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A variant of a Gaussian approximation in Ising model of phase transition
is suggested. The method of functional integration with the application of
a variational method is put in the basis of the approach. The Hamiltonian
(the functional) is presented which in the method of functional integration
produces the known results of a two-tails approximation obtained by a dia-
gram method. The application of a variational method eliminates a principal
demerit of the two-tails approximation — incorrect description of the phase
transition order. The results of numerical calculations for two and three-
dimensional lattices are presented.
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1. Introduction

In this paper the self-consistent method of inclusion of the space fluctuations of
the order parameter in Ising type models of phase transitions is considered. As it is
known the number of exactly solved models of phase transitions is rather restricted,
therefore the approximate methods of investigation are widely used. In particular
a rather simple and effective way of the phase transitions description is the mean
field theory which is based on introducing the homogeneous order parameters for
the whole system. The next step is the problem of including the order parameter
fluctuations. One of the widely-applied methods is the diagram technique for the
spin operators [1-4] which permits to make the perturbations theory expansions for
the spin correlation functions and thermodynamic values according to the corre-
sponding expansion parameters (e.g. ~ 1/rd, 7y is the exchange interaction radius,
d is the dimension of system, or by ~1/z, where z is the coordination number of
the lattice). The first approximation by these parameters is the so-called one-loop
approximation or otherwise — the random phase approximation. More complex ap-
proximations are obtained by summation a certain class of diagrams. In particular, a
two-tails approximation is known [1,4,5] for a spin moment and for a spin correlation
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function in which the order parameter fluctuation around the mean field is described
by Gaussian distribution with the variance determined by two-tails. But one of the
shortcomings of the mentioned approximations is that at the self-consistent method
including the mean field and fluctuations, the ruptures of the order parameter tem-
perature dependence arise which formally can be considered as the first order phase
transition. A number of methods with the purpose of removing these shortcom-
ings is known too [6-8]. In [6] the Brillouin zone (for the primitive cubic lattice)
is modified for this purpose, in [7] a certain number of two-tails is limited. A more
consequent method is considered in [8], where the necessity is pointed out for taking
into consideration the additional series of diagrams which have the same order of
quantity as the two-tails approximation diagrams. For this purpose the author of [§]
considered the system of equations for spin cumulants and suggested the splitting
way of the 4-th order spin cumulant for getting the closed system of equations for
the spin cumulants up to the 3-rd order. Though the author showed that in the
vicinity of the critical point the method led to the second order phase transition,
the dependence of the order parameter in the wide temperature range is not given
which seems to be connected with the numerical analysis complicity of the obtained
system of equations.

Taking into consideration the above mentioned facts, a rather simple and con-
secutive way of improving two-tails approximation results is proposed. The method
of functional integration with the variational method is used. First, a two-tails ap-
proximation in the functional approach is obtained and later the Hamiltonian of
two-tails approximation is used as a trial in the variational method. Numerical re-
sults are given for the two- and three-dimensional Ising spin model S = 1/2 on the
square and cubic lattices where the nearest neighbours interact respectively.

2. The two-tails approximation in the functional integration
method

Let’s consider Hamiltonian of Ising model in interaction between the nearest

neighbours
H=- Z IO'Z'O'j—ZhO'i. (2].)
<ij> i
Having introduced, in a traditional way, the Fourier-transformation of the spin op-
erators oy = ﬁ > 0% we can write this Hamiltonian as follows:

H= —% ;Ikakak - ;haz (22)

Here Iy = zIv, 2w = %E s e’*d summing over k is carried out within the limits
of the first Brillouin zone. The vector § includes the nearest neighbours in the spin
lattice.

Functional integration methods are widely used in the phase transition investi-
gations and a lot of literature is devoted to them (e.g., [1,2,4,9-14]). In the present
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paper the known representation of partition functions is put into the base of the
functional method.

