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The aim of this work is the study of a special class of nonequilibrium sys-
tems which admits to find exact stationary solutions of the kinetic equa-
tions. In particular we investigate canonical-dissipative systems, where the
driving terms are determined by the Hamiltonian or other invariants of mo-
tion only. We construct systems which drive the system to special invari-
ants of motion and solve the corresponding Fokker-Planck equations. Fi-
nally several applications to mean-field problems for fermion and for boson
systems are discussed.
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1. Introduction

The development of the statistical mechanics of equilibrium systems was started
in the pioneering work of Gibbs and belongs to the great achievements of natural
science in the twentieth century [1–3]. The development of a corresponding statis-
tical theory of states far from equilibrium is still far from being completed [2,4,5].
We will show here that there exists a special class of open systems, the so-called
canonical dissipative systems, where an ensemble theory may be developed in a way
which is quite similar to the Gibbs theory [6–11]. This theory is closely related to
Klimontovich’s statistical theory of open systems on the one hand [5] and to the
theory of active Brownian particles [12–17] on the other hand. The main new topic
in this work is constructing a bridge to the semiclassical kinetic theory of quantum
gases proposed first by Nordheim, Uehling and Uhlenbeck [18,19]. Our approach is
based on the theory of canonical-dissipative systems which is an extension of the
statistical physics of Hamiltonian systems to a special type of dissipative systems
[6–11]. The term dissipative means here that the system is non-conservative and the
term canonical means that the dissipative as well as the conservative parts of the
dynamics are both determined by the Hamilton function H or by another invariant
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of motion. This special (and sometimes rather artificial) assumption that the dis-
sipative terms in the dynamical equations depend only on the Hamiltonian or on
certain other invariants of the motion of the system, permits us in many cases to
attain exact solutions even in far-from-equilibrium situations.

2. Dynamics of canonical-dissipative systems

We consider a many-particle system of f degrees of freedom i = 1, ..., f with the
Hamiltonian H(q1...qfp1...pf ) and assume Hamiltonian equations of motion

dqi
dt

=
∂H

∂pi
, (1)

dpi
dt

= −
∂H

∂qi
. (2)

Let us assume that a solution of this system is known

pi = pi(t); qi = qi(t). (3)

Geometrically seen this is a trajectory on the plane H = E = const, which is defined
by the initial conditions. The constant energy E = H(t = 0) is given by the initial
conditions, which are (in certain limits) arbitrary. We construct now a canonical-
dissipative system with the same Hamiltonian by means of a nondecreasing function
g(H):

dpi
dt

= −
∂H

∂qi
− g(H)

∂H

∂pi
. (4)

The dissipative dynamics of the so-called canonical-dissipative system [6,10,11]
does not conserve the energy since

dH

dt
= −g(H)

∑

i

(

∂H

∂pi

)2

. (5)

A more general class of canonical-dissipative systems is obtained by introducing,
beside the Hamiltonian, other invariants of motion. Let us assume that the driving
functions depend on some set of other invariants of motion I0, I1, I2, ..., Is for example

• I0 = H – Hamilton function,

• I1 = P – total momentum of the system,

• I2 = L – total angular momentum of the system etc. etc.

For the equation of motion we postulate

dpi
dt

= −
∂H

∂qi
−

∂G(I0, I1, I2, ...)

∂pi
. (6)
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In the case of equation (4) the attractor is located at the zeros g(H) = 0, for the
dynamics given by equation (6) the attractor corresponds to the maxima of the
function G(I0, I1, I2, ...). A simple ansatz reads

G(I0, I1, I2, ...) =

f
∑

k=0

ck

(

Ik − I
(0)
k

)

, (7)

here the ck are nonnegative constants and the I
(0)
k denote the desired values of the

invariants which correspond to the attractor.
We consider now in more detail the case g = g(H). Then, in regions of the

phase space where g(H) is positive, the energy decays and in regions where g(H) is
negative, the energy increases. First we study the linear case

g(H) = c
(

H −H(0)
)

. (8)

Any state with H(0) < H (0) will increase its energy up to reaching the shell
H(t) = H(0) and any state with H(0) > H (0) will decrease its energy with a rate
proportional to the difference H − H (0). The relaxation time up to reaching the
final value H(t) = H (0) is proportional to c−1. The linear dissipative function (8)
has found applications in the theory of dissipative Toda chains [17]. On the shell
the trajectory obeys the original conservative canonical equation (2). This property
has been used in the above-mentioned work to get exact solutions for canonical-
dissipative Toda systems [17].

