
Condensed Matter Physics, 2000, Vol. 3, No. 1(21), pp. 201–212

Gaussian approximation for Ising
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A variant of a Gaussian approximation in Ising model of phase transition
is suggested. The method of functional integration with the application of
a variational method is put in the basis of the approach. The Hamiltonian
(the functional) is presented which in the method of functional integration
produces the known results of a two-tails approximation obtained by a dia-
gram method. The application of a variational method eliminates a principal
demerit of the two-tails approximation – incorrect description of the phase
transition order. The results of numerical calculations for two and three-
dimensional lattices are presented.
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1. Introduction

In this paper the self-consistent method of inclusion of the space fluctuations of
the order parameter in Ising type models of phase transitions is considered. As it is
known the number of exactly solved models of phase transitions is rather restricted,
therefore the approximate methods of investigation are widely used. In particular
a rather simple and effective way of the phase transitions description is the mean
field theory which is based on introducing the homogeneous order parameters for
the whole system. The next step is the problem of including the order parameter
fluctuations. One of the widely-applied methods is the diagram technique for the
spin operators [1–4] which permits to make the perturbations theory expansions for
the spin correlation functions and thermodynamic values according to the corre-
sponding expansion parameters (e.g. ∼ 1/rd0, r0 is the exchange interaction radius,
d is the dimension of system, or by ∼1/z, where z is the coordination number of
the lattice). The first approximation by these parameters is the so-called one-loop
approximation or otherwise – the random phase approximation. More complex ap-
proximations are obtained by summation a certain class of diagrams. In particular, a
two-tails approximation is known [1,4,5] for a spin moment and for a spin correlation
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function in which the order parameter fluctuation around the mean field is described
by Gaussian distribution with the variance determined by two-tails. But one of the
shortcomings of the mentioned approximations is that at the self-consistent method
including the mean field and fluctuations, the ruptures of the order parameter tem-
perature dependence arise which formally can be considered as the first order phase
transition. A number of methods with the purpose of removing these shortcom-
ings is known too [6–8]. In [6] the Brillouin zone (for the primitive cubic lattice)
is modified for this purpose, in [7] a certain number of two-tails is limited. A more
consequent method is considered in [8], where the necessity is pointed out for taking
into consideration the additional series of diagrams which have the same order of
quantity as the two-tails approximation diagrams. For this purpose the author of [8]
considered the system of equations for spin cumulants and suggested the splitting
way of the 4-th order spin cumulant for getting the closed system of equations for
the spin cumulants up to the 3-rd order. Though the author showed that in the
vicinity of the critical point the method led to the second order phase transition,
the dependence of the order parameter in the wide temperature range is not given
which seems to be connected with the numerical analysis complicity of the obtained
system of equations.

Taking into consideration the above mentioned facts, a rather simple and con-
secutive way of improving two-tails approximation results is proposed. The method
of functional integration with the variational method is used. First, a two-tails ap-
proximation in the functional approach is obtained and later the Hamiltonian of
two-tails approximation is used as a trial in the variational method. Numerical re-
sults are given for the two- and three-dimensional Ising spin model S = 1/2 on the
square and cubic lattices where the nearest neighbours interact respectively.

2. The two-tails approximation in the functional integration
method

Let’s consider Hamiltonian of Ising model in interaction between the nearest
neighbours

H = −
∑

<i j>

Iσiσj −
∑

i

hσi. (2.1)

Having introduced, in a traditional way, the Fourier-transformation of the spin op-
erators σk = 1√

N

∑

i σie
ikr, we can write this Hamiltonian as follows:

H = −1

2

∑

k

Ikσkσ−k −
∑

i

hσi. (2.2)

Here Ik = zIγk, γk = 1
z

∑

δ
eikδ, summing over k is carried out within the limits

of the first Brillouin zone. The vector δ includes the nearest neighbours in the spin
lattice.

Functional integration methods are widely used in the phase transition investi-
gations and a lot of literature is devoted to them (e.g., [1,2,4,9–14]). In the present
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paper the known representation of partition functions is put into the base of the
functional method.