2= [peimene sz [ [ape it @)

where 8F;; = —1n Z;y, Ziqg = Sp P79 — means the partition function of the spin
in the fluctuation field h; = \/—% Yk V/BILpre™*. For the spin with the value of S the
partition function in the external field is

Ziq = sh[(S + 1/2)y] / sh(1/2y),  y=Bh+ hi. (2.4)

In a standard procedure we can introduce the mean field [12], which is connected with
the Fourier component po: h; = ho+ h}, hg = Tlﬁ\/ﬁlopo, b, = ﬁ Zkﬂ) VB L pre™*
and after replacing py — v/ N py in the thermodynamic limit we present the partition

function as
Z =% / (dpye®) | / (dp)'e™ s Duo -t (2.5)

Here Zy = e PP | F(py) = J1op3 + NFjq(hy) is a free energy in the mean field
approximation, and

H'(p) = % Z PrpP-x + Z[Fz’d(hM + ;) = Fia(hw)] (2.6)
k20 i

has a sense of fluctuations component of the system Hamiltonian and is a functional
of the px (k # 0) variables that describe the order parameter fluctuations; hy =
h+ Iypg is a mean field that acted on the spin. The consideration of the corrections
to the mean field approximation is done by means of the expansion by powers of h/

1 n
D Fualhac 1) =D~ F (haa)(h))",

i,n

and after summing over the particles number we can get

Sy =S (VN Bhg VBl pro 8k k), (27)

i k

here d(k; + ... + k,) is a Kronecker symbol, and the sum of wave vectors is closed:
ki +...+k, = 0. The summation over vectors ki, ..., k, in (2.7) will be carried out
independently, otherwise, according to [9,13], the sums are reduced. Traditionally
contribution of ~ % Yk 20 BIxprp—x 1s included in zeroth-order approximation, that
will result in a random phase approximation, and the following components of a
series are considered using a perturbation theory.

Let’s also mark that the representation of the partition function in the form of a
functional integral such as (2.5)—(2.7) has played a substantial role in constructing
the microscopic theory of phase transition [9-13]. Tt is proved that for describing the
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fluctuations of an order parameter of three-dimensional systems in the neighbour-
hood of a critical point it is necessary to apply a basis distribution, which includes
summands with n < 6 in (2.7). With the help of a specially designed method of a
renormalization group for calculating a N-multiple integral of a non-Gaussian type
the quantitative description of phase transition of the first and second orders in the
neighbourhood of a critical point was obtained. In the present paper, certainly, we
do not touch upon this special area of the theory of phase transition, but we use the
above evocative representation for constructing a self-consistent approximation.

One can execute a certain selective summation of components of a series (2.7) in a
Hamiltonian (2.6), including the corresponding result in zeroth-order approximation.
The indicated procedure is easily realized for summands such as

~ <%Zﬁfkpk,0—k> -

k£0

The summation of such series, as will be shown below, is equivalent to a two-tails
approximation in a diagram method. The simplest way of executing the above men-
tioned summation is the application of the expansion on the irreducible sums of
vectors kq, ..., k,. For this purpose such an identical transformation is used

> Fia(hy + 1) = N— Z RiO10R) B (hay),

and an action of a differential operator will be written as follows:

YV~
-

X pr, 0(ky + ... + k) 0" / a(ﬁh)"). (2.8)

Here Kronecker symbol means the irreducible sum of wave vectors ki + ... + k,,, in
which there are not subsets of vectors, the sum of which would be equalled to zero.
The representation (2.8) determines 2-, 3- partial and higher orders of correlation
in a system [9,13]. The restriction by a summand ~ % Ek;&o Blxpkp—x in an index
of exponential function (2.8) is equivalent to a summation of a series, which was
mentioned above. In this manner, we have a differential operator, which will act
upon the energy of an ideal system

o <2§v261kpkp <0/0(5h)? ) Pl (29)

k£0

The differential operation can be exchanged by the integration

1/2
\/—/ Fiq | hnm +2 (QA%VZﬁfkkak) &l - (2.10)

k£0
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As far as the dependence on variables py in (2.10) is a square-law, using the known
methods [14,15] one can reduce the integral in the Gaussian type. In a thermody-
namic limit for the partition function of a system we shall get Z = e ~#¥0) where

