−κp + iω̂ph)e−(t)ẽ+(t)] /p. (175)
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The differential equation (173) was derived by making use of the similar method
given in subsection 2.6. It can be solved to give

S(t, N̂) =
1

1− r + re−2κpt
exp

[
∫ t

0

dt′E(t′)

]

. (176)

3.2. Absorption spectrum

The absorption spectrum of the system is given by the imaginary part of an
intensity distribution function φ(ω) defined by

φ(ω) = φ′(ω) + iφ′′(ω) =

∫ ∞

0

dt eiωtΦ(t), (177)

where Φ(t) is the auto-correlation function (the response function)

Φ(t) = i〈1el|
[

c(t), c†(0)
]

|0el〉+ c.c., (178)

with c(t) = e−iĤtc eiĤt.With the help of G(t, N̂) given in (171), the auto-correlation
function (178) can be expressed as

Φ(t) = iG(t, N̂ = 1) + c.c., (179)

with N = 1 and Ñ = 0.
The absorption spectrum φ′′(ω) in (177) is shown in figures 1 and 2 for several

values for g1 and g2 with κ = 0.001, n = n̄ = 5. The energies or the angular
frequencies are scaled by ωg, i.e., the curvature of the adiabatic potential belonging
to the electronic ground state.

In figure 1, fixing g1 = 0.1, we displayed the absorption spectrum by changing
the parameter g2, i.e., a) 0.2, b) 0.1, c) 0.05 and d) 0.01. These situations can be
categorized by the parameter α defined by

α =
g2
√

n̄ (n̄ + 1)

2κ
. (180)

The cases for α > 1 are categorized as slower modulation, whereas the cases for
α < 1 as faster modulation. The situations in figure 1 correspond to the cases of
slower modulation, i.e., α = a) 547, b) 274, c) 137 and d) 27.4. There appear phonon
side bands for larger values of α due to the dynamics of phonon interaction mode.
We can recognize five phonon side bands for a), three bands for b) and one band for
c). The side bands disappear for d). The reason for the disappearance of side bands
is that the faster the modulation becomes the dynamics of phonon is smeared out
even for α > 1.

From a) to c) in figure 1, we observe that the space between adjacent phonon
bands is equal to g2. It can be interpreted by a semi-classical argument as follows.
Putting b = ξe−iψ and neglecting dissipation, we have

Hg = ωgξ
2, (181)

Hu = ωel + ωu

(

ξ +
g1
ωu

cosψ

)2

− g21
ωu

cos2 ψ. (182)
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Figure 1. The absorption spectrum φ′′(ω) for κ = 0.001, g1 = 0.1 and n = n̄ = 5
in the cases that g2 is equal to a) 0.2, b) 0.1, c) 0.05 and d) 0.01. These cases
are specified, respectively, by the parameter α, i.e., a) 547, b) 274, c) 137 and d)
27.4. The energies or the angular frequencies are scaled by ωg.
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Figure 2. The absorption spectrum φ′′(ω) for κ = 0.001 and n = n̄ = 5, in the
cases that g2 is equal to a) 0.1, b) 0.01, c) 0.001 and d) 0. Correspondingly, the
parameter α is a) 274, b) 27.4, c) 2.74, and d) 0. In each figure, the solid line
represents the case g1 = 0.1, the dashed line g1 = 0.3, and the two-dotted dashed
line g1 = 0.5. The energies or the angular frequencies are scaled by ωg.
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The absorption spectrum is, then, given by sum of delta functions corresponding
to the transitions from the lower ladder with the energy space ωg to the upper one
with the energy space ωu. The upper ladder starts with the energy ωel−g21 cos2 ψ/ωu.
Therefore, the positions of the absorption spectrum are mainly given by the tran-
sitions from the first step of the lower ladder to the first step of the upper ladder,
from the second step of the lower ladder to the second step of the upper ladder and
so on, i.e.,

ω − ωel = −g
2
1 cos

2 ψ

ωg + g2
+ g2ℓ, ℓ = 0, 1, 2, · · · . (183)

They are accompanied by other transitions between different steps of the lower and
the upper ladders. The expression (183) explains that the space between side bands
are given by g2 = ωu − ωg.

In figure 2, the absorption spectrums are displayed by changing the value of g2,
i.e., a) 0.1, b) 0.01, c) 0.001, d) 0.0. Each figure contains three lines for different
values of g1, i.e., 0.1 (solid curve), 0.3 (dashed line) and 0.5 (two-dotted dashed
line). Note that the solid lines in a) and b) of figure 2 are, respectively, equal to the
lines in b) and d) of figure 1.