Z =

∫

(dρ)e−
1

2

∑
k
ρkρ−ke−β

∑
i
Fid(βh+hi)

/
∫

(dρ)e−
1

2

∑
k
ρkρ−k , (2.3)

where βFid = − lnZid, Zid = Sp e(βh+hi)σi – means the partition function of the spin
in the fluctuation field hi =

1√
N

∑

k

√
βIkρke

ikr. For the spin with the value of S the
partition function in the external field is

Zid = sh[(S + 1/2)y]
/

sh(1/2y), y = βh+ hi. (2.4)

In a standard procedure we can introduce the mean field [12], which is connected with
the Fourier component ρ0: hi = h0+h′

i, h0 =
1√
N

√
βI0ρ0, h

′
i =

1√
N

∑

k 6=0

√
βIkρke

ikr

and after replacing ρ0 →
√
Nρ0 in the thermodynamic limit we present the partition

function as

Z = Z0

∫

(dρ)′e−βH′(ρ)
/

∫

(dρ)′e−
1

2

∑
k6=0

ρkρ−k. (2.5)

Here Z0 = e−βF (ρ̄0) , F (ρ̄0) =
N
2
I0ρ̄

2
0 + NFid(hM) is a free energy in the mean field

approximation, and

H ′(ρ) =
1

2β

∑

k 6=0

ρkρ−k +
∑

i

[Fid(hM + h′
i)− Fid(hM)] (2.6)

has a sense of fluctuations component of the system Hamiltonian and is a functional
of the ρk (k 6= 0) variables that describe the order parameter fluctuations; hM =
h+ I0ρ̄0 is a mean field that acted on the spin. The consideration of the corrections
to the mean field approximation is done by means of the expansion by powers of h ′

i

∑

i

Fid(hM + h′
i) =

∑

i,n

1

n!
F

(n)
id (hM)(h

′
i)
n,

and after summing over the particles number we can get

∑

i

(h′
i)
n =

∑

k

(
√
N)−n

√

βIk1
· . . . ·

√

βIkn
ρk1

· . . . · ρkn
δ(k1 + . . .+ kn), (2.7)

here δ(k1 + ...+ kn) is a Kronecker symbol, and the sum of wave vectors is closed:
k1+ . . .+kn = 0. The summation over vectors k1, . . . ,kn in (2.7) will be carried out
independently, otherwise, according to [9,13], the sums are reduced. Traditionally
contribution of ∼ 1

N

∑

k 6=0 βIkρkρ−k is included in zeroth-order approximation, that
will result in a random phase approximation, and the following components of a
series are considered using a perturbation theory.

Let’s also mark that the representation of the partition function in the form of a
functional integral such as (2.5)–(2.7) has played a substantial role in constructing
the microscopic theory of phase transition [9–13]. It is proved that for describing the

203



V.S.Yanishevsky

fluctuations of an order parameter of three-dimensional systems in the neighbour-
hood of a critical point it is necessary to apply a basis distribution, which includes
summands with n 6 6 in (2.7). With the help of a specially designed method of a
renormalization group for calculating a N-multiple integral of a non-Gaussian type
the quantitative description of phase transition of the first and second orders in the
neighbourhood of a critical point was obtained. In the present paper, certainly, we
do not touch upon this special area of the theory of phase transition, but we use the
above evocative representation for constructing a self-consistent approximation.

One can execute a certain selective summation of components of a series (2.7) in a
Hamiltonian (2.6), including the corresponding result in zeroth-order approximation.
The indicated procedure is easily realized for summands such as

∼
(

1

N

∑

k 6=0

βIkρkρ−k

)n

.

The summation of such series, as will be shown below, is equivalent to a two-tails
approximation in a diagram method. The simplest way of executing the above men-
tioned summation is the application of the expansion on the irreducible sums of
vectors k1, . . . ,kn. For this purpose such an identical transformation is used

∑

i

Fid(hM + h′
i) = N

1

N

∑

i

eh
′
i
∂/∂(βh)Fid(hM),

and an action of a differential operator will be written as follows:

1

N

∑

i

eh
′
i
∂/∂(βh) = exp

(

∑

k

1

n!
(
√
N)−n

√

βIk1
· . . . ·

√

βIkn
ρk1

. . .

× ρkn
δ(k1 + . . .+ kn)∂

n
/

∂(βh)n
)

. (2.8)

Here Kronecker symbol means the irreducible sum of wave vectors k1 + ... + kn, in
which there are not subsets of vectors, the sum of which would be equalled to zero.
The representation (2.8) determines 2-, 3- partial and higher orders of correlation
in a system [9,13]. The restriction by a summand ∼ 1

N

∑

k 6=0 βIkρkρ−k in an index
of exponential function (2.8) is equivalent to a summation of a series, which was
mentioned above. In this manner, we have a differential operator, which will act
upon the energy of an ideal system

exp

(

1

2N

∑

k 6=0

βIkρkρ−k∂
2/∂(βh)2

)

· Fid(hM). (2.9)