N : - N
k#0

and D = S9%/9(6h)2.
The parameters @, S are determined from a condition of an extremum of the
free energy (2.11)

F(po)/0w =0,  9F(py)/0S =0,

which will lead to the equations

w=—e"V,  §=_— (2.12)

A relation will also be applied here which relates a derivative from the free energy
to cumulants of an ideal system of spins —(F i(d") = bV and b™ — mean n-th
derivative from Brillouin function b. We can get the equation for an order parameter,
evaluating a partial derivative from (2.11) on py, and as the result:

fo = ePb(hy) = f/ b (hat + 25V2€) . (2.13)

In this manner, we come to a known system of equations (2.12) and (2.13) [4-8],
which will describe the behaviour of an order parameter in the two-tails approxi-
mation, where S determines a variance of Gaussian distribution of fluctuations of
an order parameter. The formula (2.11) determines a free energy of a system in this
approximation and was obtained in [4] by a method of diagram techniques.

We shall also specify the association with the exactly solved models of phase
transition, which were determined at a phenomenological level (see [15,16], and
also review the publications, which are quoted there). A change from the formally
exact expression (2.8) to the approximate (2.9) according to [15] means the change
to an exactly solved model (for arbitrary dimensionality of space) in case of an
Ising model. The exactly solved model introduced in this manner, is not absolutely
satisfactory, since it, as it was indicated, will not describe the phase transition of the
second order. This fact can also be interpreted in such a manner that the account
of fluctuations is overstated, which will give rise to the fluctuation modification of
an order of transition [15].

The analysis of the contributions of higher orders according to formulas (2.8)
is quite a composite problem, as we have a functional integral of a non-Gaussian
type. The analysis of the indicated contributions will be implemented by means of
a variational principle that will be described in the following section.
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3. Variational approach in the method of functional integration

This method is grounded on the Bogolyubov inequality for the free energy of a
system. In the method of functional integration, this inequality can be written as

[14,17,18]
F(po) < Fo(po) + (H({p}) — Ho({p}))s - (3.1)

Here H({p}) and Hy({p}) respectively mean exact and trial Hamiltonians, which are
functions of a variable integration. The angular brackets in (3.1) mean an average
with the application of a trial Hamiltonian. In this manner, according to (2.5), (2.6)
we can write

H({p}) = +33 Z prcp—ic + Z Fia(hyt + ). (3.2)

k£0

The trial Hamiltonian contains certain variation parameters, and is picked so that
the average in (3.1) is equal to zero. The most prime form of a trial Hamiltonian
corresponds to a random phase approximation

Ho(1p}) = NC(p)/B + Ay Topy + % Z 1 — Beau) prp—x + NFig(hyt). (3.3
K20

The parameters ay have a sense of the Fourier-components for an effective in-
teraction and can be obtained from the condition of the extremum of free energy.
Therefore, for average quantities in (3.1) we shall get

(Ho({p}))g = NC(p0) /6 + 5 1o + N Eallar) + ﬁz (1~ Bond) (ppsdss (34)
k#£0

where the calculation average for a variable py is executed on the basis of a Hamil-
tonian (3.3) and in particular (pxp_x)g = 1/(1 — Box). Based on (3.1)—(3.4) we can
get the following expression for defining C(py)

C(p0)/B = ~Fialha) + (Fia(hat + ha)) 25NZﬂak/ 1= fBox). (35)

k40
For the average in (3.5) we shall also get
> - 1
(Fra(hat + b)) = P Fia(hy), D = o7 > BL/(1 - Bay) - 07/0(Bh)*.  (3.6)
k#0

In this manner, for the free energy of a zeroth-order approximation (3.3) we shall
get

N
Fo(po) = Eloﬁ§+Ne Fia(hw) +— Zﬁ&k/ — Boy) +— Zln —Bay) (3.7)
k;éo k;éO
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From the equation for parameters (0Fy(py)/0cax = 0) we shall get that ax =
IiePb™ (hy). In this manner for defining oy it is necessary to solve the integral
equation. The fitting condition suffices for a thermodynamic description

S = % > BL/(1 = BLe”b™M (hay)), (3.8)
K£0
where D = S - 9%/9(8h)2.