As can be seen from (183), the shifts of peaks due to g1 are given by −g21 cos2 ψ/
(ωg+g2). It can be ascertained by measuring the shifts in figure 2 with cos2 ψ ≃ 0.2.
It tells us that the measurement of the shift of peaks gives us the phase ψ if we know
the value of g1/ωg. For slow modulation like a) with α = 274, we observe several
side bands due to the dynamics of phonon interaction mode. The spaces between
the peaks of the side bands are given by g2 as has been explained above. The change
of the absorption spectrums from c) to d) can be interpreted by the concept of
motional narrowing.

4. Discussion

We treated, by making use of the operator algebra within the formalism of
NETFD, the model of a localized-electron and phonons system in terms of the
adiabatic potential with a shift of position of the excited state compared with the
ground state in addition to the change of its curvature. Compared to the old analysis
[12] where the mapping technique by means of the boson coherent state represen-
tation was used to solve the problem (see appendix B), the technical convenience
of the operator algebra in NETFD, which is very much similar to that of the usual
quantum mechanics, enables us to treat open systems in far-from-equilibrium state
simpler and more transparent [8,9,14–17].

In addition to the technical convenience, NETFD contains quite a few conceptual
advantages in constructing quantum field theory for dissipative systems by implant-
ing the concepts developed in nonequilibrium thermodynamics. We would like to
close this paper by mentioning some potentialities of NETFD for future develop-
ments.

The expression (82) tells us that the time-evolution of the unstable vacuum
is realized by the condensation of γ+◦

k γ̃
+◦

k -pairs into the vacuum. Here, we put the
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subscript k for wave vector and/or other degrees of freedom appearing in quantum
field theoretical arguments. The attractive expression (82), which was obtained first
in [18], led us to the notion of a mechanism named the spontaneous creation of

dissipation [19–23]. We can obtain the result (82) only by algebraic manipulations.
It also shows that the vacuum is the functional of the one-particle distribution
function nk(t). The dependence of the thermal vacuum on nk(t) is given by

δ

δnk(t)
|0(t)〉 = γ+◦

k γ̃
+◦

k |0(t)〉. (184)

We see that the vacuum |0(t)〉 represents a state which consists of a macroscopic

object described by the one-particle distribution function nk(t). The master equation
(7) can be rewritten as

{

∂

∂t
+

∫

d3k
dnk(t)

dt

δ

δnk(t)

}

|0(t)〉 = 0. (185)

This shows that the vacuum, in this case, is migrating in the super-representation
space spanned by the one-particle distribution function {nk(t)} with the velocity

{dnk(t)/dt} as a conserved quantity [24].

The framework of NETFD has been extended (for example, see [5]) to take ac-
count of the aspects of the Langevin equation and the stochastic Liouville equation.
There, again NETFD allowed us to construct a unified canonical theory of quantum
stochastic operators, i.e., a unified system of quantum stochastic differential equa-
tions. The stochastic Liouville equations both of the Ito and of the Stratonovich types
were introduced as the stochastic Schrödinger equation in the Schrödinger represen-
tation. Whereas, the Langevin equations both of the Ito and of the Stratonovich
types were constructed as the Heisenberg equation of motion with the help of the
time-evolution generator of corresponding stochastic Liouville equations. The Ito for-
mula was derived for quantum systems. The problem, why the track of an injected
particle in the cloud chamber keeps its width finite, was investigated dynamically by
means of the quantum stochastic calculus within the method of NETFD [25]. The
measurement (a continuous non-demolition measurement) of the incident particle
by ionizing the gas molecules in the cloud chamber is interpreted as a stochastic ag-
itation due to the quantum Brownian motion [26]. It was shown that the watch-dog
effect, i.e., the continuous non-demolition measurement of the injected particle by
the gas molecules, prevents the wave packet spreading out in contrast with the case
of a free particle.