The differential operation can be exchanged by the integration

1√
π

∫ ∞

−∞
e−ξ2Fid



hM + 2

(

1

2N

∑

k 6=0

βIkρkρ−k

)1/2

ξ



 . (2.10)
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As far as the dependence on variables ρk in (2.10) is a square-law, using the known
methods [14,15] one can reduce the integral in the Gaussian type. In a thermody-
namic limit for the partition function of a system we shall get Z = e−βF (ρ̄0), where

F (ρ̄0) =
N

2
I0ρ̄

2
0 +NeD̂Fid(h̄M)−

N

β
ω̄S̄ +

1

2βN

∑

k 6=0

ln(1 + ω̄βIk), (2.11)

and D̂ = S̄∂2/∂(βh)2.

The parameters ω̄, S̄ are determined from a condition of an extremum of the
free energy (2.11)

∂F (ρ̄0)/∂ω̄ = 0, ∂F (ρ̄0)/∂S̄ = 0,

which will lead to the equations

ω̄ = −eD̂b(1), S̄ =
1

2N

∑

k 6=0

βIk
1 + ω̄βIk

. (2.12)

A relation will also be applied here which relates a derivative from the free energy
to cumulants of an ideal system of spins −βF

(n)
id = b(n−1), and b(n) – mean n-th

derivative from Brillouin function b. We can get the equation for an order parameter,
evaluating a partial derivative from (2.11) on ρ̄0, and as the result:

ρ̄0 = eD̂b(hM) =
1√
π

∫ ∞

−∞
e−ξ2b

(

hM + 2S̄1/2ξ
)

. (2.13)

In this manner, we come to a known system of equations (2.12) and (2.13) [4–8],
which will describe the behaviour of an order parameter in the two-tails approxi-
mation, where S̄ determines a variance of Gaussian distribution of fluctuations of
an order parameter. The formula (2.11) determines a free energy of a system in this
approximation and was obtained in [4] by a method of diagram techniques.

We shall also specify the association with the exactly solved models of phase
transition, which were determined at a phenomenological level (see [15,16], and
also review the publications, which are quoted there). A change from the formally
exact expression (2.8) to the approximate (2.9) according to [15] means the change
to an exactly solved model (for arbitrary dimensionality of space) in case of an
Ising model. The exactly solved model introduced in this manner, is not absolutely
satisfactory, since it, as it was indicated, will not describe the phase transition of the
second order. This fact can also be interpreted in such a manner that the account
of fluctuations is overstated, which will give rise to the fluctuation modification of
an order of transition [15].

The analysis of the contributions of higher orders according to formulas (2.8)
is quite a composite problem, as we have a functional integral of a non-Gaussian
type. The analysis of the indicated contributions will be implemented by means of
a variational principle that will be described in the following section.
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3. Variational approach in the method of functional integration

This method is grounded on the Bogolyubov inequality for the free energy of a
system. In the method of functional integration, this inequality can be written as
[14,17,18]

F (ρ̄0) 6 F0(ρ̄0) + 〈H({ρ})−H0({ρ})〉0 . (3.1)

Here H({ρ}) andH0({ρ}) respectively mean exact and trial Hamiltonians, which are
functions of a variable integration. The angular brackets in (3.1) mean an average
with the application of a trial Hamiltonian. In this manner, according to (2.5), (2.6)
we can write

H({ρ}) = N

2
I0ρ̄

2
0 +

1

2β

∑

k 6=0

ρkρ−k +
∑

i

Fid(hM + h′
i). (3.2)

The trial Hamiltonian contains certain variation parameters, and is picked so that
the average in (3.1) is equal to zero. The most prime form of a trial Hamiltonian
corresponds to a random phase approximation

H0({ρ}) = NC(ρ̄0)/β +
N

2
I0ρ̄

2
0 +

1

2β

∑

k 6=0

(1− βαk)ρkρ−k +NFid(hM). (3.3)

The parameters αk have a sense of the Fourier-components for an effective in-
teraction and can be obtained from the condition of the extremum of free energy.
Therefore, for average quantities in (3.1) we shall get

〈H0({ρ})〉0 = NC(ρ̄0)/β +
N

2
I0ρ̄

2
0 +NFid(hM) +

1

2β

∑

k 6=0

(1− βαk) 〈ρkρ−k〉G , (3.4)

where the calculation average for a variable ρk is executed on the basis of a Hamil-
tonian (3.3) and in particular 〈ρkρ−k〉G = 1/(1− βαk). Based on (3.1)–(3.4) we can
get the following expression for defining C(ρ̄0)