A more general dissipation function is

g(H) = γ0 −
(1 + A)γ1

1 + A exp(βH)
. (9)

Here A is a dimensionless constant, γ0 > 0 represents the normal positive friction,
γ1 > 0 is a kind of negative friction and β is a parameter with the meaning of a
reciprocal temperature. For γ1 6 γ0 the friction is always positive, i.e. energy is
extracted. For the opposite case γ1 > γ0, we have negative friction and the system is
pumped with energy at least in the same part of the phase space. Let us concentrate
on this case which will allow us to drive the system to the far from equilibrium
situations. In the limit β → 0 and A → 0, the dissipative function reduces to the
linear case discussed above. For finite A we get a friction function investigated in
[12,13,15].

Using the generalized canonical-dissipative dynamics defined by equation (6), the
system may be driven to the maxima of the function G(I0, I1, I2, ...) i.e. to certain
subspaces of the energy surface. For example we may fix, in addition to H , the
total momentum or the angular momentum or other invariants. Assuming quasi-
ergodicity we may assume that in the long run the measure of the trajectories is
equally distributed on certain shells around the surfaces

H(q1...qfp1...pf ) = const (10)
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Ik(q1...qfp1...pf ) = const, k = 1, 2, . . . , . (11)

Assuming the ergodicity of the dynamics we may postulate microcanonical ensembles
assuming that the probability density is constant on the shells

Ik −
1

2
δIk 6 Ik(q1...qfp1...pf) 6 Ik +

1

2
δIk . (12)

This means that the density is concentrated on certain shells in the phase space.
The relations known from equilibrium dynamics are not valid [1]. Fluxes may be
prescribed as far as they are expressed by invariants of motion. We note that this
formalism is in particular well adapted to the case of integrable systems like the
Toda systems, where f integrals of motion are explicitely known [17].

3. Canonical kinetic equations

The simplest way to formulate a kinetic theory is to introduce noise into the
dynamic equations which leads to Langevin equations [5].

dpi
dt

= −
∂H

∂qi
− g(H)

∂H

∂pi
+ (2D(H))1/2ξ(t). (13)

Here ξ(t) is a delta-correlated white noise. The essential assumption is, that noise and
dissipation depend only on H . The following Fokker-Planck equation corresponds
to the Langevin equation

∂ρ

∂t
+
∑

pi
∂ρ

∂qi
−

∑ ∂H

∂pi

∂ρ

∂pi
=

∑ ∂

∂pi

[

g(H)
∂H

∂pi
ρ+D

∂ρ

∂pi

]

. (14)

The special structure of the dissipative and noise terms permits to find exact
stationary solutions in the following form

ρ0(q1...qfp1...pf) = Q−1 exp

(

−

∫ H

0

dH ′
g(H ′)

D(H ′)

)

. (15)

The derivative of ρ0 vanishes if g(H) = 0. This means the probability is maximal
at the surface H = E1. This may be approximated by a microcanonical ensemble of
the type formulated in the previous section.

For the special case of a linear dissipation function we find the stationary solution

ρ0(q1...qfp1...pf) = Q−1 exp

(

cH(2E1 −H)

2D

)

. (16)

We mention that for these ensembles the standard equilibrium relations between
energy, entropy and temperature are not valid, the mean energy and the energy
dispersion being independent quantities.