Kinetics and hydrodynamics of highly nonequilibrium and strongly coupled quan-
tum systems were investigated [27] by making use of NETFD based on the Zubarev’s
nonequilibrium statistical operator method [28,29]. Within this method, two differ-
ent levels of describing the kinetics and hydrodynamics of dense quantum nuclear
systems were considered: strongly coupled states and quark-gluon plasma. We ex-
pect that the consistent description of kinetics and hydrodynamics may provide us
with a wider viewpoint for the dynamics in far-from equilibrium states.
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A. Path integral method

The kernel
K(α, β, t;α′, β ′, t′) = (α, β̃|e−iĤ(t−t′)|α′, β̃ ′), (186)

defined by

(α, β̃|0(t)〉 =
∫

d2α′

π

∫

d2β ′

π
K(α, β, t;α′, β ′, 0)(α′, β̃ ′|0〉, (187)

can be expressed in terms of path integral. Here, we introduced the coherent state
by

|α, β̃) = eαa
†−α∗aeβ

∗ã†−βã|0, 0̃), (188)

with
a|α, β̃) = α|α, β̃), ã|α, β̃) = β∗|α, β̃), (189)

(α, β̃|a† = (α, β̃|α∗, (α, β̃|ã† = (α, β̃|β. (190)

By making use of

(αn, β̃n|αn−1, β̃n−1) = e−
1
2
|αn|2−

1
2
|αn−1|2+α∗

nαn−1e−
1
2
|βn−1|2−

1
2
|βn|2+β∗

n−1βn, (191)

and

hn,n−1(αn, β̃n|αn−1, β̃n−1) = (αn, βn|Ĥ|αn−1, β̃n−1)

=
{

ωα∗
nαn−1 − ωβnβ

∗
n−1 − iκ

[

(1 + 2n̄)(α∗
nαn−1 + βnβ

∗
n−1)

− 2(1 + n̄)αn−1β
∗
n−1 − 2n̄α∗

nβn
]

− 2iκn̄
}

(αn, β̃n|αn−1, β̃n−1), (192)

the path integral

K(α, β, t;α′, β ′, t′)

= lim
N→∞

(

N−1
∏

i=1

∫

d2αi
π

)(

N−1
∏

j=1

∫

d2βj
π

)

×(αN , β̃N |αN−1, β̃N−1) · · · (α1, β̃1|α0, β̃0)exp

[

−i∆t
N−1
∑

n=1

hn,n−1

]

= e−
1
2
|α|2− 1

2
|α′|2− 1

2
|β|2+ 1

2
|β′|2

∫

D2α

∫

D2β

× exp

[

i

∫ t

t′
dt
[

iα∗(t)α̇(t)− iβ∗(t)β̇(t)

−α(t) {ωα∗(t)− iκ(1 + 2n̄)α∗(t) + 2iκ(1 + n̄)β∗(t)}
−β(t) {−ωβ∗(t)− iκ(1 + 2n̄)β∗(t) + 2iκn̄α∗(t)} − 2κn̄

]]

, (193)

can be solved with the help of the equations of motion

d

dt
(α∗(t), β∗(t))µ = (α∗(t), β∗(t))ν i

[

ω δνµ − iκ Aνµ
]

, (194)
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with the boundary conditions

α∗(t) = α∗, α(t′) = α′, β∗(t′) = β ′∗, β(t) = β. (195)

The matrix A is given by (64). Note that (194) is equivalent to the Heisenberg
equation (66).

The result is

K(α, β, t;α′, β ′, t′) = ν(t− t′) exp

[

−1

2
|α|2 − 1

2
|α′|2 − 1

2
|β|2 − 1

2
|β ′|2

+ki(t− t′) β ′∗α′ + kf(t− t′) α∗β + ℓ(t− t′) α∗α′ + ℓ∗(t− t′) β ′∗β
]

, (196)

where

ki(t) = (1 + n̄)ν(t) (1− e−2κt), (197)

kf(t) = n̄ν(t) (1− e−2κt), (198)

ℓ(t) = ν(t) e−iωt−κt, (199)

with
ν(t) =

[

(1 + n̄)− n̄e−2κt
]−1

. (200)

Then, by a lengthy but straightforward calculation, we finally obtain

(α, β̃|0(t)〉 =
∫

d2α′

π

∫

d2β ′

π
K(α, β, t;α′, β ′, 0)(α′, β̃ ′|0〉

=
1

1 + n(t)
e−

1
2
|α|2− 1

2
|β|2+

n(t)
1+n(t)

α∗β , (201)

which is just the same as (104) as it should be. Here, we used (103) for the initial
condition whose derivation is given in section 2.7.