Having calculated a partial derivative of the free energy (3.7) on p,, we shall
get the equation for an order parameter. It is easy to see that these results coincide
with (2.11)—(2.13). The examples considered above also demonstrate a corrigibility
of the improvement of a two-tails approximation by a corresponding selection of a
trial Hamiltonian. Applying the arguments stated in section 2 (formula (2.9)), we
use the following structure of a trial Hamiltonian

Ho({p)) = NC(m)/+ STt + 55 S pup-sc+ NeP (i), (39
k0

where D;(p) = o D ko Bouppx - 0% /0(Bh)?. Having produced the corresponding
calculations we shall get the equation for C(py),

Cpo)/B = ({eP) = (P} ) Fia(h) (3.10)

where the operator in (3.10) is determined by the formula

D) = —= 3= VB - 0/0(5h)

k£0

In this manner, the contribution of higher correlations in the partition function (3.1)
is executed on the average that is expressed by the formula (3.10). In a thermody-
namic limit after some calculations, which we omit, we shall get

C(po)/B = (7 — ') - Fyy(hu), (3.11)
where
Dy = == 5" BIJ(1+ Bman) - JO(BRY?, @ = —eP bV (hyy)
*T N ) K ’ M)-
K0
The free energy has the following structure

FO(ﬁO) = NC(ﬁo)/ﬁ—i‘gloﬁg—i‘Nebl 'EdU_lM)—E@Sl—F% Z ln(l—l—@ﬁak). (312)

s k40
Based on (2.11), we can rewrite (3.12) in the form
N

N ; - - 1
F()(ﬁo) = Eloﬁg —+ NeD2 . Ed(hM) - E@S& + % E ln(l —+ (ZJBO[k). (313)
k#0
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From the equation 0F,(po)/0cx = 0 is determined oy
way = —Z_)(l)[k — B(I)CY(O), (314)

where

) — eﬁQb(l)(hM), ) — eﬁlb(l)(hM).
Here corresponding operators can also be written in the form
Dy =5, -/0(Bh)?,  Dy=5,-/0(Bh)

The structure of the free energy (3.13) corresponds to a two-tails approximation
with the distinction that there are two functions here

51 = % Zﬁak/(l + (Dﬁ()ék), 52 = % Zﬁ[k/(l + (IJBO[k). (315)

k£0 K#0

The free component in (3.14) (which does not depend on a wave vector) can be
written as follows

S s,
1—8,-b0
The equation (3.14) (taking into account (3.16)) is an integral equation for defin-

ing the effective interaction a. For describing the thermodynamics there are enough
fitting conditions, which reduce, accordingly, in two equations for functions Sz, S

B a(0) (3.16)

5'3 = %ZB[kﬁOzk/<1+@ﬁOék)2, 54 = %Z(ﬁ@k)2/<1 +a]604k)2' (317)

k£0 K#0

We shall get the equation for an order parameter calculating a partial derivative
from (3.13) on py, and as a result

Lo )
Po — ﬁ/ ) (hM + 2521/25) . (3.18)

The system of equations (3.14)—(3.18) generalizes a two-tails approximation in
the above suggested method. The function S, is an analogy of a two-tails approx-
imation and determines a variance of Gaussian distribution of fluctuations of an
order parameter. The system of equations (3.15), (3.17) and (3.18) is closed and al-
lows us to determine temperature dependences of an order parameter and functions
Sy, Sy, Sz, Si.