C(ρ̄0)/β = −Fid(hM) + 〈Fid(hM + hi)〉G +
1

2βN

∑

k 6=0

βαk/(1− βαk). (3.5)

For the average in (3.5) we shall also get

〈Fid(hM + hi)〉G = eD̂Fid(hM), D̂ =
1

2N

∑

k 6=0

βIk/(1− βαk) · ∂2/∂(βh)2. (3.6)

In this manner, for the free energy of a zeroth-order approximation (3.3) we shall
get

F0(ρ̄0) =
N

2
I0ρ̄

2
0+NeD̂ ·Fid(hM)+

1

2β

∑

k 6=0

βαk/(1−βαk)+
1

2β

∑

k 6=0

ln(1−βαk) (3.7)

206



Gaussian approximation for Ising model. . .

From the equation for parameters (∂F0(ρ̄0)/∂αk = 0) we shall get that αk =

Ike
D̂b(1)(h̄M). In this manner for defining αk it is necessary to solve the integral

equation. The fitting condition suffices for a thermodynamic description

S̄ =
1

2N

∑

k 6=0

βIk/(1− βIke
D̂b(1)(h̄M)), (3.8)

where D̂ = S̄ · ∂2/∂(βh)2.
Having calculated a partial derivative of the free energy (3.7) on ρ̄0, we shall

get the equation for an order parameter. It is easy to see that these results coincide
with (2.11)–(2.13). The examples considered above also demonstrate a corrigibility
of the improvement of a two-tails approximation by a corresponding selection of a
trial Hamiltonian. Applying the arguments stated in section 2 (formula (2.9)), we
use the following structure of a trial Hamiltonian

H0({ρ}) = NC(ρ̄0)/β +
N

2
I0ρ̄

2
0 +

1

2β

∑

k 6=0

ρkρ−k +NeD̂1(ρ)Fid(hM), (3.9)

where D̂1(ρ) =
1
2N

∑

k 6=0 βαkρkρ−k · ∂2/∂(βh)2. Having produced the corresponding
calculations we shall get the equation for C(ρ̄0),

C(ρ̄0)/β =
(〈

eD̂2(ρ)
〉

0
−
〈

eD̂1(ρ)
〉

0

)

Fid(hM) (3.10)

where the operator in (3.10) is determined by the formula

D̂2(ρ) =
1√
N

∑

k 6=0

√

βIke
ikrρk · ∂/∂(βh).

In this manner, the contribution of higher correlations in the partition function (3.1)
is executed on the average that is expressed by the formula (3.10). In a thermody-
namic limit after some calculations, which we omit, we shall get

C(ρ̄0)/β = (e
ˆ̄D2 − e

ˆ̄D1) · Fid(hM), (3.11)

where

ˆ̄D2 =
1

2N

∑

k 6=0

βIk/(1 + βω̄αk) · ∂2/∂(βh)2, ω̄ = −e
ˆ̄D1b(1)(hM).

The free energy has the following structure

F0(ρ̄0) = NC(ρ̄0)/β+
N

2
I0ρ̄

2
0+Ne

ˆ̄D1 ·Fid(h̄M)−
N

β
ω̄S̄1+

1

2β

∑

k 6=0

ln(1+ω̄βαk). (3.12)

Based on (2.11), we can rewrite (3.12) in the form

F0(ρ̄0) =
N

2
I0ρ̄

2
0 +Ne

ˆ̄D2 · Fid(h̄M)−
N

β
ω̄S̄1 +

1

2β

∑

k 6=0

ln(1 + ω̄βαk). (3.13)
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From the equation ∂F0(ρ̄0)/∂αk = 0 is determined αk

ω̄αk = −b̄(1)Ik − b̃(1)α(0), (3.14)

where
b̄(1) = e

ˆ̄D2b(1)(hM), b̃(1) = e
ˆ̄D1b(1)(hM).

Here corresponding operators can also be written in the form

ˆ̄D1 = S̄1 · ∂2/∂(βh)2, ˆ̄D2 = S̄2 · ∂2/∂(βh)2.