B. Mapped equation by anti-normal ordering

Introducing the boson coherent state representation of the anti-normal ordering
[30–32] through

|0(t)〉 =
∫

d2z

π
f(z, z, t)|z, z̃), (202)

with the boson coherent state |z, z̃), defined by (189), we can map the Schrödinger
equation (7) into a partial differential equation for the c-number function f(z, t) =
f(z, z, t) as [33]

∂

∂t
f(z, t) =

[

−iω

(

∂

∂z∗
z∗ − c.c.

)

+ κ

(

∂

∂z∗
z∗ + c.c.

)

+ 2κn̄
∂

∂z∗
∂

∂z

]

f(z, t). (203)

Now let us investigate the Fokker-Planck equation (203). With the transforma-
tion

F (z, t) = eitω(
∂

∂z∗
z∗− ∂

∂z
z)f(z, t), (204)
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the Fokker-Planck equation (203) is transformed into

∂

∂t
F (ξ, t) = 2κ

(

∂

∂ξ
ξ + n̄

∂

∂ξ
ξ
∂

∂ξ

)

F (ξ, t), (205)

where ξ = |z|2. Putting
F (ξ, t) = R(ξ/n̄)e−2κλt, (206)

in (205) and changing the variable as ζ = ξ/n̄, we have an eigenvalue equation for
the right-hand side eigenfunctions

ζR′′(ζ) + (1 + ζ)R′(ζ) +R(ζ) = −λR(ζ). (207)

The differential equation (an eigenvalue equation for the left-hand side eigenfunc-
tions) adjoint of (207) turns out to be

ζL′′(ζ) + (1− ζ)L′(ζ) = −λL(ζ). (208)

Note that R(ζ) is related to L(ζ) by

R(ζ) = e−ζL(ζ). (209)

Now, we remember that the Laguerre polynomials defined by

∞
∑

ℓ=0

Lℓ(ζ)x
ℓ =

1

1− x
e−ζ

x
1−x , (210)

or

Lℓ(ζ) =
1

ℓ!
eζ

dℓ

dζℓ
(

e−ζζℓ
)

=

ℓ
∑

k=0

(−1)k
(

ℓ
k

)

ζk

k!
, (211)

satisfy the differential equation

ζL′′
ℓ (ζ) + (1− ζ)L′

ℓ(ζ) + ℓLℓ(ζ) = 0. (212)

For example, Ln(ζ)’s are given by

L0(ζ) = 1, , L1(ζ) = 1− ζ, L2(ζ) = 1− 2ζ + ζ2/2. (213)

We notice in comparison of (212) with (207) and (208) that the eigenvalue λ
should be

λ = ℓ, (ℓ = 0, 1, 2, . . .), (214)

and that the right and the left eigenfunctions belonging to the same eigenvalue, say
ℓ, are given respectively by

Rℓ(ζ) = Lℓ(ζ)e
−ζ, Lℓ(ζ) = Lℓ(ζ). (215)
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These eigenfunctions form an ortho-normal complete set satisfying

∫ ∞

0

dζLℓ(ζ)Rℓ′(ζ) = δℓ,ℓ′, (216)

∞
∑

ℓ=0

Rℓ(ζ)Lℓ(ζ
′) = δ(ζ − ζ ′). (217)

Note that the right-hand side eigenfunctions Rℓ(ζ) are of L2(R+), whereas the left-
hand side eigenfunctions Lℓ(ζ) are not. We may say that Rℓ(ζ) and Lℓ(ζ) belong
respectively to the nuclear space and its conjugate space in the Gel’fand triplet (or
the rigged Hilbert space). Note that the left eigenfunction L0(ζ) = 1 corresponds to
the thermal bra-vacuum 〈1|. This is the reason why we put one for the index of the
bra-vacuum instead of zero.

Let us solve (205) by expanding the desired function F (ξ, t) as

F (ζn̄, t) =
∞
∑

ℓ=0

aℓRℓ(ζ)e
−2κℓt, (218)

with the initial condition

F (ξ, 0) = f(ξ, 0) =
1

n(0)
e−ξ/n(0), (219)

which is derived as follows. Substituting (103) into

(α α|0〉 =
∫

d2z

π
f(z, z)(α, α|z, z)

=

∫

d2z

π
f(z, z) e−(z−α)(z∗−α∗), (220)

we have the integral equation

1

1 + n(0)
e−x

2/(1+n(0))e−y
2/(1+n(0)) =

∫

dx1dy1
π

f(x1, y1) e
−(x1−x)2e−(y1−y)2 , (221)

where we have changed the integration variables by

z = x+ iy. (222)