Further on we shall be restricted only to a numerical analysis of the obtained
system of equations. The calculations were executed for an Ising model of a spin
S = 1/2. In figure 1 the dependences of an order parameter py and S (curves 1 and
1, respectively) for a cubic lattice (coordination number z = 6) are reduced. Besides,
the corresponding results for a two-tails approximation (curves 2 and 2”) are reduced,
as well as the temperature dependence of an order parameter of a mean field (curve
3). Temperature is presented in dimensionless units (t = kg7'/zI). We can see,
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Figure 1. Temperature dependences of an order parameter and variance for a
cubic lattice in the suggested approximation (curves 1 and 17, respectively); in a
two-tails approximation (curves 2 and 2’); mean field — curve 3.
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Figure 2. Temperature dependences of an order parameter (curve 4) and variance
(curve 4’) for a square lattice in the suggested approximation.
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that the suggested approximation will describe a continuous phase transition with
a satisfactory magnitude of the temperature of transition (t¢ ~ 0, 86). The variance
S, is a monotonous function of temperature and will pass through maxima, some of
which are in the region of low temperatures. Figure 2 illustrates the corresponding
results for a two-dimensional case (z = 4). It is seen that the maxima of a variance is
higher (curve 4’), which is in accordance with the known fact of the more expressed
fluctuation of an order parameter for a two-dimensional system. We also see a certain
modification of curvature in the temperature dependence of order parameters in the
field of joint low-temperature and critical solutions. The considered approximation
gives a bit overestimated magnitude for the temperature of a phase transition (t¢ ~
0,81) (we shall recall that an Onsager solution gives t¢ ~ 0,57). In this manner,
the suggested approximation will also describe qualitatively the two-dimensional
system, while in a two-tails approximation the solution for an order parameter is
missing [8].

4. Conclusions

Summing up, we shall underline that in the present paper a rather simple
method is presented which qualitatively correctly and quantitatively enough, in a
self-consistent mode takes into account the fluctuations of an order parameter in
the Ising model of phase transition. Certainly, any self-consistent method can not
compete with the method of a renormalization group, which gives “precise” values of
critical parameters, but can be applied only in a narrow neighbourhood of a critical
point.

The choice of a functional integration method in our case is convenient as it
allows us to formulate an approximation in the terms of functionals of the free
energy and to immediately apply a variational principle. In this manner, in the
present paper the functional of the free energy is determined which will reproduce
the results of a two-tails approximation in a diagram method. On this basis, with the
application of a variational principle, the self-consistent set of equations is obtained
which will describe the fluctuations of an order parameter in the form of a Gaussian
distribution. The method considered can also be easily generalized for the other
models of phase transitions.
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FaycoBe HabnmxeHHsa B mogeni I3iHra. BapiauiiHui
MeTon

B.C.4AHiweBcbknii

Jporobuupknii negaroriyHnin yHisepcuteT iM. |.dpaHka,
JlbBiBCbKa 0011., 293720 Aporobwuy, Byn. |.dpaHka, 24

OtpumaHo 25 rpygHs 1998 p., B ocTaToO4HOMY BUMSAi — 3 TpaBHS
1999 p.

3anponoHOBaHO BapiaHT rayCoBOro HabJIMKEHHS B i3iHFOBUX MOOENsX
daszoBux nepexonis. B ocHOBY nigxoay noknageHo Meton GyHKUioHanb-
HOrO iHTerpyBaHHA B MOEAHAHHI i3 BapiauiiHum meTogoMm. HaBegeHo
ramisisToHiaH (pyHKUiOHan), WO BiATBOPKE B MeTOAi OYHKLIOHANIbHOIO
iHTerpyBaHHs BigoMi pe3ynbTaT HabNMKEHHS IBOXBOCTOK OTPUMAaHI Aia-
rpamMHMM MeTOAO0M. 3aCTOCYBaHHAM BapialiiHOro MeToay YCyBaeTbCs
rONIOBHUI HEeO0NiK HABNMXEHHS ABOXBOCTOK — HENPaBUIbHUIA ONUC poay
das3oBoro nepexoy. HaBooATbLCA YMCESbHI PO3PaxyHKW AN ABO- | TPU-
BUMIPHOI rpaTok.

KniouoBi cnoBa: mMoaesib I3iHra, QpyHKLUIOHaIbHE IHTerpyBaHHSI,
raycoBe Hab/IIKEHHS

PACS: 75.10.H

212