The structure of the free energy (3.13) corresponds to a two-tails approximation
with the distinction that there are two functions here

S̄1 =
1

2N

∑

k 6=0

βαk/(1 + ω̄βαk), S̄2 =
1

2N

∑

k 6=0

βIk/(1 + ω̄βαk). (3.15)

The free component in (3.14) (which does not depend on a wave vector) can be
written as follows

βb̃(1)α(0) = b̃(3)
S̄3 · b̄(1)/b̃(1) − S̄4

1− S̄4 · b̃(3)
. (3.16)

The equation (3.14) (taking into account (3.16)) is an integral equation for defin-
ing the effective interaction αk. For describing the thermodynamics there are enough
fitting conditions, which reduce, accordingly, in two equations for functions S̄3, S̄4

S̄3 =
1

2N

∑

k 6=0

βIkβαk/(1 + ω̄βαk)
2, S̄4 =

1

2N

∑

k 6=0

(βαk)
2/(1 + ω̄βαk)

2. (3.17)

We shall get the equation for an order parameter calculating a partial derivative
from (3.13) on ρ̄0, and as a result

ρ̄0 =
1√
π

∫ ∞

−∞
e−ξ2b

(

hM + 2S̄
1/2
2 ξ

)

. (3.18)

The system of equations (3.14)–(3.18) generalizes a two-tails approximation in
the above suggested method. The function S̄2 is an analogy of a two-tails approx-
imation and determines a variance of Gaussian distribution of fluctuations of an
order parameter. The system of equations (3.15), (3.17) and (3.18) is closed and al-
lows us to determine temperature dependences of an order parameter and functions
S̄1, S̄2, S̄3, S̄4.

Further on we shall be restricted only to a numerical analysis of the obtained
system of equations. The calculations were executed for an Ising model of a spin
S = 1/2. In figure 1 the dependences of an order parameter ρ̄0 and S̄2 (curves 1 and
1’, respectively) for a cubic lattice (coordination number z = 6) are reduced. Besides,
the corresponding results for a two-tails approximation (curves 2 and 2’) are reduced,
as well as the temperature dependence of an order parameter of a mean field (curve
3). Temperature is presented in dimensionless units (t = kBT/zI). We can see,
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ρ
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Figure 1. Temperature dependences of an order parameter and variance for a
cubic lattice in the suggested approximation (curves 1 and 1’, respectively); in a
two-tails approximation (curves 2 and 2’); mean field – curve 3.
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Figure 2. Temperature dependences of an order parameter (curve 4) and variance
(curve 4’) for a square lattice in the suggested approximation.
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that the suggested approximation will describe a continuous phase transition with
a satisfactory magnitude of the temperature of transition (tC ≈ 0, 86). The variance
S̄2 is a monotonous function of temperature and will pass through maxima, some of
which are in the region of low temperatures. Figure 2 illustrates the corresponding
results for a two-dimensional case (z = 4). It is seen that the maxima of a variance is
higher (curve 4’), which is in accordance with the known fact of the more expressed
fluctuation of an order parameter for a two-dimensional system. We also see a certain
modification of curvature in the temperature dependence of order parameters in the
field of joint low-temperature and critical solutions. The considered approximation
gives a bit overestimated magnitude for the temperature of a phase transition (tC ≈
0, 81) (we shall recall that an Onsager solution gives tC ≈ 0, 57). In this manner,
the suggested approximation will also describe qualitatively the two-dimensional
system, while in a two-tails approximation the solution for an order parameter is
missing [8].

4. Conclusions

Summing up, we shall underline that in the present paper a rather simple
method is presented which qualitatively correctly and quantitatively enough, in a
self-consistent mode takes into account the fluctuations of an order parameter in
the Ising model of phase transition. Certainly, any self-consistent method can not
compete with the method of a renormalization group, which gives “precise” values of
critical parameters, but can be applied only in a narrow neighbourhood of a critical
point.

The choice of a functional integration method in our case is convenient as it
allows us to formulate an approximation in the terms of functionals of the free
energy and to immediately apply a variational principle. In this manner, in the
present paper the functional of the free energy is determined which will reproduce
the results of a two-tails approximation in a diagram method. On this basis, with the
application of a variational principle, the self-consistent set of equations is obtained
which will describe the fluctuations of an order parameter in the form of a Gaussian
distribution. The method considered can also be easily generalized for the other
models of phase transitions.
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Запропоновано варіант гаусового наближення в ізінгових моделях

фазових переходів. В основу підходу покладено метод функціональ-

ного інтегрування в поєднанні із варіаційним методом. Наведено

гамільтоніан (функціонал), що відтворює в методі функціонального

інтегрування відомі результати наближення двохвосток отримані діа-

грамним методом. Застосуванням варіаційного методу усувається

головний недолік наближення двохвосток – неправильний опис роду

фазового переходу. Наводяться чисельні розрахунки для дво- і три-

вимірної граток.

Ключові слова: модель Ізінга, функціональне інтегрування,

гаусове наближення

PACS: 75.10.H
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