Inspecting (221), we can put the Gaussian form

f(x1, y1) = Ae−Kx
2
1e−Ky

2
1 , (223)

without loss of generality. Then, the integral equation (221) reduces to

1

1 + n(0)
e−x

2/(1+n(0))e−y
2/(1+n(0)) =

A

K + 1
e−|α|2K/(K+1), (224)
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which determines the coefficients A and K as

A = 1/n(0), K = 1/n(0). (225)

We finally have the c-number function corresponding to the initial state (105) with
(106) in the form

f(z, t = 0) = f(z, z) =
1

n(0)
e−|z|2/n(0). (226)

The coefficients aℓ’s are obtained with the help of the initial condition in the
form

aℓ =
1

n(0)

∫ ∞

0

dζ ′Lℓ(ζ
′)e−ζ

′n̄/n(0). (227)

Substituting (227) into (218), we can derive the solution of (205) as

F (ζn̄, t) =
1

n(0)

∞
∑

ℓ=0

∫ ∞

0

dζ ′Lℓ(ζ
′)Rℓ(ζ) e

−ζ′n̄/n(0) e−2κℓt

=
1

n(0)

∞
∑

ℓ=0

∫ ∞

0

dζ ′Lℓ(ζ
′)Rℓ(ζ) e

−ζ′ e−ζ
′(n̄−n(0))/n(0) e−2κℓt

=
1

n̄

∞
∑

ℓ=0

∞
∑

k=0

Rℓ(ζ)

(

n̄− n(0)

n̄

)k

e−2κℓt

∫ ∞

0

dζ ′Lℓ(ζ
′)Rk(ζ

′)

=
1

n̄

∞
∑

ℓ=0

Rℓ(ζ)

(

n̄− n(0)

n̄

)ℓ

e−2κℓt

=
1

n̄
e−ζ

∞
∑

ℓ=0

Lℓ(ζ)

(

n̄− n(0)

n̄
e−2κt

)ℓ

=
1

n(t)
e−ξ/n(t), (228)

with

n(t) = n̄ + (n(0)− n̄) e−2κt. (229)

For the second equality, e−ζ
′n̄/n(0) was divided into two exponentials. For the third

equality, we used the generating function (210) of the Laguerre polynomials for
e−ζ

′(n̄−n(0))/n(0) and (215). For the fourth equality, the orthogonality (216) was used.
For the final equality, we used the formulae (215) and (210), again. Note that n(t)
defined by (229) satisfies the Boltzmann equation (21) with the initial condition
n(t = 0) = n(0).

Now, we can evaluate (α, β̃|0(t)〉 as

(α, β̃|0(t)〉 =
∫

d2z

π
f(z, t) (α, β̃|z, z̃)

=

∫

d2z

π
F (z, t) (α, β̃|z, z̃)
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=
1

n(t)

∫

d2z

π
e−|z|2/n(t) (α, β̃|z, z̃)

=
1

n(t)
e−

1
2
|α|2− 1

2
|β|2
∫

d2z

π
e−|z|2[n(t)+1]/n(t)+α∗z+βz∗, (230)

which reduces to (104) and to (201) after the integration with respect to z.
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Застосування нерівноважної термопольової

динаміки для опису систем з локалізованим

електроном і фононами

Н.Аріміцу 1 , Т.Аріміцу 2

1 Відділ комп’ютерної інженерії
Національного університету Йокогама,
Токіваваі, Йокогама 240-8501, Японія

2 Інститут фізики Університету Цукуба, Ібаракі 305-8571, Японія

Отримано 6 жовтня 1999 р.

За допомогою операторної алгебри в рамках нерівноважної термо-
польової динаміки (НТД) досліджується адсорбційний спектр аналі-
тично розв’язуваної моделі локалізованого електрона і фононів. Зна-
ходження й поведінка адіабатичних потенціалів для основного та збу-
джених електронних станів вважаються відмінними один від одного.
Структури адсорбційних спектрів досліджуються для різних випад-
ків, у тому числі для повільних та швидких модуляцій. Пояснюється
самодостатність методу НТД для розв’язку задачі.

Ключові слова: нерівноважна термопольова динаміка,

локалізований електрон, адіабатичний потенціал, адсорбційний

спектр, швидка й повільна модуляції
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