The driving function given by equation (9) in combination with D(H) = D0

leads to the distribution

ρ0(q1...qfp1...pf) = Q−1 exp

(

−
G0g1
D0d1

[

H +

(

1

g1
−

1

d1

)

log(1 + d1H)

])

. (17)
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The same distribution follows from the combination of a linear driving

g(H) = G0(1 + g1H) (18)

and a linear noise function

D(H) = D0(1 + d1H). (19)

The existence of exact solutions for the probability distributions allows us to
calculate several thermodynamic functions as the mean energy and the entropy.
Further a Lyapunov-functional (the Kullback entropy) exist

K[ρ, ρ0] =

∫

dq1...dqfdp1...dpfρ log[ρ/ρ0] > 0. (20)

This non-negative functional is always nonincreasing and the relation

dK[ρ, ρ0]

dt
6 0. (21)

describes a monotonic relaxation to the stationary state. This unequality guaranteess
the uniqueness of the stationary solution.

4. Mean-field fermion-boson systems

The only case of canonical-dissipative systems which was studied in detail so far
is the theory of active Brownian particles without interactions [13,16]. The theory
reduces then to a one-particle problem since P (1, 2, ...N) = ΠP (i). We assume for
the one-particle Hamiltonian (with m = 1)

Hi = p2i /2. (22)

Therefore all noninteracting systems with g = g(p2) are of canonical-dissipative type.
We mention that Fokker-Planck equations for such systems with nonlinear friction
have already been discussed in detail by Klimontovich [5].

In our earlier work we studied the special dissipative function closely related to
equation (9)

g(H) = γ0 −
qd

c+ 2dH
. (23)

This model describes the driven particles which possess an energy depot. Assuming
for the noise an Einstein relation D = kTγ0, the distribution functions and several
kinetic characteristics such as the mean square displacement were calculated [16].
Further several results for the one-particle dynamics in parabolic fields were obtained
[13,16]. Instead of an external field we introduce here a mean field generated by the
particles themselves.
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Let us consider physical particles in a 3d-space with the coordinates ~r and mo-
menta ~p = m~̇r and assume that the one-particle dynamics is generated by the
mean-field Hamiltonian

H1 =
p2

2m
+ U(~r ), (24)

where U is the self-consistent Vlasov field

U(~r ) = Vext(~r ) +

∫

d~r V (~r − ~r ′)

∫

d~p f(~p, ~r ). (25)

Here the interaction potential should be integrable such as the Coulomb field. We
generate now a one-particle dynamics, corresponding to this mean-field Hamiltonian
by

d~p

dt
= −

∂U

∂~r
− g(H1)~p+ (2D)1/2~ξ(t) (26)

with the dissipative functions

g(H1) = γ0 −
(1 + A)γ1

1 + A exp(βH1)
. (27)

We will show that this system generates a nonequilibrium Thomas-Fermi-type
dynamics. For that instance we begin with a special choice of the parameters namely

(1 + A)γ1 = γ0, (28)

A = exp(−βµ), (29)

D = D0 =
γ0
mβ

. (30)

Here β is the reciprocal temperature of the physical system and µ the chemical po-
tential. The friction constant γ0 is then the only remaining nonequilibrium constant
which determines the time of relaxation to the stationary state; in our phenomeno-
logical approach γ0 is a free constant which might be adapted to the physical system
we would like to study. For Coulomb systems a reasonable choice for the effective
friction may be the Landau approximation [5]

γ0 = const ·
ne4

(kBT )3/2
log

kmax

kmin
, (31)

where e is the charge and kmax, kmin are maximal/minimal parameters of the scat-
tering process.

We note that our system is not an active system since g(H1) is always non-
negative. In other words the special mean-field system we have defined is not a
nonequilibrium system, its stationary solution should correspond to equilibrium sit-
uations. At the first glance the system defined this way is not very physical. How-
ever, it has a very interesting property of its stationary solution relating to the
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Thomas-Fermi distribution. Indeed the Fokker-Planck equation corresponding to
equation (26) which reads

∂ρ(~r, ~p)

∂t
+ ~p∇rρ−∇rU∇pρ = ∇p [~pg(H)ρ+D0∇pρ] (32)

possesses the stationary solution

ρ(~r, ~p) = f0(H1) =
1

1 + A exp(βp2/2m+ βU(~r ))
. (33)

Substituting here equation (29) we find the Thomas-Fermi distribution with µ being
the chemical potential. Rewriting equation (27) in the form

g(H1) = γ0(1− f0(H1)) (34)

we clearly see the physical reason for the realization of the Thomas-Fermi distri-
bution: In the parts of the phase which are unoccupied f0 = 0 the particles feel a
normal friction γ0 whereas particles in the occupied parts f0 ≃ 1 feel an additional
acceleration which removes them from the occupied parts of the phase space.

We note that the choice proposed above is not unique, all combinations g(H)
D(H)

with the property
g(H1)

D(H1)
=

1

kBT
(1− f0(H1)) (35)

lead to Thomas-Fermi distributions.
The method may be easily transferred to the dynamics of particles with Bose

statistics. Using the following value for the constant A:

A = − exp(−βµ) (36)

we get the friction function

g(H1) = γ0

(

1−
1

1− exp(βH1 − βµ)

)

. (37)

Then our Fokker-Planck equation (32) possesses the exact stationary solution

ρ(~r, ~p ) = f0(H1) =
1

exp(βp2/2m+ βU(~r)− βµ)− 1
, (38)

which is a Bose distribution.
We do not claim here that this simple model of fermionic or bosonic dynamics

gives the correct kinetic properties but it provides at least a relaxation to the correct
thermodynamics and may therefore be used like a Monte-Carlo method. We mention
that our method is in the same spirit as the ad hoc ansatz for kinetic equations of
quantum particles which was proposed around 70 years ago by Nordheim, Uehling
and Uhlenbeck which is still used in many recent applications [20,21].

It may be worth mentioning that the realization of the symmetry effects in many
particle simulations is by far not a trivial task [22].

The range of applicability of the new method presented here however remains
open and needs further detailed investigations and numerical experiments.

291



W.Ebeling

5. Discussion

This work is devoted to the study of canonical-dissipative systems which include
dissipative effects in a rather special form. Our main aim was
(i) to find exact solutions for model equations, with an arbitrarily prescribed energy;
(ii) to discuss several variants of dissipative effects including active friction;
(iii) to derive explicite solutions for the stationary distribution functions;
(iv) to discuss possible applications to mean-field quantum gases.

We started our work from the Hamiltonian theory for conservative mechanical
systems. In order to extend the known solutions for conservative systems to non-
conservative systems we used the general theory of canonical-dissipative systems.
Special canonical-dissipative systems were constructed which solution converges to
the solution of the conservative system with the given energy or other given invari-
ants of motion. In this way we are able to generate states with prescribed energy.
Given any initial condition, the system we have constructed will converge to the so-
lution of the Hamilton equations on an energy surface which we can give in advance.

Further, we constructed and analyzed several special ways of dissipative effects.
Among the possible applications we stressed here in particular a new way to model
the Pauli principle in a semiclassical way by means of special dissipative effects.
There is no space here to explain in more detail other interdisciplinary applications of
the theory of open systems with supply of free energy. Let us give just the references
to three interesting trends related to modelling the biological mobility [12,23,24].

The author would like to thank R.Graham, J.Ortner, Y.Pomeau and H.H.Wolter
for discussions.
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Канонічна нерівноважна статистика і застосування

до Фермі-Бозе систем

У.Ебелінґ

Інститут фізики, університет Гумбольдта,

D-10115 Берлін, Німеччина

Отримано 20 лютого 2000 р.

Метою цієї роботи є вивчення особливого класу нерівноважних си-

стем, який допускає знаходження стаціонарних розв’язків кінетич-

них рівнянь. Зокрема, ми досліджуємо канонічно-дисипативні систе-

ми, в яких ведучі члени визначаються гамільтоніаном або іншими ін-

варіантами руху. Ми будуємо системи, які приводять систему до осо-

бливих інваріантів руху, і розв’язуємо відповідні рівняння Фокера-

Планка. Нарешті, ми обговорюємо деякі застосування до середньо-

польових проблем для систем ферміонів і бозонів.

Ключові слова: статистична механіка, ансамблі, рівняння

Фокера-Планка, середнє поле, ферміони, бозони
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